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ABSTRACT

Molecular docking is a widely used method for lead optimization. However, docking tools
often fail to predict how a ligand (the smaller molecule, such as a substrate or drug can-
didate) binds to a receptor (the accepting part of a protein). We present here the Harmo-
nyDOCK, a novel method for assessing the docking software accuracy, and creating the
scoring function which would determine consensus protein-ligand pose among those gen-
erated by available docking programs. Conformations for few hundred protein-ligand
complexes with known three-dimensional structure were predicted on a benchmark set by
set of different docking programs. On the basis of the derived ranking, the point of reference
and the lower score limit were determined for subsequent investigations. The focus of the
methodology is on the top-ranked poses, with the assumption being that the conformation of
the docked molecules is the most accurate. We found out that some docking programs
perform considerably better than the others, yet in all cases the proper selection of decoys,
namely HarmonyDOCK, is needed for successful docking procedure.
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1. INTRODUCTION

Molecular docking is a simulation process used for predicting how a ligand (the smaller molecule,

such as a substrate or drug candidate) binds to a receptor (the accepting part of a protein). When these

two molecules form a stable complex, the preferred orientation is found.

The computational solution of the molecular docking problem results in predicting the affinity of the

small molecules, i.e., drug candidates, which reduce the number of lead components for a good drug. The

computational methods reduce time and cost needed to introduce a new drug into the market.

Until the 1970s, hypothetical activity models dominated the syntheses of new compounds in drug

research. The biological activity of these compounds was verified by experiments with isolated organs or

animals. Accordingly, the throughput was limited by the speed and the cost of the experimental trials. The

development of a new drug by classic methods takes 12–15 years and can cost above 800 million euro
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(Terfloth, 2003). The Boston Consulting Group has come to the conclusion that genomics could reduce the

cost of a new drug production from 800 million euro by about 305 million euro in the ideal case (Terfloth,

2003).

Thanks to the Virtual High-Throughput Screening (VHTS) method, three-dimensional (3D) libraries can

be rapidly screened (up to approximately 100,000 ligands/day) for virtual hits showing the best comple-

mentarity to a defined active site of the target protein. The VHTS procedure is much more cost-efficient

than experimental high-throughput screening (EHTS) by robots. The single test for EHTS method with a

library of 150,000 compounds costs about US$ 300,000 (Wermuth, 2003). The VHTS method is mostly

used to select a small number (several hundreds up to a thousand) of lead compounds for featured

laboratory tests. For example, researchers from Hoffman-La Roche pharmaceutical company have dis-

covered new inhibitors of DNA gyrase. The discovering process was based on the 3D structural information

of the DNA gyrase binding site. They applied in silico screening to find potential leads from the chemical

databases. The LUDI software (Bohm, 1992a,b, 1994) was employed to perform docking. The hits of the

screening were validated by biophysical methods and finally optimized. The process resulted in a set of

DNA gyrase inhibitors. They were up to ten times more potent than another known inhibitor, novobiocin

(Bohm et al., 2000).

Molecular docking simulations are of great importance in academic and industrial research, because they

provide a deeper insight into biochemical processes and are instrumental in finding potent drugs.

1.1. Molecular docking process

The computational molecular docking is a research technique for predicting whether one molecule will

bind to another one or not.

The interaction between two molecules can be evaluated by a scoring function that includes terms

describing the inter- and intra-molecular energies (Lodish et al., 2000), such as electrostatic forces, Van der

Walls interactions, hydrogen bounds (Rodwell, 1999), or hydrophobic interactions (Goss and Schwar-

zenbach, 2003). In general, the docking problem is posed as an optimization problem, where the objective

is to minimize this interaction energy. The favourably bonded state is the state of the lowest energy. If

conformation is complementary and involves favorable biochemical interactions, the ligand should bind to

the protein in vitro and in vivo.

1.2. Docking search algorithms

The search space consists of all possible orientations and conformations of the protein paired with the

ligand. However, the number of accessible states grows immensely with the size of the components

(a phenomenon known as the combinatorial explosion). The possible number of conformations can be very

large. Sophisticated optimization algorithms are needed to explore such search spaces successfully. The

search algorithm should generate a set of complexes in which experimentally determined binding modes

are included. To evaluate the accuracy of the computationally predicted poses, the root-mean-squared

deviation (RMSD) is frequently used. It compares the experimentally observed heavy-atom positions of the

ligands and the ones determined by the method. The number of algorithms available to assess and ratio-

nalize ligand-protein interactions is large and ever increasing. In addition, combining different docking

techniques into a single strategy is a common and useful method to increase the effectiveness of a docking

protocol. The most popular searching strategies are brute-force search (Katchalski-Katzir et al., 1992;

Ritchie and Kemp, 2000), genetic algorithms (Mitchell, 1997), Monte Carlo simulations ( Jorgensen and

Tirado-Rives, 2005), simulated annealing, and structure-based methods.

1.3. Scoring functions

Computational docking methods generate a large number of candidate solutions, where a protein and a

ligand contact each other in many different orientations. It is critically important to select the near-native

poses from among all the others that were explored by the searching algorithm. Scoring functions express

the geometric complementarity of the two molecules surfaces in contact and also the strength of the

interaction, based on the physico-chemical characteristics of the two molecules. Most procedures handle

the geometric and physico-chemical criteria separately. The accuracy of the scoring function can

be evaluated on experimentally resolved complexes, where the native conformation is known. There are
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databases with experimentally determined affinity data (e.g., freely accessible AffinDB) (Block et al.,

2006).

Commonly, to improve scoring confidence, hybrid scoring functions (’’consensus scoring’’) are created.

They combine the terms from two or more sources. Nevertheless, such complex scoring methods require

multiple algorithms and are therefore computation-expensive, which could affect the speed of the whole

docking process. Most often, scoring schemes are based on force-field based methods (Meng et al., 1992),

empirical methods (Eldridge et al., 1997), and knowledge-based methods (Gohlke et al., 2000).

2. METHODS

2.1. Computations

First of all, the RMSD value to the native structure for all poses generated by tested docking methods

was calculated.

2.2. Evaluation of docking software

The accuracy of each of the docking programs was estimated using the following two sums:

(1) The sum of the RMSD values: when the best-scored poses (proposed by docking application as the

best ones) were chosen for each protein-ligand complex.

(2) The sum of the RMSD values: when the poses with the lowest RMSD were chosen for each protein-

ligand complex.

2.3. Poses scoring functions

On the basis of the docking software rankings, the following poses scoring functions were created to

choose the consensus pose for each complex among all poses generated by docking programs for this

complex.

� Arithmetic - arithmetic mean;
� Arithmetic - harmonic (þ0.5) mean;
� Arithmetic - harmonic (þ2) mean;
� Arithmetic - harmonic (þ5) mean;
� Arithmetic - harmonic (þ20) mean;
� Arithmetic - quadric mean;
� Harmonic (þ 0, 5) - arithmetic mean;
� Harmonic (þ 1) - arithmetic mean;
� Harmonic (þ 2) - arithmetic mean.

All of the created methods are based on arithmetic, harmonic, and quadric means.

2.4. HarmonyDOCK: algorithm for scoring a set of poses

The computations were performed successively for each protein-ligand pair from the data set. We have

chosen the consensus pose for each complex from among all poses generated by docking programs using

previously mentioned poses scoring functions. All poses derived for a particular protein-ligand complex are

scored according to the following scheme, where the algorithm consists of two main steps.

Step 1. Comparative process. All poses derived for a particular protein-ligand complex are compared to

one another. That gives (n2 � n)
2

pose-pairs, where n is the number of the poses. Comparative process consists

of two steps:

� Calculation of the square-distance between the corresponding heavy atoms (all atoms excluding hy-

drogen) according to the following equation:

d¼ (x1� x2)2þ (y1� y2)2þ (z1� z2)2

Where d is a square-distance between the corresponding atoms; x1, y1, z1 are the coordinates of the first

atom and x2, y2, z2 are the coordinates of the second one.
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� Calculation of a distance between two poses as the mean square-distance between all atoms using

arithmetic and harmonic means. The names of the above means form the first element of the poses

scoring functions’ names.

At the end of step 1 (comparative process), the mean distance between all heavy atoms is determined for

each of the pose-pair.

Step 2. Poses scoring process. The score of the certain pose is the mean of all the distances between this

pose and all the other poses. For these calculations arithmetic, harmonic, and quadric means are used. The

names of this mean form the second element of the poses scoring functions’ names.

Subsequently, the poses are ranked by the calculated scores and the lowest-scored pose is chosen as the

best one.

2.5. Evaluation of poses scoring functions

The accuracy of each of the poses scoring functions was estimated using the sum of the RMSD values,

when the best-scored (lowest-scored) poses (proposed by a/the poses scoring function as the best ones)

were chosen for each protein-ligand complex.

3. RESULTS

The results of the docking software evaluation are summarized in Table 1. The lower the value, the better

the docking result.

In the first test (Table 2), the highest sum of RMSD was received by eHiTS (5074.45), which preformed

worst. FlexX, AutoDock, GLIDE, Surflex, and GOLD obtained 2588.44, 2410.16, 2208.39, 2000.56, and

1792.81 points, respectively. LigandFit obtained the best result (1535.86). The docking software accuracy

varies significantly between complexes. Some protein–ligand complexes have been accurately predicted by

all the docking programs (e.g., 1mdq complex), and some examined docking simulations have been totally

unsuccessful (e.g., 1pip and 1qji complexes). A graphical illustration of them is presented in Figures 1–4.

Thanks to the second method mentioned above, the lower possible RMSD-sum limit for a poses scoring

function was determined. Again, LigandFit appeared to be the best, with the value of 774.777. The results

of the second test confirmed the ranking obtained in the first test: eHiTS, FlexX, AutoDock, GLIDE,

Surflex, GOLD, and LigandFit.

3.1. Results of poses scoring functions’ evaluation

A few alternative methods based on different kinds of means were proposed to select a consensus

protein-ligand pose from among those generated by the docking programs for a certain protein-ligand

complex:

� Arithmetic - arithmetic mean;
� Arithmetic - harmonic (þ 0.5) mean;
� Arithmetic - harmonic (þ 2) mean;

Table 1. The Summary of Docking Software Results (in A) and Ranking

Rank Program First test’s results* Second test’s results**

1 LigandFit 1535.86 774.777

2 GOLD 1792.81 1137.975

3 Surflex 2000.56 1368.599

4 GLIDE 2208.39 1399.091

5 AutoDock 2410.16 1522.193

6 FlexX 2588.44 1986.752

7 eHiTS 5074.45 2402.523

*Sum of RMSD of best scored poses.

**Sum of RMSD of poses with the lowest RMSD.
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� Arithmetic - harmonic (þ5) mean;
� Arithmetic - harmonic (þ20) mean;
� Arithmetic - quadric mean;
� Harmonic (þ 0,5) - arithmetic mean;
� Harmonic (þ 1) - arithmetic mean;
� Harmonic (þ 2) - arithmetic mean.

The aim was to create the scoring method which would perform better than LigandFit, the best per-

forming program. The first result of the docking software test (1535.86) became the point of reference to be

outranked.

The second docking software test determined the theoretically possible accuracy of re-ranking the poses

generated by one program, because only the best possible results were summarized (the results with the

lowest RMSD) for each complex. This value is also the limit on my scoring method. In the ideal case, the

accuracy of poses scoring function should reach the range of this value (774.777 for LigandFit).

The summary of poses scoring functions’ results is collected in Table 2. Two functions, Arithmetic-

harmonic (þ5) mean and Arithmetic-harmonic (þ2) mean, performed better than LigandFit (Arithmetic-

Table 2. The Summary of Poses Scoring Functions Results (in A) and Ranking

Rank Poses scoring function Score*

LigandFit – lower limit 774.77

1 HarmonyDOCK – using arithmetic-harmonic (þ5) mean 1480.86

2 Arithmetic-harmonic (þ2) mean 1490.09

LigandFit - the point of reference 1535.86

3 Arithmetic-harmonic (þ20) mean 1538.84

4 Arithmetic-harmonic (þ0.5) mean 1565.44

5 Arithmetic-arithmetic mean 1673.86

6 Harmonic (þ2)-arithmetic mean 1873.23

7 Harmonic (þ1)-arithmetic mean 1895.89

8 Harmonic (þ0.5)-arithmetic mean 1905.53

9 Arithmetic-quadric mean 1998.97

*Sum of RMSD distances to the native structure.

FIG. 1. The in silico process of

new drug development.
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FIG. 2. Example of well–

predicted poses (1mdq). (a) Native

structure. (b) GOLD best-scored

pose (GOLD 0). (c) FlexX best-

scored pose (FlexX 0). (d)

LigandFit best-scored pose (Ligand-

Fit 0).

FIG. 3. Example of a poor pre-

dicted poses (1qji). (a) native struc-

ture. (b) Surflex best-scored pose

(Surflex 0). (c) eHiTS best-scored

pose (eHiTS 0). (d) GLIDE best-

scored pose (GLIDE 0).
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harmonic (þ5) mean gained 1480.86 and Arithmetic-harmonic (þ2) mean gained 1490.09). Arithmetic-

harmonic (þ20) mean (1538.84) and Arithmetic-harmonic (þ0.5) mean (1565.44) scored similarly to

LigandFit; the other functions ranked worse than the reference determined by the best performed software,

LigandFit (1535.86). The results of the best performing function, Arithmetic-harmonic (þ5) mean, are

presented in Tables 3 and 4.

4. DISCUSSION

The docking software accuracy varies significantly between complexes. We find protein–ligand pairs to

be completely incorrectly docked by all the docking programs (e.g., 1qji complexes) but there are also

accurately predicted poses (e.g., 1mdq complex). The graphic illustration of the examples can be found in

the Results section.

The size and diversity of data set seem to be sufficient to correctly assess the average results of docking

software.

However, it must be noted that all simulations were carried out under default settings. Hence, the lower

accuracy of some docking programs could have been caused by suboptimal choice of the searching and

scoring procedures. For example, eHiTS results would have been better, if a search function other than a

comprehensive search space one had been used. It is possible to apply pre-processing and determine the

areas of the protein active sites. Also, it is worth bearing in mind that, in our docking simulations, the native

conformation of the ligand was chosen as the starting conformation. Under such conditions, the methods

that do not alter the conformation of the ligand during the docking process (LigandFit) have an advantage

over methods that completely rebuild the conformation of the ligand (eHiTS). More natural conditions

where the ligand conformation is not known could have resulted in a different ranking of the docking

methods.

For poses scoring function, Arithmetic-harmonic (þ5) mean produces better results than any other

docking software tested in our first experiment based on the sum of RMSD values. However, its

achievement differs only slightly from the results gained by LigandFit. The region of the lower score limit,

which was determined by LigandFit in the second accuracy test, was not achieved.

FIG. 4. Example of well-pre-

dicted poses by Arithmetic-har-

monic (þ5) mean (1rdj). (a) Native

structure. (b) Arithmetic-harmonic

(þ5) mean bestscored pose (Surflex

6). (c) eHiTS best-scored pose

(eHiTS 0). (d) GLIDE best-scored

pose (GLIDE 0).
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If the number of generated poses by each docking program had been increased from 10 to 100, a more

precise computation would have been possible and the accuracy of poses scoring functions could have been

higher. However, such docking simulations have not been performed because the computations would take

too much time.

Arithmetic and harmonic means are simple statistic measures. They determined consensus pose

among all the available ones for each complex. However, each set of poses generated by docking

software for a certain protein-ligand pair has artefacts, i.e., outlier members, which could obscure the

results and lower their quality. The substitution of arithmetic and harmonic means for some methods,

which would exclude extreme poses, would possibly improve the accuracy of poses scoring functions.

In such a case, the favorable consensus pose would be chosen only among the ‘‘good’’ ones. This has

not been tested yet.

Table 3. Comparison of the Success Rates of 17 Scoring Functions When

the Cut-off is RMSD <3.0. (The Table is the Modified Figure 3. of Tiejun

Cheng Group (‘‘Comparative Assessment of Scoring Functions

on a Diverse Test Set’’)

1 GOLD:ASP 89%

2 DS:PLP1 85%

3 GlideScore:SP 85%

4 DrugScorePDB:PairSurf 82%

5 GOLD:GoldScore 81%

6 DS:LigScore2 80%

7 GOLD:ChemScore 79%

8 X-score1.2:HMScore 78%

9 HarmonyDOCK 76%

10 SYBYL:F-Score 74%

11 SYBYL:ChemScore 71%

12 DS:Ludi2 67%

13 DS:Jani 65%

14 SYBYL:PMF-Score 58%

15 SYBYL:G-Score 56%

16 DS:PMF 53%

17 SYBYL:D-Score 48%

Table 4. Comparison of the Success Rates of 17 Scoring Functions When the Cut-off

is RMSD <2.0. (The Table is the Modified Figure 3. of Tiejun Cheng Group

(‘‘Comparative Assessment of Scoring Functions on a Diverse Test Set’’)

1 GOLD:ASP 82%

2 DS:PLP1 75%

3 DrugScorePDB:PairSurf 75%

4 GlideScore:SP 72%

5 DS:LigScore2 71%

6 GOLD:ChemScore 70%

7 GOLD:GoldScore 69%

8 X-score1.2:HMScore 69%

9 HarmonyDOCK 65%

10 SYBYL:F-Score 65%

11 SYBYL:ChemScore 60%

12 DS:Ludi2 58%

13 SYBYL:PMF-Score 48%

14 DS:Jani 45%

15 DS:PMF 44%

16 SYBYL:G-Score 41%

17 SYBYL:D-Score 30%
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5. CONCLUSION

A few hundred protein-ligand pairs have been processed using popular docking software. Scorings and

rankings of docking programs accuracy were prepared and analysed using developed scripts. The LigandFit

method performed best in our tests, and its score was used as a reference point for our investigations.

A set of poses scoring functions based on different kinds of mathematical means was designed and

implemented to create a method which chooses a consensus pose for each complex among all poses

generated by docking programs. The highest accuracy was observed for Arithmetic-harmonic (þ5) mean

predictions. It performed better than the best performing program: LigandFit in the RMSD-sum test (e.g.,

1rdj complexes).

The computational techniques and, by extension, computing power increase very fast. The scoring

accuracy and quality of docking applications have improved significantly in the last few years. Never-

theless, there are still too many limitations to base the drug-discovering process exclusively on in silico

methods. The computational docking could play an important role in rational drug design, but it cannot be

applied without in vitro and in vivo validations.
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