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ABSTRACT
Motivation: Disulfide bonds play an important role in protein folding.
A precise prediction of disulfide connectivity can strongly reduce the
conformational search space and increase the accuracy in protein
structure prediction. Conventional disulfide connectivity predictions
use sequence information, and prediction accuracy is limited. Here,
by using an alternative scheme with global information for disulfide
connectivity prediction, higher performance is obtained with respect
to other approaches.
Result: Cysteine separation profiles have been used to predict the
disulfide connectivity of proteins. The separations among oxidized
cysteine residues on a protein sequence have been encoded into
vectors named cysteine separation profiles (CSPs). Through com-
parisons of their CSPs, the disulfide connectivity of a test protein is
inferred from a non-redundant template set. For non-redundant pro-
teins in SwissProt 39 (SP39) sharing less than 30% sequence identity,
the prediction accuracy of a fourfold cross-validation is 49%. The
prediction accuracy of disulfide connectivity for proteins in SwissProt
43 (SP43) is even higher (53%). The relationship between the sim-
ilarity of CSPs and the prediction accuracy is also discussed. The
method proposed in this work is relatively simple and can generate
higher accuracies compared to conventional methods. It may be also
combined with other algorithms for further improvements in protein
structure prediction.
Availability: The program and datasets are available from the authors
upon request.
Contact: cykao@csie.ntu.edu.tw

1 INTRODUCTION
A disulfide bond is a strong covalent bond between two cysteine
residues in proteins. It plays a key role in protein folding and
in determining the structure/function relationships of proteins
(Abkevich and Shakhnovich, 2000; Wedemeyer et al., 2000; Welker
et al., 2001). In addition, it is important in maintaining a protein in
its stable folded state. A disulfide connectivity pattern can be used to
discriminate the structural similarity between proteins (Chuang et al.,
2003). In protein folding prediction, the knowledge of the locations

∗To whom correspondence should be addressed.

of disulfide bonds can dramatically reduce the search in conforma-
tional space (Skolnick et al., 1997; Huang et al., 1999). Therefore,
a higher performance in predicting disulfide connectivity pattern is
likely to increase the accuracy in predicting the three-dimensional
(3D) structures of proteins through the reduction of the number of
steps during conformational space search.

Generally, the prediction of disulfide connectivity pattern in pro-
teins consists of two consecutive steps. Firstly, the disulfide bonding
state of each cysteine residue in a protein is predicted based on
its amino acid sequence and evolutionary information using vari-
ous algorithms, such as neural networks (Fariselli et al., 1999; Fiser
and Simon, 2000), support vector machines (Chen et al., 2004) and
hidden Markov models (Martelli et al., 2002). Secondly, the location
of disulfide bonds is subsequently predicted based on the bonding
state of each cysteine residue using algorithms such as Monte Carlo
(MC) simulated annealing together with weighted graph matching
(Fariselli and Casadio, 2001) and recursive neural networks with
evolutionary information (Vullo and Frasconi, 2004). The predic-
tion accuracy of the oxidation state of cysteine residues has reached
90% (Chen et al., 2004) and can be used confidently. However, the
task of predicting disulfide connectivity remains challenging. The
best prediction accuracy ever reported so far is only 44% (Vullo and
Frasconi, 2004), in which recursive neural network was used to score
connectivity patterns represented in undirected graphs. Such predic-
tion accuracy is still far from being usable, although it is much higher
than that by a random predictor.

In this work, cysteine separation profiles (CSPs) of proteins are
adopted for the prediction of disulfide connectivity. It has been
shown that proteins with similar disulfide bonding patterns also
share similar folds (Chuang et al., 2003; van Vlijmen et al., 2004).
Theoretical work has suggested that disulfide bonds may stabilize
the structures of protein fragments between the connected cysteine
residues (Abkevich and Shakhnovich, 2000); therefore, the separa-
tions between oxidized cysteine residues may be used in the task of
predicting disulfide connectivity. Previous works on disulfide con-
nectivity predictions have used graphs to represent disulfide connec-
tion patterns (Fariselli and Casadio, 2001; Vullo and Frasconi, 2004).
Protein sequences, contact potentials and evolutionary information
have been well used to score various connection patterns. The present
approach encodes separations among cysteine residues into the form
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Table 1. Number of chains in the datasets, divided according to the number
of disulfide bridges (B)

Datasets B = 2 B = 3 B = 4 B = 5 B = 2 ∼ 5

SP39 150 149 105 45 449
SP39-ID30 92 81 43 28 244
SP39-TEMPLATE 244 198 98 45 585
SP43 124 118 41 35 318

of vectors. The prediction of disulfide connectivity is based on the
comparisons of vectors from testing and template dataset, in which
similar vectors imply similar connection patterns. The method pro-
posed here is much simpler than graph-based methods, and raises
both efficiency and accuracy.

2 SYSTEM AND METHODS

2.1 Datasets
The datasets used to evaluate the predicting power of CSPs were construc-
ted from SwissProt release No. 39 (Bairoch and Apweiler, 2000), including
sequences with annotated disulfide bridges. Protein sequences in SwissProt
release No. 39 are filtered according to procedures described in two previous
works (Fariselli and Casadio, 2001; Vullo and Frasconi, 2004). This dataset
is denoted as ‘SP39’. Another dataset based on SP39 was also constructed;
redundant sequences with pairwise sequence identity of more than 30% were
removed. This non-redundant set is denoted as ‘SP39-ID30’. SP39-ID30 is
used to investigate the effects of sequence identities on the prediction accuracy
of CSP.

Another dataset was further constructed to verify the predicting power
of CSP. The same filter procedures were applied to sequences in SwissProt
release No. 43, where sequences in release 39 were excluded. Thus it is pos-
sible to predict proteins newly added to SwissProt database between releases
No. 39 and No. 43. This set is denoted as ‘SP43’. Redundant sequences with
pairwise sequence identity of more than 25% in SP43 were also removed.
The template set used to predict disulfide connectivity in SP43 was con-
structed from SwissProt release 39. Sequences in this set were filtered as in
SP39 and SP43, except for the PDB filter. Only sequences sharing less than
30% identity with those in SP43 were kept. This template set is denoted as
‘SP39-TEMPLATE’.

The numbers of sequences divided according to the number of disulfide
bridges in these datasets are summarized in Table 1.

2.2 Basic assumption
Similar disulfide bonding patterns infer similar protein structures regardless
of sequence identity (Chuang et al., 2003). Figure 1 shows an example of
two proteins with the same disulfide bonding patterns. Tick anticoagulant
peptide (serine protease inhibitor, PDB id 1TAP) (Antuch et al., 1994) and
cacicludine (calcium channel blocker, PDB id 1BF0) (Gilquin et al., 1999)
exhibit the same disulfide connectivity [1–6, 2–3, 4–5], which means that the
first oxidized cysteine is connected with the sixth one, the second with the
third, and the forth with the fifth. These two proteins share sequence identity
of only 18.2%, but with a Cα root-mean-square deviation (RMSD) of 3.6 Å
(Chuang et al., 2003). Although the sequence identity is below the twilight
zone, the structure and separations among cysteine residues are similar for
these two proteins. The residue numbers for cysteines in the two proteins are
[5, 15, 33, 39, 55, 59] and [7, 16, 32, 40, 53, 57], respectively. The positions
and separations of cysteine residues are similar for these two proteins. It is
likely that cysteine separations are related to disulfide connectivity patterns,
and through the comparison of CSPs, the disulfide connectivity patterns may
be inferred and predicted.

Fig. 1. The structures of two proteins with low sequence identity but sharing
the same disulfide bonding patterns: (a) anticoagulant protein (PDB id 1TAP),
(b) calcium channel blocker (PDB id 1BF0), and (c) the sequences of the two
proteins, with cysteine residues highlighted with bold and underline. Both
proteins have three disulfide bonds [1–6, 2–3, 4–5] and BPTI-like structures;
the sequence identity is 18.2%.

2.3 CSP and evaluation of prediction accuracy
CSPs contain cysteine separation information. Protein x with n disulfide
bonds and 2n cysteine residues has a cysteine separation profile (CSPx)

defined as

CSPx = (s1, s2, . . . , s2n−1)

= (C2 − C1, C3 − C2, . . . , C2n − C2n−1)

where Ci is the position of ith cysteine residue in the given protein and si is
the separation between cysteines Ci and Ci+1. By this definition, a protein
with disulfide bonds will have a CSP.

The divergence, D, between two CSPs is defined as follows:

D =
∑

i

|sX
i − sY

i |

where sX
i and sY

i are the ith separations for CSPs of two different proteins X

and Y .
The CSP of a test protein was then compared with all CSPs of template

proteins. The disulfide connectivity pattern of the test protein can be predicted
as that of the template protein with the most similar CSP, i.e. with the smallest
divergence value D. If the divergence D between two CSPs equals 0, the CSPs
are termed ‘matched profiles’, otherwise they are ‘mismatched profiles’. If
more than one template proteins are matched, one of the templates is randomly
selected for the prediction. The ambiguous situations are rare; only less than
2% are observed.

Our method is basically a nearest-neighbor (NN) approach. With only one
template for each pattern, our method is essentially a 1-NN approach. We have
tried k-NN method in our preliminary investigation. However, the prediction
accuracy of k-NN is not significantly better than that of our current approach.

The prediction accuracy of our method was evaluated with Qp and Qc

values, which are the fraction of proteins with correct disulfide connectivity
prediction and are defined as:

Qp = Cp

Tp,
Qc = Cc

Tc

where Cp is number of proteins with all the disulfide connectivity correctly
predicted; Tp is the total number of test proteins; Cc is the number of disulfide
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Table 2. Comparison among different disulfide connectivity prediction algorithms

Algorithms B = 2 B = 3 B = 4 B = 5 B = 2 ∼ 5
Qp (%) Qc (%) Qp (%) Qc (%) Qp (%) Qc (%) Qp (%) Qc (%) Qp (%) Qc (%)

Frequencya 58 58 29 37 1 10 0 23 29 32
MC graph-matchingb 56 56 21 36 17 37 2 21 29 38
NN graph-matchingc 68 68 22 37 20 37 2 26 34 42
BiRnn-1 sequenced 59 59 17 30 10 22 4 18 28 32
BiRnn-1 profiled 65 65 46 56 24 32 8 27 42 46
BiRnn-2 sequenced 59 59 22 34 18 30 8 24 31 37
BiRnn-2 profiled 73 73 41 51 24 37 13 30 44 49
CSP (SP39)e 89 89 81 84 81 85 51 60 81 81
CSP (SP39-ID30)f 74 74 44 53 26 44 18 31 49 52
CSP (SP43)g 71 71 49 58 30 40 28 33 53 53

aPrediction accuracy reported by Vullo and Frasconi (2004).
bPrediction accuracy reported by Fariselli and Casadio (2001).
cPrediction accuracy reported by Fariselli et al. (2002).
dPrediction accuracy reported by Vullo and Frasconi (2004).
ePrediction accuracy of CSP on SP39 with redundant sequences retained.
f Prediction accuracy of CSP with redundant sequences removed.
gPrediction accuracy of CSP on SP43 using SP39 as template set, with sequence identity less than 30%.

connectivity correctly predicted; and Tc is the total number of disulfide
connectivity in test proteins.

3 RESULTS

3.1 Fourfold cross validation
In order to compare with other approaches for disulfide connectiv-
ity prediction, similar criteria were used to select our dataset. The
same fourfold cross-validation has been applied to our datasets. The
SP39 and SP39-ID30 datasets were divided into four subsets, and the
disulfide connectivity prediction was repeated four times. For each
prediction, one of the four subsets was used as the test set and the
other three subsets were put together to form a template set. The final
prediction accuracy was averaged over the four prediction results.

Table 2 summarizes the disulfide connectivity prediction results
obtained from this study as well as those obtained from the previous
works (Fariselli and Casadio, 2001; Vullo and Frasconi, 2004). ‘Fre-
quency’ is a trivial method, where the prediction is based on most
frequently observed pattern in the training set. ‘MC graph-matching’
and ‘NN graph-matching’ are both based on a graph representation
of disulfide bonding patterns, using Monte Carlo and Neural Net-
works for pattern recognition, respectively (Fariselli and Casadio,
2001). The results termed BiRnn are obtained from recursive neural
networks with sequence and evolutionary information (Vullo and
Frasconi, 2004); the disulfide connectivity patterns are also repres-
ented using graphs. The prediction results from this work are termed
CSP, with dataset noted in the parenthesis. The prediction results are
divided according to the number of disulfide bridges.

The average value of Qp using CSP is 0.81 for SP39. However,
redundant sequences were observed in the SP39 dataset. There are
37.4% of matched profiles and 62.6% of mismatched profiles pat-
terns. The number of matched profile patterns is high, and is likely
to have resulted from redundant and homologous sequences in the
SP39 dataset. The redundancy may have caused over-fitting in SP39,
even with fourfold cross-validation. In order to control and test

over-fitting, we extracted the sequences with pairwise sequence iden-
tities less than 30% from SP39 and then generated another dataset,
SP39-ID30. The average value of Qp (B = 2 ∼ 5) using CSP is 49%
for SP39-ID30. With redundant sequences removed, the fourfold
cross-validation prediction accuracy of CSPs is higher than the best
results ever reported from previous works.

The prediction accuracies for protein chains with different disulf-
ide bridge numbers are all significantly higher for ‘CSP (SP39)’.
For proteins with two, four and five disulfide bridges, the prediction
accuracies in ‘CSP (SP39-ID30)’ are higher than other works. The
prediction accuracy for proteins with three disulfide bridges is 2%
lower than that of ‘BiRnn-1 profile’, but is still significantly higher
than those from other works.

3.2 Handout prediction of new sequences from SP43
We further validate CSP on a new dataset, SP43, which contains
new sequences not seen in SwissProt release 39. We use SP39-
TEMPLATE as the template set to predict disulfide connectivity
patterns of new sequences in SP43. The pairwise identities of
sequences in the template set and SP43 are less than 30%, with tem-
plate sequences sharing higher identities with those in SP43 being
removed. The overall prediction accuracy in SP43 dataset is 53%,
which shows significant improvement over the prediction on the other
dataset, SP39. The prediction results for SP43 are listed in Table 2.
For proteins with three, four and five disulfide bridges, the predic-
tion accuracies in the SP43 dataset are higher than those obtained
with fourfold cross-validation in SP39-ID30 dataset. This implies
that increasing even the number of non-redundant templates may
improve the prediction accuracy of CSP.

3.3 Examples
Three examples of CSP matching are listed in Table 3. These
examples are taken from the SSDB database (Chuang et al., 2003).
The CSPs for template and query protein sequences, as well as their
divergence score D, disulfide connectivity patterns and sequence
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Table 3. Examples of CSP

Template
PDB id

Template CSP Query
PDB id

Query CSP Disulfide connectivity
pattern

Divergence (D) Sequence
identity (%)

1TAP (10, 18, 6, 16, 4) 1BF0 (9, 16, 8, 13, 4) [1–6, 2–3, 4–5] 8 18.2
1GPS (11, 6, 4, 10, 7, 2, 4) 1BRZ (12, 6, 4, 11, 10, 2, 3) [1–8, 2–5, 3–4, 6–7] 6 18.8
1TN3 (10, 17, 75, 16, 8) 1C3A:A (11, 17, 72, 17, 8) [1–2, 3–6, 4–5] 6 17.7

Fig. 2. The structures of (a) thionin, toxic arthropod protein (PDB id 1GPS),
(b) brazzein, thermostable sweet-tasting protein (PDB id 1brz), and (c) their
sequences with cysteine highlighted. The divergence score D between these
two protein sequences is 6. Both proteins have disulfide connectivity [1–8,
2–5, 3–4, 6–7] and their sequence identity is 18.8%.

identities, are shown in Table 3. In the three examples, the divergence
scores are all smaller than 10, implying that they share similar disulf-
ide positioning and connectivity patterns. The sequence identities in
the three examples are all lower than 20%, thus structure similarity
from sequence homology can be ruled out.

The structures and sequences of these examples are illustrated
in Figures 1–3. The first example is shown in Figure 1. Tick anti-
coagulant peptide (serine protease inhibitor, PDB id 1TAP) (Antuch
et al., 1994) and cacicludine (calcium channel blocker, PDB id 1BF0)
(Gilquin et al., 1999) have a divergence score D = 8; their disulfide
connectivity pattern is [1–6, 2–3, 4–5]. Example 2 is illustrated in
Figure 2. Thionin (toxic arthropod protein, PDB id 1GPS) (Bruix
et al., 1993) and brazzein (thermostable sweet-tasting protein, PDB
id 1brz) (Caldwell et al., 1998) share 18.8% sequence identity. Their
divergence score D is 6, and the disulfide connectivity pattern is
[1–8, 2–5, 3–4, 6–7]. The third example (Fig. 3), C-type lectin car-
bohydrate recognition domain of human tetranectin (PDB id 1TN3)
(Kastrup et al., 1998) and flavocetin-A from Habu snake venom (PDB
id 1C3A:A) (Fukuda et al., 2000) also have a divergence score of
D = 6. Their sequence identity is 17.7% and the connectivity pattern
is [1–2, 3–6, 4–5]. For all proteins, the oxidized cysteine residues are
indicated in black. Cysteine residues on sequences are highlighted in
bold and underline. In each case, the cysteine residues are positioned
in similar sites along the sequence, and the separations among these
cysteine residues are nearly identical.

4 DISCUSSIONS
The number of possible disulfide connectivity patterns increases
rapidly with the number of disulfide bridges. For a protein with n

disulfide bridges (n ∗ 2 oxidized cysteines), the number of possible
disulfide connectivity patterns Np can be formulated as follows:

Np =

(
2n

2

) (
2n − 2

2

) (
2n − 4

2

)
· · ·

(
2
2

)

n!
= (2n − 1)!! = ∏

i≤n (2i − 1).

Table 4 lists the number of possible disulfide connectivity pat-
terns for proteins with different disulfide bridge numbers. The use
of CSPs may be obscure at first, since the rapidly increasing number
of patterns cannot be covered exhaustively. However, the observed
numbers of patterns in PDB peak at five disulfide bridges, and decline
afterward. Only 45 patterns are observed for protein chains with five
disulfide bridges, as opposed to the possible 945 patterns expected.
These results imply that the disulfide connectivity pattern of a protein
sequence can be predicted from a limited set of templates.

One limitation of our approach is that a pattern not presented in
the training set cannot be predicted correctly. Other machine-learning
approaches have to enumerate all possible patterns to obtain a predic-
tion with the maximum score (Vullo and Frasconi, 2004); therefore it
is possible to correctly predict a pattern never seen in the training set.
However, evaluation of all possible patterns is expensive (Vullo and
Frasconi, 2004); our approach can achieve comparable prediction
performance in a much simpler and faster algorithm.

The prediction accuracies for protein chains with different diver-
gence coverage are shown in Figure 4. The divergence coverage
means that a profile matches with a divergence score smaller than or
equal to that specified. For example, divergence coverage 5 means
profiles matched with a divergence score ≤5. Prediction results of
the three datasets are illustrated in Figure 4. As can be seen, when
divergence coverage is 0, which means the profiles are ‘matched
profiles’, the prediction accuracy is 100% for all datasets. The pre-
diction accuracies become lower as divergence coverage increases.
For divergence coverage 50, the prediction accuracy is slightly higher
than the overall accuracy. Thus divergence coverage can be used as
an index for adoption of CSP or other machine-learning approaches
to predict disulfide connectivity. However, these divergence scores
are not normalized according to the number of disulfide bridges and
the lengths of protein sequences. Several complex factors should be
considered in the normalization of divergence score; this is one of
the objectives currently undertaken in our group. Sequences with low
divergence coverage in a dataset (e.g. 5 for Qp 0.8) can be predicted
by CSP proposed in this work with high accuracy; otherwise, the
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Fig. 3. Structures of (a) C-type lectin carbohydrate recognition domain of human tetranectin (PDB id 1TN3), (b) flavocetin-A from Habu snake venom (PDB
id 1C3A:A), and (c) their sequences with cysteine residues highlighted. The divergence score D between these two protein sequences is 6. Both proteins have
disulfide connectivity [1–2, 3–6, 4–5] and their sequence identity is 17.7%.

Table 4. Number of possible disulfide connectivity patterns (Np) for protein
chains with different disulfide bridge numbers

Number of disulfide bridges (B) N a
p Observed Nb

p

B = 2 3 3
B = 3 15 15
B = 4 105 43
B = 5 945 45
B = 6 10 395 29
B = 7 135 135 14

aNumber of possible disulfide connectivity patterns.
bObserved number of disulfide connectivity patterns. Statistics obtained from the SSDB
database (http://www.e106.life.nctu.edu.tw/∼ssbond/) (Chuang et al., 2003).

connectivity patterns of the other sequences in the same dataset can
be elucidated by neural networks (Vullo and Frasconi, 2004), support
vector machines or other machine-learning approaches.

5 CONCLUSIONS
In this work, we have shown that cysteine separation profiles (CSPs)
can be used in predicting disulfide connectivity patterns based on
the hypothesis that proteins with similar cysteine separations in
sequences may have similar disulfide bonding patterns. The pre-
diction accuracy of CSP proposed in this study is higher than
those obtained by other approaches. The handout prediction of new
sequences in SP43 dataset can reach 53%. The method mentioned

Fig. 4. Prediction accuracy of the datasets with various divergence coverage,
which means that a profile matches with divergence score smaller than or
equal to that specified. The prediction accuracy (Qp) is higher with lower
divergence coverage. With D ≤ 50 the prediction accuracy is still slightly
higher than the overall Qp. See text for details.

here is extremely simple; therefore the computation time is min-
imum compared to other methods. The rationale behind our method is
completely different from previous studies using sequence and evol-
utionary information. Our method suggests that topology itself may
be an important factor in disulfide connectivity, as it has been pro-
posed by theoretical study (Abkevich and Shakhnovich, 2000) and
observations in structure databases (Chuang et al., 2003). Although
many efforts have been made to predict the disulfide connectivity
patterns, current prediction accuracy is limited around 50%. How-
ever, by combining CSP and other algorithms proposed previously
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(Fariselli and Casadio, 2001; Vullo and Frasconi, 2004), it is pos-
sible to further improve the prediction accuracy. The use of predicted
disulfide connectivity patterns in ab initio protein structure prediction
and other applications would become more reliable in the foreseeable
future.
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