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Robust Support Vector Regression Networks for
Function Approximation With Outliers

Chen-Chia Chuang, Shun-Feng Su, Member, IEEE, Jin-Tsong Jeng, Member, IEEE, and Chih-Ching Hsiao

Abstract—Support vector regression (SVR) employs the sup-
port vector machine (SVM) to tackle problems of function approx-
imation and regression estimation. SVR has been shown to have
good robust properties against noise. When the parameters used
in SVR are improperly selected, overfitting phenomena may still
occur. However, the selection of various parameters is not straight-
forward. Besides, in SVR, outliers may also possibly be taken as
support vectors. Such an inclusion of outliers in support vectors
may lead to seriously overfitting phenomena. In this paper, a novel
regression approach, termed as the robust support vector regres-
sion (RSVR) network, is proposed to enhance the robust capability
of SVR. In the approach, traditional robust learning approaches
are employed to improve the learning performance for any selected
parameters. From the simulation results, our RSVR can always im-
prove the performance of the learned systems for all cases. Besides,
it can be found that even the training lasted for a long period, the
testing errors would not go up. In other words, the overfitting phe-
nomenon is indeed suppressed.

Index Terms—Outliers, robust learning, support vector regres-
sion (SVR).

I. INTRODUCTION

T HE SUPPORT vector machine (SVM) is a universal
approach for solving the problems of multidimensional

function estimation. Those approaches are all based on the
Vapnik–Chervonenkis (VC) theory [1], [2]. Initially, it was
designed to solve pattern recognition problems, where in order
to find a decision rule with good generalization capability, a
small subset of the training data, called the support vectors
[1], [2], are selected. Experiments showed that it is easy to
recognize high-dimensional identities using a small basis
constructed from the selected support vectors [3]. Recently,
SVM has also been applied to various fields successfully such
as classification [4], [5], time prediction [6] and regression
[7]–[11]. When SVM is employed to tackle the problems of
function approximation and regression estimation, the ap-
proaches are often referred to as the support vector regression
(SVR) [6]–[11]. The SVR type of function approximation is
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very effective, especially for the case of having a high-dimen-
sional input space. Another important advantage for using SVR
in function approximation is that the number of free parameters
in the function approximation scheme is equal to the number of
support vectors. Such a number can be obtained by defining the
width of a tolerance band. Thus, the selection of the number
of free parameters can be directly related to the approximation
accuracy and does not have to depend on the dimensionality of
the input space or other factors as that in the cases of multilayer
feedforward neural networks.

In general, for any real-world applications, observations are
always subject to noise or outliers. The intuitive definition of
outliers is that “an observation which deviates so much from
other observations as to arouse suspicions that it was generated
by a different mechanism” [12]. Outliers may occur due to
various reasons, such as erroneous measurements or noisy phe-
nomenon appearing in the tail portion of some noise distribution
functions. When the obtained observations contain noise or
outliers, the learning process being unaware of those situations
may try to fit those unwanted data and this behavior may lead to
a corrupted approximation function. This phenomenon is often
called overfitting [13]–[16], which usually can lead to the loss
of generalization performance in the test phase. In [9], SVR
has been shown to have better robust properties for various
signal-to-noise ratios. In [6], SVR has also been shown to have
excellent performance for both the-insensitive function and
Huber’s robust function matching the correct type of noise
in an application of time series prediction. Besides, a general
cost function for SVR has also been proposed in considering
error distributions [10], [11]. In [16], the SVM with weighted
least square (LS-SVM) is proposed to overcome the effects of
outliers. However, when the parameters in those approaches
are not properly chosen, the final results may be affected by
its parameters. This property has also been mentioned in [16].
The selection of parameters in SVR is not straightforward. In
fact, for different examples, the optimal sets of parameters are
also different. Thus, while facing with real problems, some
methods such as-fold cross-validation, VC bounds, Xi–Alpha
bound, or radius–margin bound [34], must be used to find
those proper parameters. A fundamental problem of those
validation approaches is that they need to use training data sets
to determine whether the selected parameters are proper or not.
If not, another set of parameters is tried again. First, such a
trial-and-error procedure may involve extensive computation.
Second, when the training data used for test contain outliers, the
validation result may not be trustable. In addition, if LS-SVM
or other cost functions are used, conjugate gradient methods
must be used. Hence, the speed of convergence depends on
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the condition numbers of matrices. This phenomenon is also
mentioned in [16]. Besides, in those approaches, outliers may
also possibly be taken as support vectors. We agree that good
selections of the regularization constant and kernel parameters
in SVR are capable of ensuring good generalization of the
obtained model. However, when the regularization constant
and kernel parameters are not properly selected, the resultant
performances may not be good. Moreover, we are also aware
of the fact that good generalization of the obtained SVR model
can be ensured due to the optimization process. Nevertheless,
the good generalization property comes from the use of the
regularization term or the so-called weight decay term. The
idea of such an approach is to minimize the values of weights
during the process of minimizing errors. Such a process treats
all training data equally. Even though the minimization of
weights may indeed result in good generalization, the effects
are different from and inferior to that of what have been
traditionally used for robust learning against outliers [13], [14],
[18]. Traditional robust learning is to find ways of reducing the
effects of outliers. Our approach is to provide a mechanism that
can facilitate such a concept.

In this paper, a novel regression approach, termed as the ro-
bust SVR (RSVR) network, is proposed to enhance the robust
capability of SVR. The basic idea of the approach is to adopt the
concept of traditional robust statistics [22]–[24] to fine tune the
model obtained by SVR. Fundamentally, the proposed network
is an SVR, but equipped with a robust learning algorithm. Sim-
ulation results of the proposed approach have shown the effec-
tiveness of the approximated function in discriminating against
outliers.

The remaininder of this paper is outlined as follows. Sec-
tion II describes the concept of robust learning and the prob-
lems encountered in traditional robust learning algorithms. The
fundamental ideas for SVR are briefly introduced in Section III.
The robust properties of SVR are also discussed in the section.
In Section IV, the RSVR network is proposed and its training
process is introduced. Section V gives experimental results. Var-
ious loss functions were used in our simulations. Those results
all showed the superiority of RSVR to the original SVR. Con-
cluding remarks are given in Section VI.

II. ROBUST LEARNING CONCEPT

In neural-network applications, various robust learning algo-
rithms that adopt robust statistics methods have been proposed
to deal with outliers in the literature [14], [17]–[21]. Based on
similar ideas, robust radial basis function networks [19], ro-
bust interval regression [21] and robust principal component
analysis (PCA) algorithms [20], etc., have been proposed to
deal with outliers existing in observations for various applica-
tions successfully. However, some problems exist in the use of
those robust learning methods. A fundamental problem is how
to determine the initial values of parameters. Robust learning
algorithms are to discriminate against outliers in the learning
process. Whether a point is considered as an outlier is deter-
mined by the estimated errors because an outlier is supposed
to have a large error. Thus, those robust learning algorithms use
the so-called robust cost function to discriminate against outliers

from the majority by degrading the effects of those points whose
estimated errors are large [22], [23]. However, the problem of
such approaches is that what are desired or which points are the
majorities are unknown, because the estimated errors used for
identifying outliers may not be correct. Hence, when the ini-
tial weights are not properly selected, the robust cost function
used in those algorithms may not correctly discriminate against
those outliers. As a result, the learning process will be moving
in a wrong direction and the learning performance then may be-
come awful.

The second problem in traditional robust learning networks
is that the number of hidden nodes is difficult to determine
[25]–[28]. With too many hidden nodes, the approximated func-
tion often interpolates all training data including noise leading
to overfitting. Consequently, even though training errors can be
reduced to a certain extent, generalization error, however, may
become worse. On the other hand, with too few hidden nodes,
the network is too simple to capture the information bearing in a
complicated data set leading to underfitting. As a result, the ap-
proximated function cannot truly represent the considered func-
tion. Summarily, the selection of the number of hidden nodes
is important. However, a suitable number of nodes depends not
only on some available information such as the numbers of input
and outputs and the number of training patterns but also on some
unknown information like the type of noise and the complexity
of the function to be approximated. Hence, it is not likely to se-
lect a proper number of nodes in advance.

III. SVR AND ITS ROBUST PROPERTY

A function approximation problem can be formulated as to
obtain a function from a set of observations, ,

with and , where
is the number of training data, is the th input vector, and
is the desired output for the input. Based on the SVM theory,
SVR is to approximate the given observations in an-dimen-
sional space by a linear function in another feature space. The
function in SVR is of the form

(1)

where is an inner product defined on, is a nonlinear
mapping function from to , is a weight vector to
be identified in the function, and is a threshold. Usually, the
considered cost function is [31], [32]

(2)

where
[29], [30], is the loss

function measuring the error betweenand the estimated
output for a given input , and is a regular
constant. The idea of adding the regularization term is to keep
the weight vector as small as possible in the approximation
process. When overfitting phenomena occur, some unwanted
information typically noise, has been modeled into the function.
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Those unwanted signals usually are not smooth, and as a con-
sequence, some parameters may become large to accommodate
such behaviors. Thus, in (2), the cost function has included
the intention to minimize , which in turn, reduces the model
capacity. In others words, the regularization term in (2) controls
the tradeoff between the model complexity and approximation
accuracy in order to ensure good generalization performance
[31].

In traditional SVR, the -insensitive function is used as the
loss function in (2). It was first introduced in the original SV
algorithm [2], [8]. The -insensitive function is defined as

for
otherwise

(3)

for a previously chosen nonnegative number. The use of this
loss function can lead to sparse decompositions [32] and a
quadratic programming problem formulated in terms of inner
products in . Note that beside of the linear term used in (3),
quadratic forms and infinities are also admissible for leading
to the same type of problems [32]. Other loss functions found
in the literature [10] are the polynomial loss function and the
“piecewise polynomial and linear” loss function. Those loss
functions are listed in Table I. In our simulation, those functions
are all employed in the SVR algorithm for illustration.

It was shown in [2] that the solution of the above problem can
be expressed in terms of support vectors,
and the function is then written as

(4)

In (4), the inner product in the feature space
is usually considered as a kernel function [33]. The
kernel function determines the smoothness properties of solu-
tions and should reflect a prior knowledge on data. The choice
of the kernel function is usually left for users. The kernel func-
tion used in our study is Gaussian and defined as

(5)

where is a constant. The coefficientss in (4) can be solved
by quadratic programming methods with suitable transforma-
tion of the above problem into constraint optimization problems
and properly rearranging the equation into a matrix form [7],
[32]. Note that only some of s are not zeros and the corre-
sponding vectors s are called the support vectors. In (4), the
constant is unknown. Various forms can be found in the liter-
ature [9]. In our implementation, the following equation is used
for [9]:

(6)

TABLE I
LOSSFUNCTIONS ARE USED IN THIS PAPER

According to the SVM theory, SVR has the advantage of
self-determining its structure. Hence, there are no initialization
problems for SVR. For training data sets with certain noise dis-
tributions, SVR also has shown excellent performance under
the -insensitive function or Huber’s robust function [6]–[11].
However, the robust effects against training data sets with out-
liers are not obvious in SVR.

In the SVR theory, the loss function and the parameters such
as the regular constant in (2), and in the kernel function (5),
must be determined in advance. The parameterin the -insen-
sitive function, and the regular constantare powerful means
for regularization and adaptation to the noise in training data
[6]. Both control the network complexity and the generaliza-
tion capability of SVR. However, as stated in [6], how to deter-
mining a set of proper parameters is still suboptimal and com-
putationally extensive (if not clumsy). With different loss func-
tions and/or parameter sets , the SVR approaches may
result in different optimum solutions under the same training
data set with or without outliers. In Section V, we shall show
that it is not straightforward to select those parameters properly.
In [34], several validation approaches have been proposed for
verifying the validation of the selected parameter set such as

-fold cross-validation, VC bounds, Xi–Alpha bound, and ra-
dius–margin bound. Those approaches still suffer from various
problems mentioned in Section I. In this research, instead of
developing algorithms to find suitable selections for those pa-
rameters, we propose to employ traditional robust learning ap-
proaches to improve the learning performance.

IV. RSVR NEURAL NETWORKS

In this paper, the robust learning concept and the SVR theory
are combined to form the RSVR networks. The learning of the
proposed RSVR network is divided into two phases, the initial
phase and the robust learning phase. The initial phase is to de-
termine the network structure and the corresponding initial net-
work weights through the SVR theory. When the cost function in
(2) and the kernel functions in (5) are chosen, the initial weights
and the structure of RSVR can be determined by the SVR theory
as stated in the previous section. In this paper, the kernel func-
tion is chosen as Gaussian function. After applying the SVR
theory, an initial RSVR network is obtained as

(7)
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where is the output of the RSVR network, is a kernel
function of the SVR theory, is the number of kernel functions,
which is equivalent to the number of support vectors, and

is the weight vector of the network. Note that
(7) can also be regarded as a classical parameterized radial basis
function networks with unknown and .

In the second phase, the algorithm is to adjust those weights
via a robust learning approach. The robust learning algorithm
is based on the algorithm proposed in [13]. It should be noted
that this robust learning algorithm is employed after a period
of traditional backpropagation training in [13]. This is because
that approach needs a fair initial network before entering the
robust learning phase. In our RSVR, SVR in fact is to replace
such a procedure. There are also other similar robust learning
approaches [14], [17]–[21]. An important feature of those ro-
bust learning algorithms is to use a robust cost function in the
place of the quadratic form of the cost function in a standard
backpropagation algorithm.

In the learning algorithm, a robust cost function is de-
fined as

(8)

where is the epoch number, is the error of
the RSVR network at epoch, and is a robust cost func-
tion, which directly stems from the theory of robust statistics
[22], [23]. In the RSVR learning algorithms, the gradient de-
scent method is employed andcan be updated as

(9)

with

(10)

where is a learning constant,
is usually called the influence function of the algorithm,
and . Note that due to the it-
erative nature of the training procedure, (10) becomes

for each training pattern in the
implementation. We concur that the above steepest descent ap-
proach is an inferior optimization tool. However, the considered
scenario is that training data set contains outliers. Traditional
approaches for solving such a problem are to introduce a robust
cost function [13], [14], [18], and then, a steepest descent
approach is applied. The idea of such an approach is to identify
outliers and then to reduce the effects of outliers directly.
Other optimization tools that can directly reduce the effects of
outliers are hardly found in the literature. In fact, even without
the existence of outliers, the steepest descent approach can still
work well in various applications of neural networks. Since our
approach starts from the model constructed from SVR, which
is capable of finding a nice initial network, a steepest descent
approach should be enough.

The -estimator [13], [17], [19] is used as the robust cost
function in our implementation and is defined as

(11)

where and are time-dependent cutoff points, andand
are constants selected as 1.73 and 0.93, respectively, as those

in [19]. The influence function of (13) is obtained as

(12)

The shape of depends on the probabilistic distribution of
the obtained errors [29] and on the cutoff points and in
(11). Ideal values of and basically depend on outliers.
TheCUTOFFalgorithm used in [13] is also adopted in our re-
search. TheCUTOFF algorithm is stated as follows. Letbe
an upper bound of the percentage of outliers in the training data
set, and thus and can be defined as follows.

Step 1) Compute , .
Step 2) Sort in an increasing order and define

for and .
In the RSVR learning algorithm, the following inputs are re-

quired:

1) a set of training data , ,
, ;

2) a set of testing data , ,
, ;

3) the kernel function , such as Gaussian, , or
B-spline;

4) the loss function , such as the-insensitive function,
the quadratic function, or the “piecewise polynomial and
linear” loss function;

5) the threshold used for determining the termination
condition of the robust learning algorithm;

6) the maximal percentageof outliers in the training data
set.

Note that the set of testing date is used to define the gener-
alization errors.

The RSVR learning algorithm is summarized as follows.

Step 1) Initialize the RSVR structure with the given kernel
functions, the loss function, and the constant.
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Step 2) For each training pattern, compute the estimated result
by (7) and its error.

Step 3) Update the weight vectorincrementally by (9) and
(10). When it is in the first epoch, the robust cost func-
tion is the quadratic form by selecting and
large enough to count in all points.

Step 4) Determine the cutoff points and by the
CUTOFFalgorithm.

Step 5) Compute the robust cost function defined by (8).
Step 6) If the termination conditions are not satisfied, then go

to Step 2; otherwise, terminate the learning process.

V. SIMULATION RESULTS

The simulations were conducted in the Matlab environment.
The SVR toolbox provided by Gunn [35] and obtained through
the network service is used here. In this study, outliers are added
artificially by moving some points away from designated loca-
tions. The root mean square error (RMSE) of the testing data is
used to measure the performance of the learned network (gen-
eralization capability). In this study, the results of various cases
with different loss functions (the-insensitive function with
, the -insensitive function with , the quadratic func-

tion, and the “piecewise polynomial and linear loss function”
with ), different s, and different s are presented for il-
lustration. The learning constantand the maximum percentage
of outliers used in the simulation are 0.03 and 0.05, respec-
tively.

In this paper, two functions are considered. The first one is
the function and is defined as

with (13)

This function is often used in the literature [7]–[11]. Fifty
one training patterns in are generated from the function.
Among those data, three artificial outliers whose deviation
values are 0.5, 0.4, and 0.3, respectively, are created. The other
used function has also been used in [14] and [18] and is defined
as

with (14)

The test data sets with 201 patterns are also generated for both
examples. Note that the test data do not contain any outliers.

The function is first considered. The testing RMSEs of
SVR are obtained for various loss functions with different pa-
rameter sets . Those errors are tabulated in the upper por-
tion of each entry in Table II(a)–(d). The testing RMSEs of the
proposed RSVR after 1000 epochs of learning are tabulated in
the lower portion of each entry in Table II(a)–(d). From the re-
sults of SVR, by selecting a proper parameter set for , the
testing RMSE of SVR can reach a nice level. It is also evident
that the proposed RSVR can further improve the generalization
performance of the original SVR for those cases. The average
percentages of the reduced RMSEs obtained by the model con-
structed from SVR and from RSVR for all situations are sum-
marized and listed in Table III.

TABLE II
(a) TESTINGRMSES OFSVR (IN THE UPPERPORTION) AND OF RSVR (IN THE

LOWER PORTION) AFTER 1000 EPOCHSTRAINING UNDER THE"-INSENSITIVE

FUNCTION WITH " = 0 FOR THEsinc FUNCTION. (b) TESTING RMSES OF

SVR (IN THE UPPERPORTION) AND OF RSVR (IN THE LOWER PORTION)
AFTER 1000 EPOCHS’ TRAINING UNDER THE"-INSENSITIVE FUNCTION WITH

" = 0:01 FOR THEsinc FUNCTION. (c) TESTING RMSES OFSVR (IN THE

UPPERPORTION) AND OF RSVR (IN THE LOWER PORTION) AFTER 1000
EPOCHS’ TRAINING UNDER THE QUADRATIC FUNCTION FOR THEsinc

FUNCTION. (d) TESTING RMSES OFSVR (IN THE UPPERPORTION) AND

OF RSVR (IN THE LOWER PORTION) AFTER 1000 EPOCHS’ TRAINING

UNDER THE “PIECEWISE POLYNOMIAL AND LINEAR LOSSFUNCTION”
WITH 
 = 0:1 FOR THEsinc FUNCTION

(a)

(b)

(c)

(d)

Next, we would like to point out that SVR have different op-
timal parameter sets for different loss functions. In the
case of using the-insensitive function with as the loss
function [Table II(b)], when , it has the best
performance among various s and the testing RMSE is
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TABLE III
AVERAGE PERCENTAGES OF THEREDUCEDRMSES OBTAINED BY THE MODEL

CONSTRUCTEDFROM SVR AND FROM RSVRFOR THEsinc FUNCTION

TABLE IV
AVERAGE PERCENTAGES OF THEREDUCEDRMSES OBTAINED BY THE MODEL

CONSTRUCTEDFROM SVR AND FROM RSVRFOR THEFUNCTION y = x

0.007 48. In the case of using the quadratic form [Table II(c)],
when , the performance is the best, and the
testing error is 0.042 19. In the case of using the “piecewise
polynomial and linear loss function” with [Table II(d)],
when , the performance is the best and the
testing error is 0.006 58. For those cases, the proposed RSVR
still can significantly improve the generalization performance.
For the case of using the-insensitive function with
[Table II(a)], various combinations of all can reach nice
performance. It should be noted that the number of support vec-
tors when is equal to the number of training data. For the

function, SVR is robust against training data with outliers
when using the -insensitive function with in a broad
range of parameter sets . However, it is not always true
for other cases.

Now, the function is considered. In this case, var-
ious loss functions with different parameters sets similar
to those used for the function are also used. Detailed results
are shown in [36]. From the simulations, it can found that the pa-
rameter sets for the best performance in different loss functions
are different from those in the above example. For example, in
the case of using the-insensitive function with as the
loss function, when , the performance is the
best and the testing RMSE is 0.074 37. For this case, after robust
learning, the RSME becomes 0.048 46. In the case of using the
quadratic form, when , the performance is
the best and the testing RMSE is 0.065 45. For this case, after

(a)

(b)

Fig. 1. (a) Obtained result of SVR using the quadratic loss function,� = 0:5
andC = 10 for thesinc function. In this case, all data are support vectors. (b)
Obtained result of SVR using the"-insensitive function with" = 0, � = 0:1
andC = 0:5 for functiony = x . In this case, all data are support vectors.

robust learning, the RSME becomes 0.044 91. The average per-
centages of the reduced RMSEs obtained by the model con-
structed from SVR and from RSVR for all situations are summa-
rized and listed in Table IV. Again, the proposed RSVR can al-
ways improve the generalization performance of SVR. Finally,
we should point out that the robust performance among param-
eters selected in the case of using the-insensitive function with

shown for the function is no longer true for this ex-
ample.

Two learned results are displayed in Fig. 1(a) and (b) for il-
lustration. Fig. 1(a) is the case of using the quadratic loss func-
tion and the parameter sets for the
function. Fig. 1(b) is the case of using the-insensitive function
with and for . It is noted
that since is zero in those shown examples, all training data are
support vectors. From both figures, the approximated results ap-
pear oscillation around outliers. Such phenomena can be inter-
preted as the overfitting phenomenon. When the parameter sets
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(a)

(b)

Fig. 2. (a) Obtained result of SVR using the"-insensitive function with" = 0,
� = 3, andC = 0:5 for the sinc function. In this case, all data are support
vectors. (b) Result of SVR using the"-insensitive function with" = 0, � = 2

andC = 100 for functiony = x . In this case, all data are support vectors.

for the function and
for both with the -insensitive function with , the
approximated results are still affected by outliers and are shown
in Fig. 2(a) and (b), respectively. These results match with the
concept discussed in [15]. Therefore, it can be concluded that
the selection of parameters is not straightforward. The results
by RSVR after 1000 epochs based on Figs. 1(a) and (b) and
2(a) and (b) are shown in Figs. 3(a) and (b) and 4(a) and (b), re-
spectively. It can be found that the proposed RSVR can reduce
the overfitting phenomena.

VI. CONCLUSION

In this paper, a novel regression approach (the RSVR
network) was proposed to enhance the robust capability of the
SVR approaches. The basic idea of the approach is to adopt the
concept of traditional robust statistics to fine-tune the function
obtained by SVR. In this paper, various loss functions have
been used for illustration. From our simulation results, for

(a)

(b)

Fig. 3. (a) Result obtained by RSVR based on Fig. 1(a) for thesinc function.
(b) Result obtained by RSVR based on Fig. 1(b) for functiony = x .

some cases, the approximated results may oscillate around
outliers. Such phenomena can be interpreted as the overfitting
phenomenon. From the simulation examples, the selection of
at the kernel function is more important than others. Different

s may have different performance. However, for different
examples, the optimals are also different. In those examples,
since the desired functions are exactly known, we were able to
find which set of parameters can have the best performance.
However, while facing with real problems, there are no ways
of finding those proper parameters. Hence, we proposed to
employ traditional robust learning approaches to improve the
learning performance for whatever selected parameters. From
the simulation results, it is evident that when improperly initial
weights of the network were obtained by SVR, the improving
rate of RSVR is significant. As a matter of fact, our RSVR can
always improve the performance of the learned systems for all
cases. Besides, it can be found that even the training lasted for
a long period, the testing errors would not go up. In other word,
the overfitting phenomenon is suppressed. Finally, as men-
tioned earlier, the number of hidden nodes in our approach can
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(a)

(b)

Fig. 4. (a) Result obtained by RSVR based on Fig. 2(a) for sinc function. (b)
Result obtained by RSVR based on Fig. 2(b) for functiony = x .

easily be determined by the SVR theory, instead of subjective
selection by heuristics in traditional neural networks.
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