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Robust Support Vector Regression Networks for
Function Approximation With Outliers

Chen-Chia Chuang, Shun-Feng, 8ember, IEEEJin-Tsong JengMember, IEEEand Chih-Ching Hsiao

Abstract—Support vector regression (SVR) employs the sup- very effective, especially for the case of having a high-dimen-

port vector machine (SVM) to tackle problems of function approx-  sional input space. Another important advantage for using SVR

imation and regression estimation. SVR has been shown to havej, fnction approximation is that the number of free parameters

good robust properties against noise. When the parameters used . the functi imati h . lto th b f
in SVR are improperly selected, overfitting phenomena may still ININE ILNCUOoN approximaton SCNEMe IS equalio the NUMBEro

occur. However, the selection of various parameters is not straight- SUppOrt vectors. Such a number can be obtained by defining the
forward. Besides, in SVR, outliers may also possibly be taken as width of a tolerance band. Thus, the selection of the number
support vectors. Such an inclusion of outliers in support vectors of free parameters can be directly related to the approximation
may lead to seriously overfitting phenomena. In this paper, a novel accuracy and does not have to depend on the dimensionality of

regression approach, termed as the robust support vector regres- . . .
sion (RSVR) network, is proposed to enhance the robust capability the input space or other factors as that in the cases of multilayer

of SVR. In the approach, traditional robust learning approaches feedforward neural networks.

are employed to improve the learning performance for any selected  In general, for any real-world applications, observations are
parameters. From the simulation results, our RSVR canalwaysim- always subject to noise or outliers. The intuitive definition of

prove the performance of the learned systems for all cases. Bes'desoutliers is that “an observation which deviates so much from

it can be found that even the training lasted for a long period, the . L )
testing errors would not go up. In other words, the overfitting phe- other observations as to arouse suspicions that it was generated

nomenon is indeed suppressed. by a different mechanism” [12]. Outliers may occur due to
) . various reasons, such as erroneous measurements or noisy phe-
Index Terms—Ouitliers, robust learning, support vector regres- o . . . AR
sion (SVR). nomenon appearing in the tail portion of some noise distribution

functions. When the obtained observations contain noise or
outliers, the learning process being unaware of those situations
. INTRODUCTION may try to fit those unwanted data and this behavior may lead to

HE SUPPORT vector machine (SVM) is a universat corrupted approximation function. This phenomenon is often
T approach for solving the problems of multidimensionatalled ove(fittipg [13]-[16], whic.h usually can lead to the loss
function estimation. Those approaches are all based on fedeneralization performance in the test phase. In [9], SVR
Vapnik—Chervonenkis (VC) theory [1], [2]. Initially, it was has been shown to have better robust properties for various
designed to solve pattern recognition problems, where in ordé@nal-to-noise ratios. In [6], SVR has also been shown to have
to find a decision rule with good generalization capability, §xcellent performance for both theinsensitive function and
small subset of the training data, called the support vectdpsPer's robust function matching the correct type of noise
[1], [2], are selected. Experiments showed that it is easy iy an application of time series prediction. Besides, a general
recognize high-dimensional identities using a small bagF§st function for SVR has also been proposed in considering
constructed from the selected support vectors [3]. Recenfror distributions [10], [11]. In [16], the SVM with weighted
SVM has also been applied to various fields successfully su§@st square (LS-SVM) is proposed to overcome the effects of
as classification [4], [5], time prediction [6] and regressioﬁUt“ers- However, when the parameters in those approaches
[7]-[11]. When SVM is employed to tackle the problems oft'€ not properly chosen, the final results may be affected by
function approximation and regression estimation, the al}s Parameters. This property has also been mentioned in [16].
proaches are often referred to as the support vector regressifg Selection of parameters in SVR is not straightforward. In

(SVR) [6]-[11]. The SVR type of function approximation isfact, for different examples, the optimal sets of parameters are
also different. Thus, while facing with real problems, some

methods such ds-fold cross-validation, VC bounds, Xi—Alpha
bound, or radius—margin bound [34], must be used to find
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the condition numbers of matrices. This phenomenon is alsom the majority by degrading the effects of those points whose
mentioned in [16]. Besides, in those approaches, outliers mestimated errors are large [22], [23]. However, the problem of
also possibly be taken as support vectors. We agree that geadh approaches is that what are desired or which points are the
selections of the regularization constant and kernel parametergjorities are unknown, because the estimated errors used for
in SVR are capable of ensuring good generalization of tlgentifying outliers may not be correct. Hence, when the ini-
obtained model. However, when the regularization constardl weights are not properly selected, the robust cost function
and kernel parameters are not properly selected, the resultased in those algorithms may not correctly discriminate against
performances may not be good. Moreover, we are also aw#rese outliers. As a result, the learning process will be moving
of the fact that good generalization of the obtained SVR modela wrong direction and the learning performance then may be-
can be ensured due to the optimization process. Neverthelessne awful.
the good generalization property comes from the use of theThe second problem in traditional robust learning networks
regularization term or the so-called weight decay term. The that the number of hidden nodes is difficult to determine
idea of such an approach is to minimize the values of weighH#5]—-[28]. With too many hidden nodes, the approximated func-
during the process of minimizing errors. Such a process tretitm often interpolates all training data including noise leading
all training data equally. Even though the minimization ofo overfitting. Consequently, even though training errors can be
weights may indeed result in good generalization, the effectduced to a certain extent, generalization error, however, may
are different from and inferior to that of what have beebhecome worse. On the other hand, with too few hidden nodes,
traditionally used for robust learning against outliers [13], [14}he network is too simple to capture the information bearing in a
[18]. Traditional robust learning is to find ways of reducing theomplicated data set leading to underfitting. As a result, the ap-
effects of outliers. Our approach is to provide a mechanism th@bximated function cannot truly represent the considered func-
can facilitate such a concept. tion. Summarily, the selection of the number of hidden nodes
In this paper, a novel regression approach, termed as theisimportant. However, a suitable number of nodes depends not
bust SVR (RSVR) network, is proposed to enhance the robwastly on some available information such as the numbers of input
capability of SVR. The basic idea of the approach is to adopt thad outputs and the number of training patterns but also on some
concept of traditional robust statistics [22]-[24] to fine tune thenknown information like the type of noise and the complexity
model obtained by SVR. Fundamentally, the proposed netwarkthe function to be approximated. Hence, it is not likely to se-
is an SVR, but equipped with a robust learning algorithm. Sinfect a proper number of nodes in advance.
ulation results of the proposed approach have shown the effec-
tiveness of the approximated function in discriminating against . SVR AND ITS ROBUST PROPERTY

outliers. A function approximation problem can be formulated as to
The remaininder of this paper is outlined as follows. Sec- bp P

tion Il describes the concept of robust learning and the pro gtam ;"f“”CtEQ”f frorr)l}avai,\; cj()eb;%v:rtwlgni:]%{\(iﬁéryeljzf,
lems encountered in traditional robust learning algorithms. Th&2’ 42/ -- > TN, YN i i < A

fundamental ideas for SVR are briefly introduced in Section nf> :Eg gg?rzzr;)fttrangﬁ:?:i ; tggzstg d”:)?]l{[th\éeg{(;{/’l ?r?ggr
The robust properties of SVR are also discussed in the sectil ! utpu Inpéf. Y

In Section IV, the RSVR network is proposed and its trainin Fc{r?allsstzgggrogllri:z; :,:ig:\éir;nogﬁgmg:'g;l;w'né;né
process isintroduced. Section V gives experimental results. Var- P y pa

ious loss functions were used in our simulations. Those resuffglctlon in SVR is of the form
all showed the superiority of RSVR to the original SVR. Con- . .
cluding remarks are given in Section VI. f (5:’7 9) = <97 @(f)> +0b Q)

Il. ROBUST LEARNING CONCEPT where(-, -) is an inner product defined ah, @(-) is a nonlinear
mapping function fromkR™ to F', § € F' is a weight vector to

In neural-network applications, various robust learning alg%-e jdentified in the function, antlis a threshold. Usually, the
rithms that adopt robust statistics methods have been propo Sésidered cost function is ’[31] [32] ’ '

to deal with outliers in the literature [14], [17]-[21]. Based on
similar ideas, robust radial basis function networks [19], ro- )

bust interval regression [21] and robust principal component Rsvf] = Remplf] + C - Hg‘” @)
analysis (PCA) algorithms [20], etc., have been proposed to

deal with outliers existing in observations for various applica- ) .

tions successfully. However, some problems exist in the usevdfiere R.np[f] = (1/N) Zle Ly; — f(@,0) =
those robust learning methods. A fundamental problem is hd/N) S>~ | L(e;) [29], [30], L(y — f(&, §)) is the loss

to determine the initial values of parameters. Robust learnifignction measuring the error betwegnand the estimated
algorithms are to discriminate against outliers in the learnirautput f(Z, §) for a given inputZ, andC' > 0 is a regular
process. Whether a point is considered as an outlier is deteonstant. The idea of adding the regularization term is to keep
mined by the estimated errors because an outlier is suppoties weight vectod as small as possible in the approximation
to have a large error. Thus, those robust learning algorithms ysecess. When overfitting phenomena occur, some unwanted
the so-called robust cost function to discriminate against outlierdormation typically noise, has been modeled into the function.
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Those unwanted signals usually are not smooth, and as a con- TABLE |
sequence, some parameters may become large to accommodate LoSSFUNCTIONS ARE USED IN THIS PAPER
such behaviors. Thus, in (2), the cost function has include ;Sisensitive loss function

g I(v)={

0, for ’u| <e

the intention to minimize), which in turn, reduces the model lo| -, for|u| > &

capacity. In others words, the regularization term in (2) control
the tradeoff between the model complexity and approximatio
accuracy in order to ensure good generalization performani piecewise polynomial and linear loss function
[31].

In traditional SVR, thes-insensitive function is used as the
loss function in (2). It was first introduced in the original SV
algorithm [2], [8]. Thees-insensitive function is defined as

Polynomial loss functi
y! it nction I(l)):il)p, p>1
p

yF lu”,foru <y

I(v)=

v+(l—1)y,for027
p

_fo, for e| < e According to the SVM theory, SVR has the advantage of
L(e) { le] —e, otherwise @) self-determining its structure. Hence, there are no initialization
/ problems for SVR. For training data sets with certain noise dis-
for a previously chosen nonnegative numbeThe use of this tributions, SVR also has shown excellent performance under
loss function can lead to sparse decompositions [32] andhe-insensitive function or Huber’s robust function [6]-{11].
quadratic programming problem formulated in terms of innéﬁlowever, the rol_)ust _effects against training data sets with out-
products inF. Note that beside of the linear term used in (3)i€rs are not obvious in SVR. _
quadratic forms and infinities are also admissible for leading I the SVR theory, the loss function and the parameters such
to the same type of problems [32]. Other loss functions four®$ the regular constaatin (2), andr inthe kernel fU”Ct_'OH 5,
in the literature [10] are the polynomial loss function and th@ust be determined in advance. The parametethee-insen-
“piecewise polynomial and linear” loss function. Those los&!tive function, and the regular constaritare powerful means
functions are listed in Table I. In our simulation, those functio@" regularization and adaptation to the noise in training data
are all employed in the SVR algorithm for illustration. [6]. Both control the network complexity and the generaliza-
It was shown in [2] that the solution of the above problem cdfPn capability of SVR. However, as stated in [6], how to deter-

be expressed in terms of support vectdrss SN | 3,8(7)) mining a set of proper parameters is still suboptimal and com-
and the functiory is then written as - putationally extensive (if not clumsy). With different loss func-

tions and/or parameter sefs, C}, the SVR approaches may
N result in different optimum solutions under the same training
f (57 5) - Z Bi (® (Z;), ®(T)) + b. (4) data set with or without outliers. In Section V, we shall show
im1 that it is not straightforward to select those parameters properly.
In [34], several validation approaches have been proposed for
In (4), the inner product{®(z#;), ®(£)) in the feature space verifying the validation of the selected parameter set such as
is usually considered as a kernel functiit{:;, ¥) [33]. The k-fold cross-validation, VC bounds, Xi—Alpha bound, and ra-
kernel function determines the smoothness properties of soflids—margin bound. Those approaches still suffer from various
tions and should reflect a prior knowledge on data. The choipeoblems mentioned in Section I. In this research, instead of
of the kernel function is usually left for users. The kernel fun@eveloping algorithms to find suitable selections for those pa-
tion used in our study is Gaussian and defined as rameters, we propose to employ traditional robust learning ap-
proaches to improve the learning performance.

K (7, %) = exp |- |17 - @I /27 (5)
IV. RSVR NEURAL NETWORKS

wherer is a constant. The coefficients in (4) can be solved
by quadratic programming methods with suitable transformgf
tion of the above problem into constraint optimization proble

In this paper, the robust learning concept and the SVR theory
e combined to form the RSVR networks. The learning of the

and properly rearranging the equation into a matrix form [7 foposed RSVR network is divided into two phases, the initial
h nd the r learning phase. The initial ph [ -
[32]. Note that only some off;s are not zeros and the corre; ase and the robust learning phase. The initial phase is to de

di torg led th ¢ vect In (4 thtermine the network structure and the corresponding initial net-
sponding vectors’;s are called the support vectors. In (4), %/orkweights through the SVR theory. When the cost function in

c?nstag'b IIS unk.nov%n. Varlogs fo:rr?stﬁn pe found Itn th? liters ) and the kernel functions in (5) are chosen, the initial weights
ature [9]. In our implementation, the following equation is use nd the structure of RSVR can be determined by the SVR theory

for b [9]: as stated in the previous section. In this paper, the kernel func-
~ tion is chosen as Gaussian function. After applying the SVR
b= % {min (yi _ Z BiK (T, f)) theory, an initial RSVR network is obtained as
! 1=1

N P
+ max <yi - Z BiK (%, ff)) } . (6 Y= Z BiK (Zi, ¥) + b (7)
=1 im1
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wherey is the output of the RSVR network (%, Z;) is akernel Thetanh-estimator [13], [17], [19] is used as the robust cost
function of the SVR theony? is the number of kernel functions, function in our implementation and is defined as

which is equivalent to the number of support vectors, érrd

[B1, ..., Bp]T is the weight vector of the network. Note that(7 e (1)]

(7) can also be regarded as a classical parameterized radial ba‘Llé /

function networks with unknowrs; andb. (5 eX(t), 0<]e;(t)] <a(t)
In the second phase, the algorithm is to adjust those weights | 1 ) e
via a robust learning approach. The robust learning algorithm 9@ (t) + s

is based on the algorithm proposed in [13]. It should be noted_ [ cosh(ca(b(t) — a(t)))

that th!§ robust learning aI_gonthm is e.mployed gftgr a period n cosh(ca(b(t) — |e:(t)]) |’

of traditional backpropagation training in [13]. This is because

that approach needs a fair initial network before entering the %a2(t) +a

robust learning phase. In our RSVR, SVR in fact is to replace C2

such a procedure. There are also other similar robust learning ©  nlcosh(cz(b(t) — a(?)))], b(t) <lei(?)]

approaches [14], [17]-[21]. An important feature of those ro-

bust learning algorithms is to use a robust cost function in the

place of the quadratic form of the cost function in a standawherea(t) andb(t) are time-dependent cutoff points, ancand

backpropagation algorithm. co are constants selected as 1.73 and 0.93, respectively, as those
In the learning algorithm, a robust cost functiBig () is de- in [19]. The influence function of (13) is obtained as

fined as

a(t) <lei(t)|<b(?)

(11)

ei(t), 0 < lei(®)] < a(t)
_ ) evtanhes(b(£) — |ei(2)])]
ER(t) = % Z ole;(t)] 8 Pl =9 Gonea)), a(t) < |e;(£)|b(t)
= 0, b(t) < lei(t)].
wheret is the epoch numbet,;(t) = y; — ;(t) is the error of (12)

the RSVR network at epoch ando(-) is a robust cost func-

tion, which directly stems from the theory of robust statisticshe shape of(-) depends on the probabilistic distribution of
[22], [23]. In the RSVR learning algorithms, the gradient dehe obtained errors [29] and on the cutoff poimts) andb(t) in
scent method is employed apfdcan be updated as (11). Ideal values of(t) andh(t) basically depend on outliers.
The CUTOFFalgorithm used in [13] is also adopted in our re-
. . . search. TheCUTOFF algorithm is stated as follows. Lgtbe
Bt + 1) =pB(t) + AB(1) (9)  an upper bound of the percentage of outliers in the training data
with set, and thug(t) andb(¢) can be defined as follows.
- OFR(t N dei(t Step 1) Compute;(t) = y;(t) — f(Zi, @), i=1,2, ..., N.
AB(E) =n 8}%( ) % > elei®)] 8]/(7) (10)  step2) Sorte;(t) ir(l )an inérgzasin(g orde):r and defingt) =
=1 e (t) fori* = (1 — )N andb(t) = 2a(t).
In the RSVR learning algorithm, the following inputs are re-
quired:
1) aset of training datédr = {(Z;, v;), i1 =1, 2, ..., N},

wherer is a learning constanile;(t)] = Jo|e;(t)]/0e;(t)
is usually called the influence function of the algorithm,

and de;(t)/0f = —K(#, ;). Note that due to the it- T € R, y; € I .
erative nature of the training procedure, (10) becomes 2) aset ofntestmg d"’@e ={@ yr) kb =1,2,..., M},
AB(t) = nylej(t)]de;(t)/0F for each training pattern in the I € Ry, € It;

implementation. We concur that the above steepest descent ap?) the kernel functionk'(-, -), such as Gaussiananh, or
proach is an inferior optimization tool. However, the considered ~_ B-Spline; _ - _
scenario is that training data set contains outliers. Traditional4) the loss functiori.(.), such as the-insensitive function,
approaches for solving such a problem are to introduce a robust  the guadratic function, or the “piecewise polynomial and
cost function [13], [14], [18], and then, a steepest descent lnéar” loss function; o o
approach is applied. The idea of such an approach is to identify®) the thresholct used for determining the termination
outliers and then to reduce the effects of outliers directly.  condition of the robust learning algorithm;

Other optimization tools that can directly reduce the effects of 6) the maximal percentaggof outliers in the training data
outliers are hardly found in the literature. In fact, even without ~ S€t

the existence of outliers, the steepest descent approach cangfe that the set of testing defé is used to define the gener-
work well in various applications of neural networks. Since owlization errors.

approach starts from the model constructed from SVR, whichThe RSVR learning algorithm is summarized as follows.

is capable of finding a nice initial network, a steepest desce®itep 1) Initialize the RSVR structure with the given kernel
approach should be enough. functions, the loss function, and the constant
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Step 2) For each training pattern, compute the estimated result TABLE I
4 by (7) and its error. (a) TESTINGRMSES oF SVR (IN THE UPPERPORTION) AND OF RSVR (N THE
. ) = . LOWER PORTION) AFTER 1000 EPOCHSTRAINING UNDER THE &-INSENSITIVE
Step 3) Update the weight vectgrincrementally by (9) and  Funcrion WitH e = 0 FOR THEsine FUNCTION. (b) TESTING RMSES OF

(10). When itis in the first epoch, the robust cost func- SVR (N THE UPPERPORTION) AND OF RSVR (N THE LOWER PORTION)

ion i i i AFTER 1000 EPOCHS TRAINING UNDER THE -INSENSITIVE FUNCTION WITH
tion is the quadratic form by selecting0) andb(0) € = 0.01 FOR THEsinc FUNCTION. (c) TESTING RMSES oF SVR (N THE

large enough to count in all points. UPPERPORTION) AND OF RSVR (N THE LOWER PORTION) AFTER 1000
Step 4) Determine the cutoff point,s(t) and b(t) by the EPOCHS TRAINING UNDER THE QUADRATIC FUNCTION FOR THEsinc
; FUNCTION. (d) TESTING RMSES OF SVR (IN THE UPPERPORTION) AND
CUTOFF alﬁomhbm' f . defined b OF RSVR (N THE LOWER PORTION) AFTER 1000 EPOCHS T RAINING
Step 5) Compute the robust cost functibp defined by (8). UNDER THE “PIECEWISE POLYNOMIAL AND LINEAR LOSSFUNCTION”
Step 6) If the termination conditions are not satisfied, then go WITH 7 = 0.1 FOR THE sinc FUNCTION
to Step 2; otherwise, terminate the learning process.
RMSE | C=05 C=1 C=5 C=10 C=50 [ C=100
=05 | 0.09337] 007214] 005189] 0.06221] 0.09827| 0.09827
V. SIMULATION RESULTS 0.08890| 0.07010 0.05007| 0.06221 0.09827 0.09827
=07 | 0.02971] 0.00728] 0.00280] 0.00196] 0.00183] 0.00342
The simulations were conducted in the Matlab environmen - g-g(l)g;z 0-006201 0.00065 0~001603 0-00153 0-00223
The SVR toolbox provided by Gunn [35] and obtained througt *~ 0.00010 :0 :g :0 :o :0
the network service is used here. In this study, outliers are add 7 =3 ~0 ~0 ~0 ~0 ~0 ~0
artificially by moving some points away from designated loca: ~0 ~0 =0 =0 ~0 ~0
: . r=3 0.02405| 0.00141] 0.00016 ~0 ~0 ~0
tions. The root mean square error (RMSE) of the testing data 00039 0.00100 o = = 5

used to measure the performance of the learned network (9€ e The
eralization capability). In this study, the results of various cases
with different loss functions (the-insensitive function witlh = @)
0, thee-insensitive function witle = 0.01, the quadratic func- RMSE | C=05 | C=1 Cc=5 C=10 | C=50 [ C=100

tion, and the “piecewise polynomial and linear loss function” 7=0-5 | _0.09073] 0.07603] 0.05017] 0.07592] 0.09704] 0.09704

: : ) . 0.06015] 0.07355| 0.05399 0.07326] 0.09692] 0.09692
with v = 0.1), differentrs, and different's are presented foril-  ——57 002725 002082] 001387 0.01376] 0.01701] 0.01953

symbol “~ 0 “indicates that the value is less than 1x10~*

lustration. The learning constampand the maximum percentage 0.02051] 0.01606] 0.01013| 0.01127| 0.01481 0.01690
of outliersq used in the simulation are 0.03 and 0.05, respec 7=! 0.01412) 0.01103| 0.00974] 0.00997| 0.00977] 0.01008
iivel 0.00216| 0.00216] 0.00666| 0.00827| 0.00952| 0.00984
vely. _ . . 7=2 | _000776] 000772] 000776] 0.00769] 0.00779| 0.00760
In this paper, two functions are considered. The first one i 0.00075| 0.00131] 0.00196] 0.00256] 0.00516] 0.00655
the sinc funct|0n and |S def|ned as 7=3 0.03274| 0.00939 0.00748 0.00761 0.00750 0.00770
0.00846] 0.00437] 0.00358] 0.00362| 0.00444] 0.00399
i (b)
s .
Y= (z) with z € [-10, 10]. (13)
RMSE | C=05 | C=1 C=5 C=10 | C=50 | C=100

7=05 | 0.12789] 0.09674] 007939 0.08122] 0.08819] 0.09103
. L i , . 0.02896| 0.04010| 0.03464] 0.04594] 0.07023[ 0.09057
Thissinc function is often used in the literature [7]-[11]. Fifty 7=07 | 0.10937] 0.08365] 0.06941] 0.07058] 0.07597| 0.07842
one training patterns iff'r are generated from the function. 0.00961| 0.01538] 0.03810| 0.02167| 0.03914| 0.04621

; g T=1 0.09498] 0.07331] 0.06021] 0.06048] 0.06477] 0.06699
Among those data, three artificial outliers whose deviatior 000182 000270 0.01372 0.02133 0.04400 0.05193

values are 0.5, 0.4, and 0.3, respectively, are created. The ot 73 0.09398] 007058 004800 0.04528] 0.04507| 0.04654

used function has also been used in [14] and [18] and is define 0.00168| 0.00122| 0.00396| 0.00670| 0.001535] 0.01978
as =3 0.14216] 0.11062] 0.06159| 0.05203| 0.04372| 0.04219
0.01674| 0.01580| 0.01268] 0.01093| 0.00823| 0.00790
y =223 with ze[-2 2. (14) ©
RMSE | C=05 [ C=l C=5 C=10 [ C=50 [ C=100

The test data sets with 201 patterns are also generated for b( 7=05 | 008883 008129] 0.07084] 0.09001] 0.09579] 0.09688
examples. Note that the test data do not contain any outliers. 0.03536] 007548 0.05074| 0.07791] 0.09534) 0.09664

: e R 3 ] 7=0. 0.04112] 0.02381] 0.02582] 0.02901] 0.03919] 0.04545
Thesinc function is first considered. The testing RMSEs of 0.01874] 0.01475] 0.01220] 0.01603] 0.02688] 0.03334
SVR are obtained for various loss functions with different pa- 7=1 0.01801] 0.01515] 0.01513] 0.01609] 001842 0.01942
. 0.00205] 0.00300 0.00638] 0.00793] 0.01091] 0.01207

rgmeter setgr, C}: Those errors are tabulategl in the upper por- =2 0.01506] 0.01073] 0.00779] 0.00784] 0.00892] 0.00946
tion of each entry in Table ll(a)—(d). The testing RMSEs of the 0.00051| 0.00078| 0.00217] 0.00301] 0.00506| 0.00579

proposed RSVR after 1000 epochs of learning are tabulated =3 0.04518| 0.02276| 0.00986| 0.00815| 0.00675| 0.00658

the lower portion of each entry in Table Il(a)—(d). From the re- 0.01218) 0.00804] 0.00365| 0.00278] 0.00202] 0.00189
sults of SVR, by selecting a proper parameter sefforC'}, the (d)

testing RMSE of SVR can reach a nice level. It is also evident

that the proposed RSVR can further improve the generalizationNext, we would like to point out that SVR have different op-
performance of the original SVR for those cases. The averdgeal parameter setgr, C'} for different loss functions. In the
percentages of the reduced RMSEs obtained by the model coase of using the-insensitive function witlk = 0.01 as the loss
structed from SVR and from RSVR for all situations are sunfunction [Table II(b)], when{C, 7} = {50, 3}, it has the best
marized and listed in Table IlI. performance among variougr, C'}s and the testing RMSE is
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TABLE I
AVERAGE PERCENTAGES OF THEREDUCED RMSES OBTAINED BY THE MODEL
CONSTRUCTEDFROM SVR AND FROM RSVRFOR THE sin¢ FUNCTION

¢ -insensitive | ¢ -insensitive | Quadratic | “Piecewise
function with | function with | function polynomial
=0 £=0.01 and linear
loss function”
with y =0.1
7=05 0.66% 6.60% 45.0%) 11.87%
=07 41.79% 20.10% 65.10% 40.34%
7=1 71.42% 40.33% 67.79%)| 58.58%
7=2 0% 60.51% 86.07% 88.05%
=3 25.46% 60.70% 84.02% 69.22%
The average percentage of the reduced RMSE is defined as:
Sum of SVR RMSE -Sum of RSVR RMSE
,for 7 fixed and all C

Sum of SVR RMSE

TABLE IV -10 -8 6 -4 2 0 2 4 6 8 10
AVERAGE PERCENTAGES OF THEREDUCED RMSES OBTAINED BY THE MODEL @
CONSTRUCTEDFROM SVR AND FROM RSVRFOR THEFUNCTION y = x2/3

¢ -insensitive | ¢ -insensitive | Quadratic | “Piecewise
function with | function with | function polynomial
=0 =01 and linear
loss function”
with y =0.1
7=0.5 22.78% 34.46% 49.95% 22.09%
7=07 14.03% 39.99% 44.28% 10.63%
=1 18.52% 33.61% 30.76% 6.55%
r=2 17.52% 17.57% 17.53% 7.76%
7=3 16.20% 15.17% 21.52% 12.69%
The average percentage of the reduced RMSE is defined as:
Sum of SVR RMSE -Sum of RSVR RMSE
,for 7 fixed and all C

Sum of SVR RMSE

0.007 48. In the case of using the quadratic form [Table II(c)]
when{C, 7} = {100, 3}, the performance is the best, and the | . ) . \ . . .
testing error is 0.04219. In the case of using the “piecewis -2 -1.5 - -0.5 0 0.5 1 1.5 2
polynomial and linear loss function” with = 0.1 [Table II(d)], (b)

when{C, 7} = {100,3}, the performance is the best and th%’ . 1. (a) Obtained result of SVR using the quadratic loss function,0.5

. . | .
testing error is 0.006 58. For those cases, the proposed RSA/\%C = 10 for thesinc function. In this case, all data are support vectors. (b)
still can significantly improve the generalization performancébtained result of SVR using theinsensitive function witle = 0, 7 = 0.1

For the case of using the-insensitive function withe = 0 andC = 0.5 for functiony = x2/3. In this case, all data are support vectors.

[Table llI(a)], various combinations ¢{C, 7} all can reach nice

performance. It should be noted that the number of support veobust learning, the RSME becomes 0.044 91. The average per-

tors where = 0 is equal to the number of training data. For theentages of the reduced RMSEs obtained by the model con-

sinc function, SVR is robust against training data with outlierstructed from SVR and from RSVR for all situations are summa-

when using thes-insensitive function witte = 0 in a broad rized and listed in Table IV. Again, the proposed RSVR can al-

range of parameter sefs, C'}. However, it is not always true ways improve the generalization performance of SVR. Finally,

for other cases. we should point out that the robust performance among param-
Now, the functiony = z?/3 is considered. In this case, var-eters selected in the case of usingdkiesensitive function with

ious loss functions with different parameters etsC'} similar ¢ = 0 shown for thesinc function is no longer true for this ex-

to those used for thenc function are also used. Detailed resultemple.

are shown in [36]. From the simulations, it can found that the pa- Two learned results are displayed in Fig. 1(a) and (b) for il-

rameter sets for the best performance in different loss functidostration. Fig. 1(a) is the case of using the quadratic loss func-

are different from those in the above example. For example,tion and the parameter sefs, C} = {0.5,10} for the sinc

the case of using the-insensitive function witle = 0.1 as the function. Fig. 1(b) is the case of using thénsensitive function

loss function, whe{C, 7} = {5, 0.5}, the performance is the with ¢ = 0 and{r, C} = {0.1,0.5} for y = z2/3. It is noted

best and the testing RMSE is 0.074 37. For this case, after robihstt since: is zero in those shown examples, all training data are

learning, the RSME becomes 0.048 46. In the case of using thgport vectors. From both figures, the approximated results ap-

quadratic form, whedC, 7} = {50,0.5}, the performance is pear oscillation around outliers. Such phenomena can be inter-

the best and the testing RMSE is 0.065 45. For this case, afteeted as the overfitting phenomenon. When the parameter sets
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Fig.2. (a) Obtained result of SVR using thénsensitive function witlk = 0, Fig.3. (a) Result obtained by RSVR based on Fig. 1(a) fosthe function.

7 = 3,andC = 0.5 for thesinc function. In this case, all data are support : ; o 2/3
vectors. (b) Result of SVR using theinsensitive function wite = 0, 7 = 2 (b) Result obtained by RSVR based on Fig. 1(b) for funcyios «=/*.

andC = 100 for functiony = 2:2/3. In this case, all data are support vectors.
some cases, the approximated results may oscillate around

{r, C} = {3,0.5} for thesinc function and{r, C'} = {2,100} outliers. Such phenomena can be interpreted as the overfitting
fofy — +2/3 both with the=-insensitive function witk = 0.the Phenomenon. From the simulation examples, the selectien of

approximated results are still affected by outliers and are sho@hthe kemel function is more important than others. Different
in Fig. 2(a) and (b), respectively. These results match with tA§ May have different performance. However, for different

concept discussed in [15]. Therefore, it can be concluded tgx@mples, the optimais are also different. In those examples,

the selection of parameters is not straightforward. The resyft8ce the desired functions are exactly known, we were able to
which set of parameters can have the best performance.

by RSVR after 1000 epochs based on Figs. 1(a) and (b af
y P lgs. 1(a) () owever, while facing with real problems, there are no ways

2(a) and (b) are shown in Figs. 3(a) and (b) and 4(a) and (b), finding those proper parameters. Hence, we proposed to

spectively. It can be found that the proposed RSVR can reduce . . !
the overfitting phenomena. employ traditional robust learning approaches to improve the

learning performance for whatever selected parameters. From
the simulation results, it is evident that when improperly initial
weights of the network were obtained by SVR, the improving
In this paper, a novel regression approach (the RSMRte of RSVR is significant. As a matter of fact, our RSVR can
network) was proposed to enhance the robust capability of thigvays improve the performance of the learned systems for all
SVR approaches. The basic idea of the approach is to adoptthees. Besides, it can be found that even the training lasted for
concept of traditional robust statistics to fine-tune the functiamlong period, the testing errors would not go up. In other word,
obtained by SVR. In this paper, various loss functions hatiee overfitting phenomenon is suppressed. Finally, as men-
been used for illustration. From our simulation results, fdfoned earlier, the number of hidden nodes in our approach can

VI. CONCLUSION
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