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Abstract: Most scoring functions for protein–protein docking algorithms are either atom-based or

residue-based, with the former being able to produce higher quality structures and latter more
tolerant to conformational changes upon binding. Earlier, we developed the ZRANK algorithm for

reranking docking predictions, with a scoring function that contained only atom-based terms. Here

we combine ZRANK’s atom-based potentials with five residue-based potentials published by other
labs, as well as an atom-based potential IFACE that we published after ZRANK. We simultaneously

optimized the weights for selected combinations of terms in the scoring function, using decoys

generated with the protein–protein docking algorithm ZDOCK. We performed rigorous cross
validation of the combinations using 96 test cases from a docking benchmark. Judged by the

integrative success rate of making 1000 predictions per complex, addition of IFACE and the best

residue-based pair potential reduced the number of cases without a correct prediction by 38 and
27% relative to ZDOCK and ZRANK, respectively. Thus combination of residue-based and atom-

based potentials into a scoring function can improve performance for protein–protein docking. The

resulting scoring function is called IRAD (integration of residue- and atom-based potentials for
docking) and is available at http://zlab.umassmed.edu.
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Introduction
The goal of computational protein–protein docking is

to predict a complex structure starting from the

unbound structures of the component proteins.1–7

This challenging problem is usually approached in a

stepwise fashion. In the initial stage, the proteins

are kept rigid, and the six-dimensional (6D) rota-

tional and translational space is searched for bind-

ing orientations. Searching this 6D space is time

consuming, thus is often performed with rapidly

computable scoring functions. Fast Fourier trans-

form (FFT)7–10 and geometric hashing11 algorithms

can be used for an exhaustive search on a grid.

Alternatively, Monte Carlo or Molecular Dynamics

algorithms are used for a sampling style search.3,4

Proteins undergo conformational changes upon com-

plex formation, often only on surface side chains,

sometimes on the backbones of surface loops, and

sometimes involving entire domains. Rigid body

algorithms can tolerate side chain conformational

changes and small backbone conformational changes

by introducing ‘‘softness’’ to scoring functions, that

is, making these scoring functions insensitive to

small structural errors. In the refinement stage, the

many possible (thousands to tens of thousands) com-

plex structures generated by the initial stage algo-

rithms are refined and reranked using more time
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consuming scoring functions. Clustering of struc-

tures and prediction of energy funnels12,13 can

improve the ability of finding the correct complex

structure, and a small number of high scoring pre-

dictions can be subjected to explicit side chain and

backbone conformational searches.13–15

Our lab developed the ZDOCK series of pro-

grams for initial stage docking.5,16–18 ZDOCK per-

forms an exhaustive rigid body search in the 6D

rotational and translational space. By default, the

three Euler angles are sampled with 6� or 15� spac-

ing, and the three translational degrees of freedom

are sampled with 1.2 Å spacing. For each set of rota-

tional angles, only the best scoring translation is

retained, which results in 3600 or 54,000 predictions

for 15� or 6� rotational sampling, respectively. In the

latest version, ZDOCK 3.0, we developed a new statis-

tical pair potential IFACE.18 ZDOCK is consistently

amongst the best performing algorithms in the com-

munity wide continual challenge for protein–protein

docking algorithms called critical assessment of pre-

dicted interactions.19–23 In addition to ZDOCK, we

also developed a reranking program, ZRANK,24 before

ZDOCK 3.0, and showed that ZRANK was effective in

reranking ZDOCK 2.1 and ZDOCK 2.3 predictions

with high computational speed. We also tested a re-

parameterized and extended version of ZRANK for

reranking structures for which side chains and back-

bone positions were refined with RosettaDock.15

The scoring functions of both ZDOCK and

ZRANK are of atomic resolution. Atom-based poten-

tials can be more accurate than residue-based poten-

tials on high quality structures. Residue-based

potentials, on the other hand, can better tolerate

conformational changes, especially for rigid body

docking algorithms, as well as for reranking. Also,

the parameterization is residue-type specific, which

may be able to capture the biophysical interactions

missed by the atom types used in atom-based poten-

tials. Residue-based and atom-based potentials were

previously used in the same docking pipelines.25,26

However, different types of functions were applied to

different (filtering) stages of the pipeline, but not

within a single scoring function. The goal of this

work is to combine the atom-based potentials in

ZRANK with several residue-based potentials pub-

lished by other labs, as well as with the atom-based

potential IFACE published by us. We chose the

ZRANK platform instead of ZDOCK to test the com-

binations of potentials because it allows more flexi-

bility in the types of potentials that are combined,

and the optimization of the relative weights is

straightforward. Specifically, (1) ZDOCK (and all

other FFT-based algorithms) can only use potentials

that can be expressed as correlations of two discrete

functions, whereas ZRANK has no such constraint.

(2) Pair potentials, which are expressed as functions

of pairs of atom types or residue types, require as

many FFTs as the number of types in FFT-based

algorithms such as ZDOCK, but the number of types

does not pose additional computational constraints

on ZRANK. (3) ZRANK has a principled way of opti-

mizing the relative weights of the different poten-

tials when combined.

We implemented various combinations of scoring

functions in our ZRANK framework, and evaluated

the performance of reranking the predictions made

by ZDOCK 3.0 with a rigorous training and testing

procedure. We showed that the combination of resi-

due-based and atom-based potentials led to a supe-

rior performance compared with the existing

ZRANK, ZDOCK 3.0, or the residue-based potentials

alone. Adding the residue-based terms to the scoring

function increases the computational time modestly.

At the atomic level, there are 36 (alanine–alanine)

to 289 (arginine–arginine) atom–atom interactions

for each pair of residues. But since a residue is rep-

resented by one interaction site in most residue-

based potentials, there is only a single interaction

for each pair in a residue-based potential. Comput-

ing this single interaction in addition to the 36–289

atom interactions adds modestly to the computa-

tional time. We also applied the newly developed

potential to cross docking and showed promising

results in predicting the correct binding partners.

Results

The potentials

Figure 1 and Supporting Information Table S1 show

the correlations between all the potentials that we

considered, using all decoys of all test cases. From

the ZRANK scoring function we included van der

Waals, electrostatics, and ACE27 desolvation contact

energy. From ZDOCK 3.0 we included van der

Waals, electrostatics, and IFACE18 desolvation con-

tact energy. For both ZDOCK and ZRANK, the van

der Waals terms are split into an attractive compo-

nent and repulsive component, and the ZRANK elec-

trostatic potential is split in a short-range and long-

range component. As expected, ZDOCK and ZRANK

terms that represent the same type of interactions

are strongly correlated. Furthermore, the attractive

and repulsive van der Waals interactions are corre-

lated, both in the ZRANK and ZDOCK frameworks

(correlation coefficient r2 ¼ 0.61 for ZRANK and

r2 ¼ 0.74 for ZDOCK). The ACE and IFACE terms

correlate moderately (r2 ¼ 0.34).

We considered three residue-based potentials

developed for protein–protein docking: Glaser, Stein-

berg, Vakser, and Ben-Tal (GSVB),28 Tobi and Bahar

(TB),29 and Lu, Lu, and Skolnick (LLS).30 We also

tested the pair potential developed for protein fold-

ing by Zhang, Kolinski, and Skolnick (ZKS)31 and a

variant that uses an alternative definition of the

interaction site (ZKS/a). These potentials differ in

Vreven et al. PROTEIN SCIENCE VOL 20:1576—1586 1577



their parameterization, the number of interaction

sites for each residue, and how contacts are defined.

To assess the effect of the contact definition, we first

look at the number of pairs of interacting residues

according to each definition, and the associated

number of interface residues. These are all strongly

correlated, but not perfectly (r2 ¼ 0.56–0.94) reflect-

ing the subtle differences among the definition of

interface residues and interaction pairs among the

pair potentials.

In addition to the pairwise potentials, we also

tested the nonpairwise potential-based on interface

propensities from Chakrabarti and Janin (CJ).32 In

Figure 1 and Table S1 we see that the CJ potentials

that were implemented with different definitions of

interface residues (based on the pairwise potentials),

show strong but not perfect correlation (r2 ¼ 0.42–

0.86), again indicating that the contact definitions of

the potentials we considered may affect the results.

The number of interface residues or pair inter-

actions can be considered a measure of the interface

size. Of the standard ZDOCK and ZRANK terms,

only the vdW terms correlate with the interface size

(r2 ¼ 0.53–0.83 for attractive vdW and r2 ¼ 0.30–

0.48 for repulsive vdW), which is due to the shape

complementarity attempting to maximize the inter-

face size. CJ, IFACE, and ACE do not correlate with

the interface size (r2 < 0.07), indicating that they

reflect only interface composition and pairing prefer-

ence. Of the pairwise residue-based potentials, only

ZKS and ZKS/a correlate with the interface size, but

not strongly.

As expected, the ACE and IFACE terms corre-

late with CJ (r2 > 0.14 and r2 > 0.30, respectively),

as all include desolvation, albeit ACE and IFACE at

the atomic level and CJ at the residue level. Of the

pairwise residue potentials, we see that ZKS and

LLS are strongly correlated with CJ (r2 ¼ 0.39–0.56

with the same contact definition), but TB and GSVB

do not show correlation (r2 ¼ 0.04–0.08). The reason

is that GSVB uses the interface as reference state,

and therefore does not reflect interface composition.

As the TB potential is optimized directly for a spe-

cific decoy set, it is more difficult to rationalize the

correlations. As IFACE and ACE do include desolva-

tion, they correlate with ZKS and LLS. Finally,

GSVB and TB do not correlate with other potentials,

and they also do not correlate with each other.

Combining potentials

We tested the reranking performance of linear com-

binations of the potentials introduced above. We

used decoys generated with ZDOCK 3.018 for the

complexes from our docking benchmark (version

3.0).5,17,33,34 We used 8-fold cross-validation for

training and testing, and a downhill simplex35 algo-

rithm to optimize the weights in the linear expres-

sion. Because the number of terms we can combine

with this procedure is limited, we only tested combi-

nations of up to 10 different potentials. This does,

however, avoid the potential to overtrain the scoring

function, and still allows us to assess the effects of

the different potentials onto the scoring function.

In Supporting Information Tables S2–S4 we

show for each combination of terms we tested the

various measures that we use to assess the perform-

ance, with the key-data summarized in Table I. We

use success rates (the number of cases that have at

least one hit in a set of predictions, where a hit has

a RMSD of less than 2.5 Å relative to the native

complex) as well as hit rates (the number of hits in

a set of predictions) for the top 10, 100, and 1000

predictions. For example, a success rate of 25% for

the top 100 predictions means that for 25% of the

test cases (out of a total of 96), at least one correct

prediction is found in the 100 top ranked predic-

tions. We also define the integrated success rate

(ISR), which is obtained from plotting the success

rate against the log of the number of predictions (as

in Figs. 3–5). The ISR is then defined as the area

under the success rate curve for 1–1000 predictions,

normalized to 1. The worst performance is at ISR ¼
0, and perfect performance is at ISR ¼ 1. This quan-

tity is similar to the target function used for optimiz-

ing the weights, as outlined in the methods, and is

an appropriate measure because hits with high

Figure 1. Heatmap representation of the correlation

coefficients (r2) for the various terms considered. Terms

prefixed with ZR and ZD are from the ZRANK and ZDOCK

scoring functions, respectively. Terms with CJ represent the

interface propensity potential according to the contact

definition from the specified pair-potential. Terms with

N_pair and N_contact_res denote the number of interacting

pairs and interacting residues, respectively, according to

the specified pair-potential.
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ranks have a larger weight than hits with lower

ranks. Although considering up to 1000 predictions

may not seem useful for practical purposes, we want

to stress that these decoys are not clustered, and

therefore include many similar predictions. In prac-

tice, the reranking is usually followed by a cluster-

ing algorithm, which further reduces the number of

predictions that need to be considered.

In the tables we also show the average of the

optimized weights of the eight training runs in the

cross validation (as well as the standard deviation of

the eight training runs). The individual potentials

were divided by their standard deviation computed

using all the decoys, and the weights of the different

potentials can therefore be compared to each other.

The variations in most of the weights obtained with

the different training sets are usually small, which

suggests that over-fitting is not a concern. Only the

van der Waals weights occasionally show larger

standard deviations, which is the result of the repul-

sive and attractive Van de Waals term being

strongly correlated and compensate each other.

In Tables I and S2, we see that ZDOCK 3.0 and

the original ZRANK perform very similar (ISR’s of

0.349 and 0.350, respectively), although ZDOCK has

higher top 1 and 10 success rates, whereas ZRANK

has higher top 100 and 1000 success rates. We first

tried combining the original ZRANK terms with terms

from the ZDOCK scoring function, and IFACE

improves performance dramatically (ISR ¼ 0.401). The

weight of the IFACE term is large (0.21 or 0.25,

depending on the grid-based calculation in the ZDOCK

program or the off-grid calculation in the ZRANK pro-

gram), accordingly the weight of the ACE term is

reduced strongly (from 0.25 to 0.06). None of the other

ZDOCK 3.0 terms shows noteworthy improvement

when combined with the existing ZRANK terms.

In Tables I and S3 we show the reranking per-

formance of the residue potentials by themselves

(thus not combined with the ZRANK terms). We see

that all residue-based potentials perform worse than

ZDOCK or ZRANK (ISR ranges from 0.072 to 0.288,

vs. 0.349 and 0.350 for ZDOCK and ZRANK, respec-

tively). TB and LLS, which were developed specifi-

cally for docking, perform best (ISR 0.288 and 0.194,

respectively). GSVB yields the lowest ISR, which

may be due to using the interface residue composi-

tion as reference state for determining this potential,

whereas the other potentials used surface or entire

protein composition as reference state.

Table I. Integrated Success Rates of Selected Potentials and Combinations Thereof

Terms #Terms ISR

Individual potentials ZRANK scoring function 1 0.350
ZDOCK scoring function 1 0.349
ZKS/a 1 0.121
ZKS 1 0.140
TB 1 0.288
LLS 1 0.194
GSVB 1 0.072

ZRANK combined with ZDOCK
terms and reoptimized

ZRANK terms 6 0.333
ZRANK terms þ ZDOCK_VDW/a 6 0.299
ZRANK terms þ ZDOCK_VDW/r 6 0.338
ZRANK terms þ ZDOCK_Elec 6 0.327
ZRANK terms þ IFACE(ZD) 6 0.407
ZRANK terms þ IFACE(ZRa) 6 0.401
ZRANK terms þ ZDOCK_VDW/a þ

ZDOCK_VDW/r
7 0.341

ZRANK terms with pair potentialsb ZRANK terms þ ZKS/a þ #ZKS/a 7 0.412
ZRANK terms þ ZKS þ #ZKS 7 0.402
ZRANK terms þ TB þ #TB 7 0.388
ZRANK terms þ LLS þ #LLS 7 0.380
ZRANK terms þ GSVB þ #GSVB 7 0.354

ZRANK terms with CJc ZRANK terms þ CJ(ZKS/a) þ #CJ(ZKS/a) 7 0.373
ZRANK terms þ CJ(ZKS) þ #CJ(ZKS) 7 0.378
ZRANK terms þ CJ(TB) þ #CJ(TB) 7 0.360
ZRANK terms þ CJ(LLS) þ #CJ(LLS) 7 0.366
ZRANK terms þ CJ(GSVB) þ #CJ(GSVB) 7 0.349

Combine best terms ZRANK terms þ IFACE þ ZKS/a þ #ZKS/a 8 0.425
ZRANK terms þ IFACE þ

CJ(ZKS/a) þ #CJ(ZKS/a)
8 0.408

ZRANK terms þ IFACE þ ZKS/a þ
#ZKS/a þ CJ(ZKS/a) þ #CJ(ZKS/a)

10 0.419

Entries in bold are emphasized in the text.
a In the ZRANK framework, evaluated using exact positions and not using the ZDOCK grid.
b Terms starting with ‘#’ denote the number of pair-wise interactions.
c CJ calculated with contact defined as in the pair potentials.
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Tables I and S3 also show the results of adding

the residue-based pair potentials to the standard

ZRANK terms. For each residue-based pair potential

we also included a term that represents the number

of interacting pairs, to avoid bias toward interface

sizes. ZKS/a gives the best performance, with an

ISR of 0.412. The performance is slightly better than

combination of the IFACE term with the standard

set of ZRANK terms (ISR ¼ 0.401, Table I). ZRANK

terms combined with IFACE gives somewhat better

performance for the top 1 success rate, whereas

ZRANK with ZKS/a gives better performance for top

10, 100, and 1000 predictions. ZKS with the com-

puted center of mass (ZKS/a) performs better than

the parameterized center of mass, which indicates

that accurate placement of the center of mass is im-

portant for the performance of the potential. The

ZRANK terms combined with the TB potential gives

an ISR of 0.388, and in particular improves the top

1 success rate, to 16%, and shows a much higher top

1000 hit rate than any of the other combinations of

terms (23.1, similar to the ZDOCK top 1000 hit rate

of 26.3), which is most likely the result of each resi-

due being represented by three interaction sites in

the TB potential. Inclusion of LLS also improves the

performance with respect to the existing ZRANK

terms (ISR increases from 0.333 to 0.380), but not as

much as including IFACE (ISR 0.401) or ZKS/a (ISR

0.412). Finally, GSVB combined with the ZRANK

terms does not improve performance.

In the earlier paragraphs we showed that add-

ing either the IFACE or the ZKS/a statistical pair

potentials to the existing ZRANK terms improves

the overall performance considerably and similarly,

with IFACE being atom-based and ZKS/a being resi-

due-based. To further understand the behavior of

these potentials we looked at the predictions for

individual complexes. For each complex Figure 2

shows the lowest RSMD amongst the top 10 or top

1000 predictions, for ZRANKþIFACE (ZRANK terms

combined with IFACE) versus ZRANKþZKS/a

(ZRANK terms combined with the ZKS/a potential).

Most cases that produce hits do so for both

ZRANKþIFACE and ZRANKþZKS/a. Only a small

number of cases show hits exclusively with

ZRANKþIFACE or ZRANKþZKS/a. In Figure 2(A,B)

we discriminate the cases by expected docking diffi-

culty. When the top 10 predictions are considered,

ZRANKþZKS/a performs slightly better than

ZRANKþIFACE. This is more pronounced when the

top 1000 predictions are considered, especially with

the medium difficulty cases being improved

(ZRANKþZKS/a always predicts the same or better

than ZRANKþIFACE). This is due to the residue-

based potential not depending on exact atomic posi-

tions, and therefore can deal better with the larger

conformational changes in the cases of medium diffi-

culty. In Figure 2(C,D) we analyze the results by bio-

logical function. ZRANKþIFACE performs remark-

ably better for the antibody–antigen complexes

when the top 10 predictions are considered. This may

be because ZKS was derived from the structures of

monomeric proteins, whereas antibody–antigen inter-

actions may prefer certain atom–atom pairs. We

showed earlier that IFACE was particularly effective

in identifying the binding interfaces of antibody–anti-

gen complexes without any biological information.18

Next we combined the existing ZRANK terms

with the residue-based interface propensity potential

CJ (Tables I and S3). Different contact definitions

with the same potential parameters show large vari-

ation in performance (ISR ranges from 0.349 to

0.378). This indicates that the contact definition is

critical. In fact, the performances of CJ follows the

same trend as the corresponding pair potential

based on which the contacts were defined: ISRZKS >

(ISRTB and ISRLLS) > ISRGSVB. This suggests that

the performance of a pair potential is also dependent

on its contact definition, and not just due to the

potential parameters. Overall, addition of CJ

improves over the existing ZRANK terms, but not as

much as the improvement from inclusion of the resi-

due-based pair potentials.

Thus we determined that IFACE and ZKS/a

give the largest performance gains when combined

with the standard ZRANK terms. We then combined

these terms to understand whether the gains were

cumulative (shown in Tables I and S4). Adding both

IFACE and ZKS/a increases the ISR to 0.425, consid-

erably better than adding IFACE or ZKS/a alone

(ISR ¼ 0.401 and ISR ¼ 0.412, respectively). We see

equal or better success rates across the entire range

of predictions, except the top 1 where only ZDOCK

performs slightly better. Adding also CJ (with ZKS/a

contact definition) does not improve the performance

further (ISR ¼ 0.419). Indeed, we see that the aver-

age weight of the CJ term is very small (0.01), indi-

cating that this term does not contribute much to

the scoring function. We tested various other combi-

nations of the set of ZRANK terms with ZKS/a, CJ,

IFACE, and the two components of ZKS/a separately

(the pair potential and number of pairs). The results

are listed in Table S4, but none of the combinations

improved the scoring function further. Leaving out

either IFACE or ACE lowers the ISR from 0.425 to

0.412 (Table S4). Although both IFACE and ACE are

atom-based statistical pair potentials, ACE is

designed for protein folding using monomeric pro-

teins, and IFACE is designed for protein–protein

binding using protein–protein complexes. Our

results show that the scoring function benefits from

including both.

We also optimized the weights separately for the

different types of complex, again using 8-fold cross-

validation. The overall performance, however, does

not improve, and we used weights that are not

1580 PROTEINSCIENCE.ORG Atom- and Residue-Based Scoring Functions for Protein�Protein Docking



complex type-specific for the results below and the

final integration of residue- and atom-based poten-

tials for docking (IRAD) scoring function.

Thus our optimum function combines the

ZRANK terms with IFACE and ZKS/a, which we

refer to as the integration of residue- and atom-based

potentials for docking (IRAD) scoring function. We

will now analyze this function in more detail. Figure

3 shows the success rate together with the success

rates of the original ZDOCK and ZRANK scoring

functions. Except for the top 1 prediction, IRAD out-

performs both ZDOCK and ZRANK over the entire

range of numbers of predictions. At the crossover

point of the ZDOCK and ZRANK curves (32 predic-

tions), the relative improvement of IRAD is 29%. The

absolute gain in success rate is typically about 10%.

For the top 1000 predictions, IRAD reduces the num-

ber of cases that ZDOCK and ZRANK do not find

hits for by nearly 40 and 30%, respectively.

Figure 4 shows the success rates separated for

docking difficulty and biological function. As the

majority of the cases in our testing/training sets are

rigid-body, the rigid-body curves in Figure 4 are very

similar to the curves for the overall success rate in

Figure 3. For the cases of medium difficulty, the

IRAD performance is considerably better than

ZRANK, which may be due to the residue-based

potentials not being sensitive to the exact atomic

positions, and are therefore better able to implicitly

deal with conformational changes. The performance

of ZDOCK 3.0 for medium difficulty cases is slightly

better than that of IRAD. This is likely due to that

the training set of IRAD was dominated by rigid-

body cases. Looking at the success rates separately

by biological function, we see that IRAD improves

upon ZDOCK and ZRANK for all types of complex.

The extents of improvement are similar, although

slightly more pronounced for antibody–antigen

Figure 2. RMSD’s of ZRANK with IFACE added versus ZRANK with ZKS/a added. Each point represents a test case, and the

left (A/C) and right (B/D) panels show the lowest RMSD of the top 10 predictions and top 1000 predictions, respectively. In

the top panels (A/B) we indicate the docking difficulty, and in the bottom panels (C/D) the complex type.
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complexes. The results in Figure 4 indicate that the

IRAD scoring function is well balanced for the vari-

ous types of docking problems.

On average, the top 1000 ZDOCK predictions

has 838 redundant predictions according to a simple

clustering (pruning) approach with 6 Å radius.20

Therefore, an exhaustive docking search is often fol-

lowed by a clustering step. In Figure S1 we show

the effect of clustering on the success rates for

ZDOCK and IRAD, where we used the final version

that is trained on the entire BM3. We see that clus-

tering improves the success rates for both ZDOCK

and IRAD, but the improvement is more pronounced

for ZDOCK. For IRAD, we either cluster before

reranking (NR-IRAD), or we cluster after reranking

(IRAD-NR). The success rate is better with the lat-

ter, especially for small numbers of predictions. As

the computational cost of reranking is small com-

pared with the exhaustive search, the preferred pro-

cedure is to rerank the entire set of predictions,

including redundancies, before a clustering/pruning

step.

We also tested IRAD, trained on the ZDOCK

decoys, for ranking decoys generated with an algo-

rithm other than ZDOCK. The Dockground36 set

contains 61 test cases, with at least one near-native

prediction and 100 non-native predictions for each

test case. We scored the decoys with the ZDOCK,

ZRANK, and IRAD scoring functions, and show the

success rates in Figure 5. IRAD outperforms ZDOCK

and ZRANK with the Dockground decoy set, as it

did with the ZDOCK decoy set.

Cross-docking
In the previous section, we tested the scoring func-

tions on the ability to predict the binding mode of

two proteins that are known to form a complex. We

also wanted to test whether IRAD can be used to

predict whether two proteins form a complex. In this

section we present a preliminary test of our scoring

functions to distinguish binding and nonbinding pro-

tein pairs. We use the 16 complexes for which the

first prediction using ZDOCK is a hit, representing

the most rigid cases from our benchmark. We used

ZDOCK to ‘‘cross-dock’’ the monomers, thus docking

each of the 32 monomers with all the other mono-

mers. We use 15 degree sampling, which results in

3600 decoys for each docked pair. The total number

Figure 4. Success rates of the original ZDOCK (ZD), ZRANK

(ZR), and IRAD, separately for rigid body cases (R) and

cases of medium difficulty (M), and separately for enzyme-

inhibitor (E), antigen–antibody (A), and other cases (O).

Figure 5. Success rates of ZDOCK, ZRANK, and IRAD for

the Dockground decoy set.

Figure 3. Success rates of the original ZDOCK, ZRANK,

and IRAD.
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of decoys in which a given monomer is represented

is thus 31 � 3600 ¼ 111,600.

We optimized the IRAD weights using the

remaining 80 test cases that yield at least one hit

using ZDOCK, as described in Methods, using the

correctly paired (not cross-docked) decoys. Figure 5

shows the success rate for finding a hit (a near-

native complex is defined as a correct complex with

the correct arrangement) in the 111,600 predictions

for each monomer, ranked according to ZDOCK,

ZRANK, and IRAD. ZDOCK and ZRANK show

behavior similar to that for docking known com-

plexes (Fig. 3), with ZDOCK performing better for

smaller numbers of predictions, and ZRANK for

larger numbers of predictions. IRAD, on the other

hand, shows a much larger improvement compared

with docking known pairs (Fig. 3). For over 30% of

the cases, the top ranked prediction (out of 111,600)

is with the correct binding partner, whereas this is

below 15 and 5% for ZDOCK and ZRANK, respec-

tively. For larger numbers of predictions, around

1000, ZRANK and IRAD perform similarly, with suc-

cess rates over 80%. This high success rate is partic-

ularly encouraging considering the 1000 top ranked

predictions represent less than 1% of the total num-

ber of predictions for each monomer.

Methods

ZRANK
As described in our early publication,24 ZRANK uses

a linear combination of energy terms with optimized

weights Wn:

E ¼ W1�vdWatr þW2�vdWrep þW3�Qatr;sr þW4

�Qatr;lr þW5�Qrep;sr þW6�Qrep;lr þW7�ACE

(1)

The van der Waals interaction (vdW) and elec-

trostatic interactions (Q) are separated into repul-

sive (rep) and attractive (atr) terms, and are calcu-

lated using parameters from the CHARMM19 force

field.37 The cutoff for van der Waals interactions is 8

Å, and a linearization is used for short-range inter-

actions.38 The electrostatic interaction is further sep-

arated in a short-range term (sr, below 5 Å, and

distances below 4 Å are set to 4 Å to avoid singular-

ities) and long-range term (lr, 5–12 Å). The long-

range term is calculated using only charged resi-

dues, with charges located on the charged atoms

only. The ACE term is a statistical contact potential

derived using monomeric protein structures.27 In

ZDOCK 2.3,5 we used the nonpairwise approxima-

tion of ACE to increase computational efficiency, but

for ZRANK the original formulation is applied. For

ZRANK, the terms are calculated for all nonhydro-

gen atoms and polar hydrogen atoms.

In the current work, we added residue-based

terms to the existing set of ZRANK terms, as

described later. We also tested the atom-based terms

from ZDOCK 3.0. These are the van der Waals term

separated into attractive and repulsive components,

electrostatics, and the atom-based statistical poten-

tial IFACE.18 IFACE was shown to improve ZDOCK

performance much, but was developed after ZRANK

and therefore not included in the original ZRANK.

IFACE was part of the more recent development of

ZRANK (version 2.0) that was designed for rerank-

ing structurally refined complex structures.15

ZDOCK terms are evaluated on a grid, but we tested

the nongrid version of the IFACE terms for this

work as well because ZRANK does not use a grid.

Because exploratory calculations showed that using

a single weight for the attractive and repulsive elec-

trostatic interactions does not compromise perform-

ance, we used two electrostatic terms (short range

and long range) instead of the four terms in Eq. (1).

Decoy set and optimization of weights

The complexes for testing and training were

obtained from a widely used protein–protein docking

benchmark developed by our lab (version

3.0).5,17,33,34 We generated decoy sets with ZDOCK

3.0,18 because this is the best performing ZDOCK

version, and we wanted our reranking algorithm to

be able to improve upon it. We used 6� sampling,

resulting in 54,000 predictions for each complex.

Because our algorithm only changes the rank, and

not the structure of a predicted complex, it can only

be successful if the initial-stage docking algorithm

provides at least one correct prediction. Ninety

seven cases from the benchmark did generate at

least one near-native complex with ZDOCK 3.0, of

which we used 96 cases (excluding the largest com-

plex, which required very long computational time)

for our training and testing. Of these, 83 and 13

cases were in the rigid-body and medium difficulty

categories, respectively. Except when indicated, we

Figure 6. Success rates (15 degree sampling) of the

original ZDOCK, ZRANK, and IRAD for cross-docking a set

of 32 monomers that are known to form 16 complexes.
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used 8-fold cross-validation for training and testing

to generate the results presented below. The 96

cases were randomly divided in eight groups, and

for testing on each group the weights were optimized

using the complexes in the remaining seven groups.

This ensures that each complex is tested only once,

thus the results are not biased toward specific com-

plexes. Hydrogen atoms were added to the struc-

tures using Rosetta,38 and we calculated the poten-

tials for each decoy using a modified version of our

ZRANK program. We used a downhill simplex35

algorithm to optimize the weights of the terms in

the scoring function. Each optimization is started

from random weights, and we rebuilt and perform

simplex optimization four times with very tight con-

vergence. Because the downhill simplex algorithm

converges to a local minimum, we repeated the opti-

mization with different random starting weights,

and considered the global minimum when the two

best local minima did not differ more than a thresh-

old (0.002 in the target function, with the function

returning values between 0 and 1, as described

below). This typically required several hundred

downhill simplex runs for each combination of

energy terms. The computational time needed for

the optimization of the weights depends strongly on

the number of terms that are included. We were

therefore limited to optimize a maximum of 10

energy terms simultaneously.

The goal of computational docking is to predict

near-native complexes, or ‘hits’. We define a hit as a

complex of which the interface Ca atoms have a

root-mean-square-distance (RMSD) of less than

2.5 Å from the native complex. We chose the integra-

tive success rate (ISR; as defined above, obtained

from the success rate plotted against the logarithm

of the number of predictions) as the function to be

optimized by the simplex algorithm. This is, in fact,

the plot often used for visually assessing docking

performance, including in this work. Using the loga-

rithm of the number of predictions gives larger

weight to improvements in the top predictions. For

the training we relaxed the cutoff for a hit to 5.0 Å

(but did not do so for testing), as this improves the

stability of the optimization procedure. For computa-

tional efficiency, we only use the top 200 predictions

in the optimization function.

Residue-based potentials

We considered four residue-based pair potentials

from the literature, three of which were developed

for docking, one for folding. Apart from each being

derived from different datasets, they differ in the

way contacts between residues are defined, the ref-

erence state, and the number of interaction sites per

residue. We also included a nonpairwise potential

based only on interface residue propensities. Below

are detailed descriptions.

Glaser, Steinberg, Vakser-Ben, and Tal28 pre-

sented a knowledge-based statistical pair potential

for docking, where interface residue composition is

used for the reference state. Each residue has a sin-

gle interaction site located on the Cb, or Ca for gly-

cine. Residues are defined as in contact when the

distance between the interaction sites is 6 Å or less.

Tobi and Bahar29 optimized their pair potential

directly for discriminating hits from nonhits in a

docking decoy set, avoiding the need of an explicit

reference state. They used three interaction sites:

the side-chain centroid, as well as the backbone am-

ide nitrogen and carbonyl oxygen. The backbone

interaction sites are not residue specific, yielding a

total number of 253 independent parameters. The

cutoffs for contacts are 4.0 Å for interactions

between backbone sites, 5.6 Å for interactions

between side-chain site and backbone sites, and 6.8

Å between side-chain sites.

Lu, Lu, and Skolnick30 published a statistical

pair potential for docking, with the reference state

based on surface residues. Two residues are defined

as contacting if at least one heavy atom from one

residue is closer than 4.5 Å to a heavy atom from

the other residue.

In addition to the potentials developed for dock-

ing, we also tested the pair potential for residue side

chains from the I-TASSER algorithm for protein fold-

ing by Zhang, Kolinski, and Skolnick31. In their

potential each residue has three interaction sites: Ca,

Cb, and the center of mass of the remaining side chain

atoms (or Ca and Cb for glycine and alanine, respec-

tively). The center of mass is parameterized for the

local coordinate system defined by the three consecu-

tive Ca’s and whether the main chain is compact or

extended. As our docking algorithm is of atomic reso-

lution, we also implemented the potential by comput-

ing the actual center of mass (ZKS/a). Besides the

side chain pair potential, the ZKS potential as used

for folding includes strong repulsive terms, which are

not appropriate for the structures generated with the

rigid-body docking algorithm ZDOCK that we attempt

to rerank. Unlike the potentials for docking are

described earlier, the parameters in ZKS side chain

potential are specific for residues that are parallel,

antiparallel, and perpendicular in their backbone

structures. In addition, also the cutoff distances are

specific to the types of the residues in the pair.

We tested the nonpairwise potential based on

interface propensities from Chakrabarti and Janin.32

They used the change in solvent accessible surface

area between the separated monomers and the com-

plex to determine the interface residues, and distin-

guished between residues that became completely

buried (the core) or partially buried (the rim). For

the five-pair potentials described earlier, we used

the definitions and cutoffs from the original develop-

ments to determine the residues that interact.
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Calculating accessible surface areas for the CJ

potential, however, is computationally expensive,

thus we instead used the contact definitions from

each of the five-pair potentials to determine the

interface residues. For simplicity, we did not distin-

guish between rim and core residues, and only used

the propensities for the latter.

As we did not know to what extent each poten-

tial favored total number of interactions, we normal-

ized the potentials by adding a term to the optimiza-

tion that is simply the total number of pairwise

interactions (for the pair potentials) or the total

number of residues in the interface (for CJ).

After calculating the values for all the decoys

for all the complexes, we divided the potentials by

their standard deviations. This makes the values

comparable, and allows us to interpret the weights

in the resulting scoring functions. We separately

combined each term with the ZRANK terms, and

optimized the weights. We then combined various

terms to investigate whether performance improve-

ments were additive.

Conclusions

We have shown that the IRAD scoring function

improves considerably over ZDOCK and ZRANK,

with an absolute gain in success rate of about 10%,

and reducing the number of cases for which ZDOCK

and ZRANK do not find hits by up to 40% for the

top 1000 predictions. IRAD combines atom-based

and residue-based potential terms. The resulting

scoring function is balanced for the different types of

complexes. The current scoring function is deter-

mined using decoys obtained with ZDOCK 3.0, and

is therefore intended to be used in a docking pipeline

with ZDOCK 3.0. However, the weights in the scor-

ing function can be reoptimized using decoys gener-

ated with other docking programs. The cross-docking

exploratory results are very promising, and further

investigations are in progress.

The largest difference in performance between

ZRANK and IRAD is for the complexes of medium

docking difficulty. This may be due to the residue-

based potentials being ‘softer’ than atom-based

potentials, and therefore are better able to implicitly

deal with geometric changes in the binding process.

This aspect is particularly useful for generating pre-

dictions that are subjected to further refinement

using explicit conformational searches.

The implementation of the IRAD scoring function

is available on our internet site http://zlab.umassmed.

edu. The weights used in this program were obtained

by training with all the cases of Benchmark 3.0.
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