
Journal of Computer and System Sciences 73 (2007) 1095–1117

www.elsevier.com/locate/jcss

Two algorithms for LCS Consecutive Suffix Alignment

Gad M. Landau a,b,∗,1, Eugene Myers c,2, Michal Ziv-Ukelson d,3

a Department of Computer Science, Haifa University, Haifa 31905, Israel
b Department of Computer and Information Science, Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201-3840, USA

c Department of Computer Science at the University of California, Berkeley, CA, USA
d Department of Computer Science, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

Received 10 September 2005; received in revised form 10 November 2005

Available online 13 March 2007

Abstract

The problem of aligning two sequences A and B to determine their similarity is one of the fundamental problems in pattern
matching. A challenging, basic variation of the sequence similarity problem is the incremental string comparison problem, denoted
Consecutive Suffix Alignment, which is, given two strings A and B, to compute the alignment solution of each suffix of A versus B.

Here, we present two solutions to the Consecutive Suffix Alignment Problem under the LCS (Longest Common Subsequence)
metric, where the LCS metric measures the subsequence of maximal length common to A and B. The first solution is an O(nL)

time and space algorithm for constant alphabets, where the size of the compared strings is O(n) and L � n denotes the size of the
LCS of A and B.

The second solution is an O(nL+n log |Σ |) time and O(n) space algorithm for general alphabets, where Σ denotes the alphabet
of the compared strings.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Dynamic programming; Longest common subsequence; Match point arithmetic; Incremental algorithms

1. Introduction

The problem of comparing two sequences A of size m and B of size n to determine their similarity is one of
the fundamental problems in pattern matching. Throughout this paper we will assume, for the sake of complexity
analysis simplification, that m = O(n). Standard dynamic programming sequence comparison algorithms compute an
(n + 1) · (m + 1) matrix DP, where entry DP[i, j] is set to the best score for the problem of comparing Ai with Bj ,
and Ai is the prefix, a1, a2, . . . , ai of A. However, there are various applications, such as Cyclic String Comparison [9,
13], Common Substring Alignment Encoding [10–12], Approximate Overlap for DNA Sequencing [9] and more [14],

* Corresponding author. Fax: +972 4 824 9331.
E-mail addresses: landau@poly.edu (G.M. Landau), gene@eecs.berkeley.edu (E. Myers), michalz@cs.technion.ac.il (M. Ziv-Ukelson).

1 Partially supported by NSF grant CCR-0104307, and by the Israel Science Foundation grants 282/01 and 35/05.
2 Fax: +510 643 8443.
3 Partially supported by the Aly Kaufman Post Doctoral Fellowship and by the Bar-Nir Bergreen Software Technology Center of Excellence.
0022-0000/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2007.03.004

1096 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 1. The Consecutive Suffix Alignment Problem over the two input strings “APE” versus “APPLE,” and an O(nL) encoding of a solution to the
problem in the form of a partition-point compressed TAILS table.

which require the computation of the solution for the comparison of B with progressively longer suffixes of A, as
defined below.

Definition 1 (Consecutive Suffix Alignment). The Consecutive Suffix Alignment problem is, given two strings A and B ,
to compute the alignment solution of each suffix of A versus B .

We use Fig. 1 to exemplify what we mean by the term “alignment solution” in the above definition. Consider
the dynamic programming table DP for the alignment of the string “APE” versus the four character string “APPL.”
Note that the string “APPLE” can be obtained from string “APPL” by appending the single character ′E′ to it, and
therefore the DP table for string “APE” versus “APPLE” (the table denoted “Solution 1” in Fig. 1) can be obtained
from the table for string “APE” versus “APPL” (the table which consists of the first four columns of the table denoted
“Solution 1” in Fig. 1) by computing only one additional column, i.e. O(n) entries. On the other hand, consider the
comparison of the DP table for string “APE” versus the four-character suffix “PPLE” of “APPLE” (Solution 2 in the
figure) with the DP table for “APE” versus the full string “APPLE” (Solution 1 in the figure). Note that the string
“APPLE” can be obtained from string “PPLE” by pre-pending a single character (′A′) to it, and that the comparison
between Solution 2 and Solution 1 in Fig. 1 demonstrates that the DP matrix for string B versus string A and the
matrix for B versus aA can differ in O(n2) entries. These potentially changing entries in the DP matrix correspond
to the O(n2) values for the comparisons of all prefixes of B with all prefixes of A. In order to reduce this quadratic
difference from one suffix alignment solution to the next, we will simplify the computations by replacing the full DP
table with an encoding of the comparison of all (relevant) prefixes of B with all (relevant) prefixes of A. This encoding
will be utilized later in this paper to compute all n solutions to the Consecutive Suffix Alignment of B versus A in
O(nL) time complexity instead of the naive O(n3).

There are known solutions to the Consecutive Suffix Alignment Problem for various string comparison metrics.
For the LCS and Levenshtein distance metrics, the best previously published algorithm [9] for incremental string
comparison computes all suffix comparisons in O(nk) time, provided the number of differences in the alignment is
bounded by parameter k. When the number of differences in the best alignment is not bounded, one could use the
O(n(n + m)) results for incremental Levenshtein distance computation described in [8,9]. Schmidt [13] describes an
O(nm) incremental comparison algorithm for metrics whose scoring table values are restricted to rational numbers.
Here, we will focus on incremental alignment algorithms for the Longest Common Subsequence (LCS) metric [1].

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1097
Definition 2 (LCS). A subsequence of a given string is any string obtained by deleting zero or more symbols from
this string. Given two sequences A and B , the Longest Common Subsequence of A and B , denoted LCS[A,B], is the
subsequence of maximal length which is common to both A and B . Correspondingly, |LCS[A,B]| denotes the size of
the LCS of A and B .

Longest Common Subsequences have many applications, including sequence comparison in molecular biology
as well as the widely used diff file comparison program. The LCS problem can be solved in O(n2) time, assuming
both strings A and B are of size O(n), using dynamic programming [5]. More efficient LCS algorithms, which are
based on the observation that the LCS solution space is highly redundant, try to limit the computation only to those
entries of the DP table which convey essential information, and exploit in various ways the sparsity inherent to
the LCS problem. Sparsity allows us to relate algorithmic performances to parameters other than the lengths of the
input strings. Most LCS algorithms that exploit sparsity have their natural predecessors in either Hirschberg [5] or
Hunt–Szymanski [6]. All Sparse LCS algorithms are preceded by an O(n log |Σ |) preprocessing [1]. The Hirschberg
algorithm uses L = |LCS[A,B]| as a parameter, and achieves an O(nL) complexity. The Hunt–Szymanski algorithm
utilizes as parameter the number of match-points between A and B , denoted r , and achieves an O(r logL) complexity.
Apostolico and Guerra [2] achieve an O(L · m · min(log |Σ |, logm, log(2n/m))) algorithm, where m � n denotes the
size of the shortest string among A and B , and another O(m logn + d log(nm/d)) algorithm, where d � r is the
number of dominant match-points (as defined by Hirschberg [5]). This algorithm can also be implemented in time
O(d log log min(d,nm/d)) [4]. Note that in the worst case both d and r are Ω(n2), while L is always bounded by n.

Note that the algorithms mentioned in the above paragraph compute the LCS between two strings A and B , however
the objective of this paper is to compute all LCS solutions for each of the n suffixes of A versus B , according to
Definition 1.

1.1. Results

In this paper we present two solutions to the Consecutive Suffix Alignment Problem under the LCS metric. The
first solution (Section 3) is an O(nL) time and space algorithm for constant alphabets, where the size of both A and B

is O(n) and L � n denotes the size of the LCS of A and B . This algorithm computes a representation of the Dynamic
Programming matrix for the alignment of each suffix of A with B .

The second solution (Section 4) is an O(nL + n log |Σ |) time, O(n) space incremental algorithm for general
alphabets, that computes the comparison solutions to O(n) “consecutive” problems in the same asymptotic time as its
standard counterpart [5] solves a single problem. This algorithm computes a representation of the last row of each of
the Dynamic Programming matrices that are computed during the alignment of each suffix of A with B .

2. Preliminaries

Both algorithms suggested in this paper will execute a series of n iterations numbered from n down to 1. At each
iteration, an increased sized suffix of string A will be compared with the full string B . More formally, let A

j
k denote

the substring of A which begins at index k of A and ends at index j of A. At iteration i, An
n−i will be compared with

the full string B . Correspondingly, we formally define the DP table which corresponds to the comparison of B with
the k-sized suffix of A as follows (see Fig. 2).

Definition 3 (DPk). DPk denotes the dynamic programming table for comparing string B with string An
k , such that

DPk[i, j], for i = 1 . . . n, j = k . . . n, stores |LCS[Bi
1,A

j
k]|.

Based on the observation that each column of the LCS DP is a monotone staircase with unit-steps, one can apply
partition encoding [5] to the DP table, and represent each column of DPk by its O(L) partition points (steps), defined
as follows (see Fig. 4).

Definition 4 (P k). P k denotes the set of partition points of DPk , where partition point P k[j, v], for k = 1 . . . n,
j = k . . . n, v = 0 . . .Lk , denotes the first entry in column j of DPk which bears the value of v. If no entry in column
j of DPk bears the value of v, then P k[j, v] is set to NULL.

1098 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 2. Chains and anti-chains in G0 and in DP0.

In the literature the DP table used for computing the LCS of two strings is also viewed as a directed acyclic graph
(DAG), called the LCS graph. An LCS graph [13] for A and B is a directed, acyclic, weighted graph containing
(|B| + 1)(|A| + 1) nodes, each labeled with a distinct pair (x, y) (0 � x � |B|,0 � y � |A|). The nodes are organized
in a matrix of (|B|+1) rows and (|A|+1) columns. The LCS graph contains a directed edge with a weight of zero from
each node (x, y) to each of the nodes (x, y + 1), (x + 1, y). Node (x, y) will contain a diagonal edge with a weight
of one to node (x + 1, y + 1), if B[x + 1] = A[y + 1]. Maximal-score paths in the LCS graph represent optimal
alignments of A and B , and can be computed in O(n2) time and space complexity using dynamic programming.
Increasing the suffix of A by one character corresponds to the extension of the LCS graph to the left by adding one
column. Therefore, we define the growing LCS graph in terms of generations, as follows.

Definition 5 (Gk). Generation k (Gk for short) denotes the LCS graph for comparing B with An
k . Correspondingly,

Lk denotes |LCS[B,An
k]|.

2.1. Match-points, chains and anti-chains in the LCS graph

The LCS graph of A versus B can be analyzed as a sparse graph of match-points, and the alignment problem as
that of finding longest chains in a sparse graph of match-points. An ordered pair of positions (x, y) in the LCS graph
where A[x] = B[y] is called a match-point. We use r to denote the total number of match-points between A and B . We
define the following partial order relation R on the set of match-points between A and B: match-point [x, y] precedes
match-point [x1, y1] in R if x < x1 and y < y1. A set of match-points such that in any pair one of the match-points
always precedes the other in R constitutes a chain relative to the partial order relation R [1]. A set of match-points
such that in any pair neither element of the pair precedes the other in R is an anti-chain [3]. Then, the LCS problem
translates into the problem of finding a longest chain in the graph of match-points induced by R.

Theorem 1. (See Folklore [7].) Gk can be partitioned into Lk anti-chains.

Proof. For each i = 1,2, . . . ,Lk let Ai consist of those match points x in Gk for which the longest chain in Gk having
x as its minimal element contains i match-points (see Fig. 2). �
Lemma 1. r � 2nL.

Proof. The size of any anti-chain is bounded by 2n. The size of a maximal chain in the graph G0 is L. Each match-
point participates in exactly one anti-chain. Therefore, by Theorem 1, we get r � 2nL. �

We define two data structures, to be constructed during a preprocessing stage, that will be used by the Consecutive
Suffix Alignment algorithms for the incremental construction and navigation of the representation of the LCS graph
for each generation.

Definition 6 (MatchList). MatchList(j) stores the list of indices of match-points in column j of DP, sorted in increas-
ing row index order.

All n MatchLists can be computed in O(n log |Σ |) preprocessing time.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1099
Fig. 3. The update operations applied by the first Consecutive Suffix Alignment algorithm, during the computation of the partition points of
generation G3 from the partition points of generation G4. Partition points are indicated as rectangles and octagons, and the numbers inside stand
for their value. The octagons represent partition points that are both partition points and match-points. The gray rectangles and octagons represent
the new partition points in generation G3.

Definition 7 (NextMatch). For each α ∈ Σ , NextMatch(i, α) denotes a function that returns the smallest index i′ > i

such that B[i′] = α, if such a match-point exists (i.e., NextMatch[i,A[j]] gives the row index of first match-point in
column j below row i of DP, if such a match-point exists). If no such match-point exists, the function returns NULL.

A NextMatch(i, α) table, for all α ∈ Σ , can be constructed in O(n|Σ |) time and space.

3. The first algorithm

The first algorithm consists of a preprocessing stage that is followed by a main stage. During the preprocessing
stage, the NextMatch table is constructed, based on string B .

Then, a main stage is executed, whose task is formally defined as follows: compute P k for each k ∈ [1, n].

3.1. Computing P k from P k+1

At stage k of the algorithm, column k is appended to the considered LCS graph. Correspondingly, P k is obtained by
inheriting the partition points of P k+1 and updating them as follows. First, P k is updated by computing and adding the
single new partition point of the newly appended column k, which corresponds to the first match-point in column k

(see column 3 of G3 in Fig. 3). Then, the columns inherited from P k+1 are traversed in a left-to-right order, and
updated with new partition points.

We will use two important observations in simplifying the update process. First, in each traversed column of P k , at
most one additional partition point is inserted, as will be shown in Lemma 3. We will show how to efficiently compute
this new partition point. The second observation, which will be asserted in Conclusion 1, is that once the leftmost
column j is encountered, such that no new partition point is inserted to column j of P k , the update work for stage k

of the algorithm is complete.
In the rest of this paper, we will alternatively use the term path instead of chain. A path from vertex (i, j) of the

dynamic programming graph G to vertex (i′, j ′) of G is a consecutive set of edges in the dynamic programming graph
connecting the two vertices. Note that edges in the LCS dynamic programming graph G can assume only one of three
directions: left-to-right, top-to-bottom and diagonal. The diagonal edges correspond to match-points and are assigned
a weight of 1. The non-diagonal edges are assigned a weight of zero. Therefore, the weight of path p in G, denoted
|p|, is computed as the sum of its diagonal edges.

1100 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 4. The implementation of the partition-point data structure as a doubly-linked list. The gray circles represent the new partition points in
generation G3.

Definition 8 (Crossing paths). Two paths p1 ∈ Gk and p2 ∈ Gk , cross in Gk iff there exist 4 points (i1, j1) ∈ p1,
(i′1, j ′

1) ∈ p1, (i2, j2) ∈ p2 and (i′2, j ′
2) ∈ p2, such that i1 < i2 and i′1 > i′2.

The incremental approach applied in the first algorithm is based in the following lemma, which analyzes the
differences in a given column from one generation of DP to the next.

Lemma 2. Column j of DPk is column j of DPk+1 except that all elements that start in some row Ij are greater by
one. Formally, for column j of DPk there is an index Ij such that DPk[i, j] = DPk+1[i, j] for i < Ij and DPk[i, j] =
DPk+1[i, j] + 1 for i � Ij .

Proof. This follows from the monotonicity and unit-step properties of DP. Consider the series of differences, obtained
by subtracting column j of DPk+1 from column j of DPk : delta[i] = DPk[i, j] − DPk+1[i, j], for i = 0 . . .m.

Claim 1. delta[i] can assume one of two values: either zero or one.

This is immediate from the unit step properties of LCS. The additional character Ak can either extend the common
subsequence by one, or not extend it at all.

Claim 2. delta[i] � delta[i + 1].
This can be proven using the crossing paths argument, as follows. Figure 5 shows the four paths of interest. Path

t corresponds to DPk[i + 1, j], path w corresponds to DPk[i, j], path z corresponds to DPk+1[i + 1, j], and path y

corresponds to DPk+1[i, j].
Since path y is optimal, |y| � A + D ⇒ |w| − |y| � C − A.
Since path t is optimal, |t | � C + B ⇒ |t | − |z| � C − A.
Therefore,

delta[i] = |w| − |y| = DPk[i, j] − DPk+1[i, j]
� DPk[i + 1, j] − DPk+1[i + 1, j] = |t | − |z| = delta[i + 1]. �

The next lemma immediately follows.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1101
Fig. 5. Optimal paths that must cross.

Lemma 3. Column j in P k consists of all the partition points which appear in column j of P k+1, plus at most
one new partition point. The new partition point is the smallest row index Ij , such that delta[Ij] = DPk[Ij , j] −
DPk+1[Ij , j] = 1.

Proof. Following Lemma 2, Ij is a partition point in column j , and all partition points above and below Ij remain
intact. Now, suppose that Ij was already a partition point in generation Gk+1, DPk+1[Ij , j] − DPk+1[Ij − 1, j] = 1.
By Lemma 2, all entries in column j of DP with row index Ij or greater raise their value by one from generation Gk+1

to generation Gk . Therefore, DPk[Ij , j] = DPk+1[Ij , j] + 1. All entries in column j of DP with row index smaller
than Ij maintain their values from generation Gk+1 to generation Gk . Therefore, DPk[Ij − 1, j] = DPk+1[Ij − 1, j].
From this it follows that DPk[Ij , j] − DPk[Ij − 1, j] = 2, in contradiction to the unit-step properties of LCS. �
Claim 3. For any two rectangles in a DP table, given that the values of the entries in vertices in the upper and left
border of the rectangles are the same and that the underlying LCS subgraphs for the rectangles are identical—the
internal values of entries in the rectangles will be the same. Furthermore, adding a constant c to each entry of the
left and top borders of a given rectangle in the DP table would result in an increment by c of the value of each entry
internal to the rectangle.

The correctness of the above claim is immediate from the basic rules of dynamic programming.

Conclusion 1. If column j of DPk is identical to column j of DPk+1, then all columns greater than j of DPk are also
identical to the corresponding columns of DPk+1.

The correctness of Conclusion 1 is immediate from Claim 3.
The suggested algorithm will traverse the columns of P k from left to right. In each of the traversed columns it will

either insert a new partition point or halt according to Conclusion 1.

3.2. Computing the new partition points of column j of P k

In this section we will show how to compute the new partition points of any column j > k of P k , using the partition
points of column j of P k+1, the partition points of column j − 1 of P k , and the match-points of column j of P k .
Throughout this section, let Ij denote the index of the new partition point in column j of P k , let Ij−1 = P k

j−1[v]
denote the new partition point in column j − 1 of P k , and let Y = P k

j−1[v + 1]. We start by constraining the range of
row indices of column j in which the new partition point will be searched.

Lemma 4. Ij−1 � Ij � Y .

1102 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Proof.

• Ij−1 � Ij .
This is immediate from Claim 3.

• Ij � Y .
DPk[Y, j −1] = v+1, and therefore by monotonicity of LCS it follows that DPk[Y, j] � v+1. On the other hand,
DPk+1[Y, j −1] = v (by Lemma 3 and the definitions of Ij−1 and Y), that is, Y is the first index to reach a value of
v in column j − 1 of P k+1, and therefore by the unit step property of LCS it follows that DPk+1[Y, j] = v. Thus,
index Y in column j falls in the interval of entries which raised their value from generation Gk+1 to generation
Gk , and by Claim 3 we conclude that Ij � Y . �

We will next show that there are two possible cases to consider when computing the new partition point of col-
umn j , as specified in the lemma below.

Lemma 5. Ij can assume one of two values, according to the following two cases.

Case 1. Ij−1 � P k+1
j [v], in which case Ij = Ij−1.

Case 2. Ij−1 > P k+1
j [v], in which case Ij = min{Y,NextMatch(Ij−1,A[j])}.

Proof.

Case 1. Ij−1 � P k+1
j [v].

From Lemmas 4 and the monotonicity of LCS it is immediate that in this case Ij = Ij−1.

Case 2. Ij−1 > P k+1
j [v].

This means, by Claim 3, that P k
j [v] = P k+1

j [v] �= Ij . By Lemma 4 we know that Ij � Y . Therefore, the index of Ij

is determined based on whether or not there are any match-points in column j of DPk with row indices greater than
Ij−1 and smaller than Y , as follows.

• If there are no such match-points then, by Lemma 4, Y will be the index of the new partition point in column j

of P k .
• If there is at least one such match-point in column j of DPk , then let X denote the row index of the first (smallest

row index) of such match-point. Then match-point (X, j) will extend the v-sized chain that ends in P k
j−1[v] to a

(v + 1)-sized chain, and therefore, by Lemma 3, X will be the index of the new partition point in column j of P k .

Note that a special case of this scenario occurs when v is the highest value in column j − 1 of DPk . In this case,
P k

j−1[v + 1] is set to the dummy index n + 1. Then, if the query NextMatch(Ij−1, n + 1) returns NULL, we conclude

that there is no new partition point in column j of P k and therefore, by Conclusion 1, the algorithm exits the loop of
P k updates. �
Conclusion 2. The new partition point in column j of P k , if such exists, is one of five options:

1. For j = k, the first match-point in column k.
2. The new partition point of column j − 1.
3. The partition point that immediately follows the new partition point of column j − 1.
4. Some match-point at an index that falls between the new partition point of column j − 1 and the match-point that

immediately follows in column j .
5. Some match-point at an index that falls between the last partition point of column j − 1 and index m + 1.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1103
Conclusion 2 greatly simplifies the implementation of the algorithm, as will be seen in the next subsection.

3.3. An efficient implementation of the first algorithm

An efficient algorithm for the Consecutive Suffix Alignments Problem requires a data structure modeling the cur-
rent partition that can be quickly updated in accordance with Lemma 5. To insert new partition points in O(1) time
suggests modeling each column partition with a singly-linked list of partition points. However, it is also desired that
successive insertion locations be accessed in O(1) time. Fortunately, by Conclusion 2, the update position in the
current column is either the update position in the previous column or one greater than this position, and the update
position in the first column in each generation is the first position. Thus, it suffices to add a pointer from the ith cell
in a column partition to the ith cell in the next column (see Fig. 4). Therefore, each cell in the mesh which represents
the partition points of a given generation is annotated with its index, as well as with two pointers, one pointing to the
next partition point in the same column and the other set to the cell for the partition point of the same value in the next
column.

Furthermore, we next show that the pointer updates which result from each new partition-point insertion can be cor-
rectly completed in O(1) time. In order to explain this we refer the reader to the inserted partition points in generation
G3 of Fig. 4. The new partition point Ij = P k[j, v] is inserted into column j of the mesh, in between the two partition
points P k+1[j, v − 1], which is also P k[j, v − 1], and P k+1[j, v], which now turns into P k[j, v + 1]. Therefore, the
↑ down pointer of the new partition point Ij = P k[j, v] is correctly set to the next in value, P k+1[j, v] = P k[j, v +1],
and the ↑ down pointer of the previous partition point in value, P k+1[j, v − 1] = P k[j, v − 1], is correctly reset to
the newly inserted partition point of column j , whose value is v. By Conclusion 2, the ↑ right pointer of any par-
tition point of value smaller than v remains intact, and the ↑ right pointer of any partition point of value v + 2 or
larger remains intact as well. So, the only two partition points whose ↑ right pointer may need re-setting are the two
consecutive cells in column j whose values are v and v + 1. The ↑ right pointer of the new partition point should
be set to the partition point of same value v in the next column, P k+1[j + 1, v]. This pointer can be copied from
P k+1[j, v] = P k[j, v + 1], which pointed to the partition point of value v in column j + 1 in the previous iteration
k + 1. The only problem is that, at this point, the ↑ right pointers of two cells from column j , P k[j, v] as well as
P k[j, v + 1], are both pointing to P k+1[j + 1, v]. It is too early to resolve this redundancy at this point, since the
columns are traversed and updated left-to-right, and therefore when we insert the new partition point of column j

we do not know yet which partition point in column j + 1 will bear the value of v in generation Gk . Therefore, the
task of correcting the value of the ↑ right pointer for one of these two consecutive partition points from column j is
delayed until the new partition point of column j + 1 has been computed, and is then decided according to Lemma 5,
as follows.

Case 1. If Ij+1 = Ij . (See, for example, the new partition point in column 7 in Fig. 4.) In this case the partition point
in column j + 1 which is pointed to by the ↑ right pointers of P k[j, v] and P k[j, v + 1] rises in value from v to v + 1.
Therefore, P k[j, v + 1] now correctly points to it, while the ↑ right pointer of P k[j, v] should be reset to the new
partition point of column j + 1, whose value is v.

Case 2. P k
j+1[v] = min{NextMatch(P k

j [v], j + 1),P k
j [v + 1]}. (See, for example, the new partition point in column 6

in Fig. 4.) In this case the partition point in column j + 1 which is pointed to by the ↑ right pointers of P k[j, v] and
P k[j, v + 1] maintains its value of v. Therefore, P k[j, v + 1] now correctly points to P k[j + 1, v + 1], while the
↑ right pointer of P k[j, v] should be reset to the next, new partition point of column j + 1, whose value is v + 1.

3.4. Time and space complexity of the first algorithm

During the preprocessing stage, the NextMatch table for string B is constructed in O(n|Σ |) time and space, and in
O(n) time and space if |Σ | is constant.

At each of the columns traversed by the algorithm, during the computation of P k from the partition points of P k+1,
except for the last column that is considered for update, a single partition point is inserted. Therefore, the number of
times the algorithm needs to compute and insert a new partition point is linear with the final number of partition points
in P 1, which is O(nL). Given the NextMatch table which was prepared in the preprocessing stage, the computation

1104 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
of the next partition point, according to Lemma 5, can be executed in constant time. Navigation and insertion of a new
partition point can also be done in constant time according to Conclusion 2 (see Fig. 4). This yields an O(nL) time
and space complexity algorithm for constant alphabets.

4. The second algorithm

The second algorithm takes advantage of the fact that many of the Consecutive Suffix Alignment applications we
have in mind, such as Cyclic String Comparison [9,13], Common Substring Alignment Encoding [10–12], Approxi-
mate Overlap for DNA Sequencing [9] and more, actually require the computation of the last row of the LCS graph
for the comparison of each suffix of A with B . Therefore, the objective of the second algorithm is to compute the par-
tition encoding of the last row of the LCS graph for each generation. This allows to compress the space requirement
to O(L). Similarly to the first algorithm, the second algorithm also consists of a preprocessing stage and a main stage.
This second algorithm performs better than the first algorithm when the alphabet size is not constant. This advantage
is achieved by a main stage that allows the replacement of the NextMatch table with a MatchList data structure (see
Definition 6 in Section 2.1). The MatchList for strings A and B is constructed during the preprocessing stage.

A Comment Regarding Row Indexing: Note that, for the sake of clarity, throughout this section we assume that
the rows in both DPk and in Gk are numbered in a bottom–up order (see Fig. 7). That is, the lowest row in the
bottom of the DP table is row number 1. Thus, when we say “a higher/lower match-point” we mean a match-point
with a greater/smaller row index, correspondingly. We also assume that the first match-point in a given chain is the
match-point with the greatest row index and the smallest column index.

4.1. An O(Lk) size TAILS encoding of the solution for Gk

In this section we will examine the solution that is constructed from all the partition-point encodings of the first
rows of DPk , for k = n . . .1. We will apply some definitions and point out some observations which lead to the
conclusion that the changes in the encoded solution, from one generation to the next, are constant. The main output
of the second algorithm will be a table, denoted TAILS, that is defined as follows.

Definition 9 (TAILS). TAILS[k, j] is the column index of the j th partition point in the first row of Gk . In other words,
TAILS[k, j] = t if t is the smallest column index such that |LCS[At

k,B]| = j . That is, t is the index of the smallest
column index to end a j -sized chain in Gk .

Correspondingly, the term tail is defined as follows.

Definition 10 (Tail). Let t denote the value at entry j of row k of TAILS.

1. t is considered a tail in generation Gk (see Figs. 6, 7).
2. The value of tail t in generation Gk , denoted valt , is j . That is, |LCS[At

k,B]| = j .

It is easy to see that, in a given generation, tails are ordered in left to right column order and increasing size. In the
next lemma we analyze the changes in the set of values from row k + 1 to row k of TAILS, and show that this change
is O(1).

Lemma 6. If column k of the LCS graph contains at least one match point, then the following changes are observed
when comparing row k + 1 of TAILS to row k of TAILS. Otherwise, there are no changes.

1. TAILS[k,1] = k.
2. All other entries from row k + 1 are inherited by row k, except for at most one entry which could be lost: if

|LCS[B,An
k]| = |LCS[B,An

k+1]|, then one entry value, which appeared in row k + 1, disappears in row k. In this
case, let j denote the index of the disappearing entry. Otherwise, if |LCS[B,An

k]| = |LCS[B,An
k+1]| + 1, then no

entry disappears. In this case, let j = |LCS[B,An]|.
k

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1105
Fig. 6. The evolution of leftmost chains from chains that are not necessarily leftmost.

• All values from row k + 1 of TAILS up to index j are shifted by one index to the right in row k of TAILS.
• All values from row k + 1 of TAILS which are greater than j remain intact in row k of TAILS.

Proof. This is immediate from Lemmas 2, 3 and Conclusion 1. �
From the above lemma we conclude that, in order to compute row k of TAILS, it is sufficient to find out whether

or not column k of G contains at least one match-point, and if so to compute the entry which disappeared from row
k + 1 of TAILS.

4.2. The O(L2) active chains in a given generation

In this section we will show that some chains dominate others as candidates to evolve into the Lk leftmost ending
chains (corresponding to the Lk tails), and use this observation to define a core set of chains that needs to be considered
throughout the algorithm. Recall that, in addition to the output computation for Gk , we have to prepare the relevant
information for the output computation in future generations. Therefore, in addition to the O(Lk) leftmost ending
chains we also wish to keep track of chains that have the potential to become leftmost chains in some future generation.
Note that a leftmost chain of size j in a given generation does not necessarily evolve from a leftmost chain of size
j − 1 in some previous generation (see Fig. 6). This fact brings up the need to carefully define the minimal set of
chains which need to be maintained as candidates to become leftmost chains in some future generation.

At this stage it is clear that an earlier (left) last-match is an advantage in a chain, according to the tail definition. It
is quite intuitive that a lower first-match is an advantage as well, since it will be easier to extend it by match-points in
future columns. Hence, a chain of size k is redundant if there exists another chain of size k that starts lower and ends
to its left. Therefore, we will maintain as candidates for expansion only the non-redundant chains, defined as follows.

Definition 11 (Active chain). A chain c1 of size j is an active chain in generation Gk , if there does not exist another
chain c2 of size j in Gk such that c2 starts lower than c1 and c2 ends earlier than c1.

For the purpose of tail computation, it is sufficient to maintain for each chain the row index of its first match-point
and the column index of its last match-point. By Lemma 6 we know that any chain in generation k which is a candidate
to become a leftmost chain (by left-extension via match-points contributed by future generations) must end in one of

1106 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 7. The set of chains H7 for the tail with value 5 and index 7 in generation G2 of the Consecutive Suffix Alignment of strings
A = “BCBADBCDC” versus B = “BCBD.” The head which is h7 is highlighted with a thicker border, and the corresponding shortest chain of
size 2 is dotted. The dark circles around column indices directly below the bottom row of the graph mark the active tails in G2. Row numbers, in
bottom–up order, are marked on the left side of the table.

the Lk tails of generation k (the interested reader could reach the same conclusion via a crossing paths argument).
Therefore, from now on we will use the term tail when referring to end-points of active chains. From this we conclude
that there are O(L2

k) active chains in any given generation k. We next turn to address the first match-points of active
chains.

Definition 12 (Head). The row index of the first match-point in an active chain is denoted a head.

4.3. Static properties of Ht (and Th)

In the rest of this paper we will consider two active chains of identical sizes which have the same head and the
same tail as one. This representation of chains, which is developed in this section, will be used to further compress the
set of key values that needs to be maintained from one generation to the next. In order to organize and further analyze
the minimal set of key values which suffices for our computations, we associate with each tail a set of relevant heads,
as follows (see Fig. 7).

Definition 13 (Ht). Ht denotes the set of heads of active chains in Gk that end in tail t .

Symmetrically, for each head we associate a set of relevant tails, as follows.

Definition 14 (Th). Th denotes the set of tails of active chains in Gk that start in head h.

In the next Lemmas 7 to 10 we formalize some properties of Ht (and Th) per a given generation. The changes to
Ht (and Th) from one generation to the next will be discussed is Section 4.4.

Lemma 7. The heads of Ht are ordered in increasing row index and increasing chain size (see Fig. 7). Symmetrically,
the tails of Th are ordered in increasing column index and increasing chain size.

Proof. Suppose there were two heads a, b in Ht , such that b is higher than a and yet the chain headed by a has a size
sa which is greater than the size sb of the chain headed by b. Then the sb-sized suffix of the chain headed by a would
form a chain of size sb which starts lower than b yet ends before or at t , in contradiction. �
Lemma 8. For any tail t (symmetrically head h), the sizes of active chains which correspond to the heads in Ht

(symmetrically tails in Th) form a consecutive span.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1107
Fig. 8. A crossing paths argument for proving that sizes of active chains in Ht form a consecutive span.

Proof (Crossing paths argument). Consider tail t in Fig. 8. By definition, Ht must include the head of the lowest,
leftmost chain of size valt . By Lemma 7 this head is the highest head in Ht . We prove that if Ht includes an active
j + 1 head and an active j − 1 head, then it must also include an active j head. Suppose that the lowest j -chain to end
in t was inactive. Then, by definition, there must be another j -chain which starts lower and ends to its left in some
tail t1. Consider the two cases shown in the figure.

Case 1. (See Fig. 8A.) The j − 1-path that ends in t does not cross the j -path that ends in t1. Let h3 denote the second
match of the j -path that ends in t1 and let (i, k) denote the indices of h3. Let h denote the first match in the j − 1-path
that ends in t and let (i′, k′) denote the indices of h. We claim that h3 precedes h in G, i.e. i > i′ and k < k′:

• Suppose i � i′. This would imply that there is a j − 1-path that starts in h3 and ends in t1, to the left of t , in
contradiction to the assumption that the j − 1-chain from h to t is an active chain.

• Suppose k′ � k. We are given that t1 < t and have also asserted above that i > i′. By the precedence order defined
for match-points in a chain, it is clear that k < t1. Therefore, k′ � k < t1 and thus the two paths (the path from h3
to t1 and the path from h to t) must cross, in contradiction to the case assumption.

Since, as asserted above, match-point h3 precedes match-point h, it could be appended to the j − 1-chain that ends
in t to form a j -chain—in contradiction to the assumption that the j -chain that ends in t1 starts lower.

Case 2. (See Fig. 8B.) The j − 1-chain that ends in t does cross the j -chain that ends in t1.

• if C � D. Then there is another (j − 1)-sized chain that starts at the same row index and ends in a smaller column
index—in contradiction to the assumption that the j − 1-chain that ends in t is active.

• if C < D. Then the j -suffix of BD forms a j -chain that ends in t and starts lower than chain BC, in contradiction
to the assumption that the j -chain which ends in t1 is responsible for de-activating the j -chain which ends in t . �

The next definition, which applies to the heads and tails of chains that are active in a given generation, will be used
in Lemma 9.

Definition 15 (New head). For any head h and tail t which correspond to active chains in a given generation of the
LCS alignment graph. We say that “head h is new at tail t” iff the following two conditions are met:

1. There is an active chain which originates in head h and ends in tail t .
2. All active chains which originate in head h end in a tail that is greater than or equal to t .

A “new tail t at head h” is symmetrically defined.

1108 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Lemma 9.

1. The head h1 of the smallest chain in Ht is new at tail t .
2. All other heads in Ht are not new at tail t .

Symmetrically,
3. the tail t1 of the smallest chain in Th is new at head h.
4. All other tails in Th are not new at head h.

Proof. We prove 1 and 2. The correctness of 3 and 4 follows by symmetry.
1. The head h1 of the smallest chain in Ht is new at tail t . Consider tail t from Fig. 12(A and B). If h1 heads

the smallest active chain that ends in t , and if u denotes its size, then the (u − 1)-sized chain that ends in t has been
de-activated. By Lemma 7 we know that the head of the (u− 1)-sized chain in Ht , prior to its de-activation, was lower
than h1. This means that there is now a (u − 1)-sized chain that starts in some head h2 lower than h1 and ends to its
left in some tail t2 < t . Suppose that h1 is not new in Ht . Then there is some active j -chain that starts in h1 and ends
in some tail t1 to the left of t (note that j � u − 1). If t2 � t1 (see Fig. 12A)—then the j -prefix of the (u − 1)-sized
chain from h2 to t2 would form a lower-origin, earlier-ending j -chain, in contradiction to the livelihood of the j -chain
from h1 to t1. Therefore we know that t1 < t2 < t and the two chains must cross (see the crossing paths argument in
Fig. 12B).

2. All other heads in Ht are not new at tail t . Consider tail t from Fig. 12C. Suppose that the head h0 of the u-sized
chain in Ht is new, yet u is not the shortest chain in Ht . This means that none of the smaller chains which originate
in h0 is active. In particular, the (u − 1)-sized prefix of this u-sized chain has been deactivated by some (u − 1)-sized
chain that starts in some head h2 < h0 and ends in some tail t2 < t . Let h3 denote the head of the (u − 1)-sized chain
in Ht (by Lemma 8 and the fact that h0 is not the head of the shortest chain in Ht we know that there is indeed a
(u − 1)-sized chain in Ht). Suppose that h3 � h2. Then the livelihood of the (u − 1)-sized chain in Ht would be
contradicted. Thus, h3 < h2, and therefore the active chain from h2 to t2 crosses the active chain from h3 to t (see the
crossing paths argument in Fig. 12C). �

We have found one more property of Hti which will be relevant to our algorithm, as proven in the next lemma.

Lemma 10. Hti includes all heads that are higher than hti and start at least one active chain which ends in some tail
t < ti .

Symmetrically, Thi
includes all tails that are to the right of thi

and end at least one active chain which starts in
some head h < hi .

Proof. By crossing paths argument (similarly to the proof of Lemma 9). �
4.4. Changes in Ht (and Th) from one generation to the next

In this section we discuss the changes in Ht (and Th) as the graph of match-points for generation Gk+1 is extended
with the match-points of column k. The next lemma is key to the efficiency of the incremental algorithm which is to
be described in the next section.

Lemma 11. From one generation to the next, the number of active heads in Ht can decrease by at most one. Further-
more, of all the chains that start in some head in Ht and end in t , only the shortest chain could be de-activated in Gk

without being replaced by a lower head of a similar-sized active chain to t .

Proof. Let Ht include chains of sizes j . . . valt in generation Gk+1. We will show that, in generation Gk , Ht will
either keep the same chain sizes, or loose its shortest chain of size j . All other chains of sizes j + 1 to valt are still
active, though they may have been lowered.

Consider the head of the shortest, j -sized chain that ends in t . We know that there is a chain of size j − 1 that
starts lower than the (j − 1)-sized prefix of this chain and that ends to the left of t . This chain could be extended by a

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1109
match-point in column k that is lower than the head of the j -sized chain in Ht , as a result of which Ht will loose its
j -sized chain.

Next, let C denote a chain of any size u + 1 > j in Ht . By Lemma 8 we know that if a chain of size u + 1 is active
in Ht in Gk+1, and this chain is not the shortest active chain to t , then there is also some active chain of size u in Ht .
Let D denote this u-sized chain. Since chain D is active in Gk+1, there could not possibly be another chain of size u

in Gk+1 that starts lower than (or equal to) to chain D and ends to its left, and that could therefore be extended to form
a new chain, in Gk , of size (u + 1), that would dominate chain C. On the other hand, there could be another active
chain of size u in Gk+1, denoted E, that starts higher than chain D in Gk+1 and ends to its left. However, the first
match-point of this chain E already extends the u-sized chain D of Ht in Gk+1 to a (u + 1)-sized chain in Gk+1 that
ends in Ht , and therefore we know that any extension of chain E to a (u + 1)-sized chain in Gk will definitely start
higher than the (u+ 1)-sized chain of Ht in Gk and thus will not dominate it. Therefore, the (u+ 1)-sized chain of Ht

in Gk+1, chain C, either stays as is in Gk or is replaced with a lower u + 1 sized chain that is obtained by extending
chain D, the u-sized chain of Ht in Gk+1. �
4.5. An algorithm based on an O(Lk) PAIRS state encoding for Gk

In this section we describe the new data structure which is the core of our algorithm. Note that two or more
different chains could share the same head in a given generation. For example, see Fig. 6. Based on this observation,
we decided to count the number of different match-points which serve as heads in a given generation. Therefore, let
Gk

r denote the graph of match-points obtained by turning the visual representation of graph Gk around by 90 degrees
counterclockwise (see Fig. 9), and then considering chains of match-points in a top-down, left-to-right precedence
order. Clearly, Gk

r is the graph of match-points obtained for the comparison of the reversed string An
k versus the

reversed string B . It is easy to see that, by symmetry, the active chains of Gk are also the active chains of Gk
r , and the

Lk tails of Gk
r are the Lk heads of Gk . This means that all active chains of Gk must originate in one of the Lk tails

of Gk
r (i.e. heads of Gk) and end in one of the Lk heads of Gk (i.e. tails of Gk

r). Furthermore, we note a one-to-one
mapping between the Lk heads of Gk and the Lk heads of Gk

r , which induces a set of pairs (ti , hi), i = 1 . . .L, such
that hi is the head of the shortest chain to end in ti in Gk , and ti is the head of the shortest chain to end in hi in Gk

r

(see Fig. 10). These observations are formalized as follows,

Observation 1. There is a one-to-one correspondence between the Lk heads and the Lk tails of Gk .

Observation 1 is the key to the efficient O(Lk) state encoding used in the second algorithm. Based on this obser-
vation, the heads of Gk and the tails of Gk (i.e. heads of Gk

r) can be paired as follows.

Definition 16 (Head-to-tail pair). For any active tail ti in Gk , let hi denote the head of the shortest active chain which
ends in Hti . Symmetrically, ti is the tail of the shortest active chain in Thi

. (hi, ti) is denoted a head-to-tail pair in Gk .

Fig. 9. The tails of Gk are the column indices of first match-points in the anti-chains of An
k

versus B . Symmetrically, the heads of Gk are the
column indices of first match-points in the anti-chains of the reversed string An

k
versus the reversed string B .

1110 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 10. The head-to-tail pairings in Gk . This figure continues the example of Fig. 9.

Throughout the algorithm, the relevant state information will be represented by a dynamic list PAIRS of head-to-tail
pairs: (h1, t1), (h2, t2) . . . (hLk

, tLk
). (See Fig. 10.)

Definition 17 (PAIRSk). PAIRSk denotes the set of active head-to-tail pairs in generation Gk , maintained as a list
which is sorted in increasing head row index. Each pair (hi, ti) in the list is annotated with two values. One is the row
index of hi , and the other is the column index of ti .

In the suggested algorithm, which is formally described and analyzed in Section 4.7, the PAIRS list will be modified
for each consecutive suffix generation Gk , based on the match-points in column k of DP, as demonstrated in Fig. 11.
The row indices of the heads in PAIRSk+1 will be merged with the row indices of match-points in column k, and then
the PAIRS list will be traversed once, in a bottom–up order, and updated with the resulting modifications to the set of
active heads, to the set of active tails, and to the head-to-tail pairing described above, according to the evolution of
active chains from Gk+1 to Gk .

Two objectives will be addressed in Gk . The first and main task is to compute the tail that becomes inactive in Gk ,
according to Lemma 6. Recall that in Lemma 11 we showed that, for any tail t that was active in Gk+1, the size of Ht

can decrease by at most one in Gk . Therefore, the tail to disappear in Gk is the tail t such that the size of Ht decreases
from one to zero in Gk . In the rest of this paper, and in Lemma 16 in particular, we show how the tail to disappear in
Gk can be identified via a single traversal of the list formed by the merge of the match points of column k with the
structure PAIRSk+1.

The second task is to update the state information PAIRSk+1 with the match-points in column k of DP, in order
to prepare PAIRSk for the upcoming computations of Gk−1. Figure 11 shows the active heads and active tails of
generation k + 1 and two consecutive match points (mp and mp+1) from column k. The chains (arcs) in the figure
demonstrate the head-to-tail pairings of Gk+1, i.e. for each tail ti we drew its shortest chain that connects it to its
corresponding head hi , such that (hi, ti) ∈ PAIRSk+1. In Lemmas 13 and 14 we show that the (head, tail) pairs that
need re-labeling in Gk (highlighted in black in the figure) form a series of increasing head row indices and decreasing
tail column indices (i.e. a series of crossing chains). Furthermore, we show that the modifications of the (head, tail)
pairs from PAIRSk+1 that need to be updated in Gk can be applied in a single up-traversal of the list, in which
each head hi of a modified pair (hi, ti) ∈ PAIRSk+1 replaces the head of the next pair in line to be modified, i.e.
(hi+1, ti+1) ∈ PAIRSk+1, yielding the resulting new pair (hi, ti+1) ∈ PAIRSk .

The detailed description of how to identify the disappearing tail, as well as how to update the PAIRS data structure
of Gk in preparation for the computations of Gk−1 will be partitioned into four cases.

Case 1. The lowest match-point in column k. The first match-point in column k is a new head. It is the first chain, of
size 1, of the tail k, and therefore is hk . All pairs whose heads fall below this match-point are unaffected, since no new
chain that starts lower than these heads could have possibly been created in Gk .

Case 2. Two consecutive match-points with no heads in between. For any sequence of consecutive match-points in
column k with no head in between, all match-points, except for the lowest match-point in the sequence, are redundant.

Case 3. Match-points above the highest head in PAIRSk+1. The lowest match-point in column k which is above
the highest active head in PAIRSk+1, if such a match-point exists, becomes a new head. Consider the longest chain in

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1111
Fig. 11. The PAIRS list traversal in increasing row index during its update with the match-points of column k in generation Gk . The modified heads,
as well as their corresponding tails and new chains, are highlighted in black.

Gk+1, of size Lk+1, that ends in tail Lk+1. Clearly, this chain’s head is the highest head in the list. This chain will be ex-
tended by the new match-point to a lowest, leftmost Lk = Lk+1 +1 chain, and therefore this match-point is a new head.

Case 4. The series of pairs whose heads fall between two consecutive match-points mp and mp+1. This case, which
includes the series of remaining heads above the highest match-point in column k, is the most complex case and covers
the identification of the disappearing tail. It will therefore be discussed in detail in the next section.

Fig. 12. A crossing paths argument for proving that the head of the smallest chain in Ht is new.

1112 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
4.6. Heads that fall between two match-points mp and mp+1 in column k

In this section we will show that some of the pairs whose heads fall between two consecutive match-points mp and
mp+1 (see Fig. 11) will change in Gk while others will remain unaffected. Therefore, let UPDATEDmp,k

denote the
series of pairs (hfirst, tfirst), (hfirst + 1, tfirst + 1), (hfirst + 2, tfirst + 2) . . . (hlast, tlast) whose heads fall between mp and
mp+1 and whose head-to-tail association changed in generation k, ordered in increasing head row index. In Lemma 12
we will show that the first head that gets modified in the transition from PAIRSk+1 to PAIRSk , i.e. the pair denoted
(hfirst, tfirst) ∈ UPDATEDmp,k

, is the pair from PAIRSk+1 whose head is lowest above mp . In Lemma 13 we will
identify those pairs which are not included in UPDATEDmp,k

.

Lemma 12. hfirst is no longer an active head in Gk .

Proof. Consider the tail t of any j -sized chain that started in hfirst. There are two cases to consider. If j is the size
of the smallest chain that ends in t then tfirst is t . In this case, any of the (j − 1)-sized chains which dominate the
de-activated (j − 1)-sized chain of Ht could be extended with mp to yield a j -sized chain that starts lower than hfirst
and ends to its left.

In the second case, there exists an active (j − 1)-sized chain which ends in t . The head of this chain is lower
than mp . Hence, the head of this chain can be extended by mp to form a j -sized chain that starts lower than hfirst and
ends in t . �

The next lemma will help further separate the pairs which participate in UPDATEDmp,k
from the pairs that remain

unmodified from PAIRSk+1 to PAIRSk .

Lemma 13. Consider two consecutive pairs (hi, ti), (hi+1, ti+1) ∈ PAIRSk+1. If mp < hi < hi+1 < mp+1 and ti <

ti+1, then the chain from hi+1 to ti+1 remains active in Gk .

Proof. Consider Fig. 13. Let chain c1 of size j denote the chain from hi to ti . Let chain c2 of size u denote the chain
from hi+1 to ti+1. Suppose that c2 becomes extinct in Gk . Then there is a (u − 1)-sized chain in Gk+1 which starts in
some head h below mp and ends in some tail t , such that t � ti+1.

• t � ti . We know that u > j , or c2 would be extinct in Gk+1. Therefore j � u − 1. The u − 1-chain from h to t

starts lower than c1 and ends in the same column or to its left, in contradiction to the livelihood of c1 in Gk+1.
• ti < t � ti+1. This case can be proven by crossing paths argument. �
In Lemma 13 we have identified head-to-tail pairs that remain unmodified in the transition from PAIRSk+1 to

PAIRSk . Assume that all other pairs do get modified (this will be proven in Lemma 14). This means that the pairs

Fig. 13. A crossing paths argument for proving Lemma 13.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1113
Fig. 14. A crossing paths argument for proving Lemma 14.

in UPDATEDmp,k form a series, starting with the first head above mp , such that for any two consecutive pairs
(hi, ti), (hi+1, ti+1) in this series, hi+1 is the lowest head above hi such that ti+1 < ti . (In other words, the pairs
in UPDATEDmp,k and their corresponding tails form a series of increasing head row indices and decreasing tail col-
umn indices.) We will next show that the modifications to the pairs in the UPDATEDmp,k series are such that for any
two consecutive pairs (hi, ti), (hi+1, ti+1) in this series, (ti) is re-matched with (hi+1). In other words, the first pair in
the UPDATEDmp,k series, (hfirst, tfirst), disappears from PAIRSk , and for any other pair (hi, ti) in the UPDATEDmp,k

series hi is re-matched, in PAIRSk , to the tail ti−1 of the preceding pair in the UPDATEDmp,k series. According to this
observation, the tail of the last pair in the UPDATEDmp,k remains headless. In the next subsection we will deal with
this last, odd tail.

Lemma 14. If (hi+1, ti+1) follows (hi, ti) in UPDATEDmp,k , then (hi+1, ti) ∈ PAIRSk .

Proof. We need to show that, for each pair (hi+1, ti+1) ∈ UPDATEDmp,k

1. The pair (hi+1, ti+1) becomes inactive in Gk .
2. hi+1 will be paired with ti in Gk .

The proof is as follows.
1. We claim that for any two consecutive pairs (hi, ti), (hi+1, ti+1) ∈ UPDATEDmp,k the deactivation of the chain

(hi, ti) implies the deactivation of the chain (hi+1, ti+1). Since the first chain (hfirst, tfirst) in UPDATEDmp,k is deacti-
vated in Gk by Lemma 12, the above claim would imply that (hfirst +1, tfirst +1) also gets deactivated in Gk , therefore
(hfirst + 2, tfirst + 2) also gets deactivated, and so on for all chains in UPDATEDmp,k .

Let j denote the size of the chain (hi, ti). By Lemmas 8 and 10 there is an active chain of size j + 1 from hi+1

to ti . Since ti+1 < ti we know by Lemma 8 that the size of the chain (hi+1, ti+1) is smaller than the size of the chain
(hi+1, ti). Therefore, the size of (hi+1, ti+1) is either equal to or smaller than j (it is actually smaller than j if Thi+1

includes additional chains that end in tails between ti+1 and ti).
This means that it suffices to show that the j -sized chain of Thi+1 dies in Gk , since then, by Lemma 8, so do chains

of sizes smaller than j that originate in hi+1 and in particular chain (hi+1, ti+1). For this proof we refer the reader
to Fig. 14. Let (hi+1, tj) denote the j -sized chain of Thi+1 . We will show that if (hi, ti) becomes de-activated in Gk ,
then (hi+1, tj) also becomes de-activated in Gk . Let (h, t) denote the chain that made the j -sized chain from hi to
tj extinct in Gk . If t � tj (see Fig. 14A), then of course the j -sized chain from hi+1 to ti+1 is not active. Otherwise,
tj < t � ti , and we get the crossing paths argument of Fig. 14B.

2. From Lemma 11 we know that any tail can only lose one chain per generation, and therefore, since chain
(hi+1, ti+1) whose size is � j has already been deactivated in Gk , Hi will keep an active (j + 1)-sized chain in Gk .

1114 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Fig. 15. The fate of a tlast tail that falls between two match-points from column k of DP.

We have shown in the previous item that hi+1 is the head of the (j + 1)-sized chain of Hi in Gk+1. Chain (hi+1, ti)

will remain active in Gk , unless a lower (j +1)-sized chain to ti is created in Gk . But such a lower (j +1)-sized chain
to ti can only be created in Gk via an extension of the j -sized chain to ti that was active in Gk+1 by a match-point
in column k. However, since hi and hi+1 are two consecutive heads in UPDATEDmp,k , the next match-point which
could possibly extend the j -sized chain from hi to ti is mp+1. Since mp+1 is higher than hi+1, we conclude that,
in Gk , hi+1 = hti . �
4.6.1. The fate of tail tlast in UPDATEDmp,k

In this section we will handle the tail tlast ∈ UPDATEDmp,k which remains headless at the end of the chain of
modifications to the pairs in UPDATEDmp,k . In the next two lemmas we will show that:

• Any tail that serves as tlast for some UPDATED series between two match-points remains active in Gk and is
paired with mp+1.

• The tail that serves as tlast for the last span of heads in PAIRSk+1, if there is indeed no match-point in column k

above the highest head in this span, is the tail that becomes extinct in Gk .

Lemma 15. The tlast of an UPDATEDmp,k series between two match-points stays alive and will be paired with mp+1.

Proof. Consider Fig. 15. Let j denote the size of the chain from hlast to tlast. Clearly, mp+1 extends the deactivated j -
sized chain from hlast to tlast to a (j + 1)-sized chain. We will prove that this chain is active. Suppose by contradiction
that the (j +1)-sized chain from mp+1 to tlast is not active in Gk . This means that there is, in Gk , another (j +1)-sized
chain, denoted c1, from some head h1 to some tail t1, such that either one of the following two cases holds.

Case 1. h1 < mp+1, and t1 � tlast. Note that h1 could not possibly be below or at hlast (see h1 in Fig. 15A), since the
j -sized suffix of chain c1 would then contradict the livelihood of the j -sized chain from hlast to tlast in Gk+1.

Therefore, consider Fig. 15B. Since there is no match point in column k of DP which falls between hlast and
mp+1, we conclude that chain c1 was alive in Gk+1. We are given that (hlast, tlast) ∈ UPDATEDmp,k , and therefore by
Observation 1 (h1, tlast) /∈ PAIRSk+1. Therefore, by Lemma 8, the shortest chain that originated in h1 in Gk+1 was of
size smaller than j +1 and thus ended in some tail that is strictly smaller than tlast, such that (h1, t1) ∈ UPDATEDmp,k .
However, h1 > hlast implies that (h1, t1) ∈ UPDATEDmp,k in contradiction to the definition of hlast.

Case 2. h1 = mp+1 and t1 < tlast. In this case let c2 denote the j -sized prefix of c1, and let h2 denote the row index
of the first match point of c2. Similarly to the previous case, if h2 � hlast then the j -sized prefix of c1, which was
an active chain in Gk+1, would contradict the livelihood in Gk+1 of the j -chain from hlast to tlast. If, on the other

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1115
hand, h2 > hlast, then similarly to the previous case we get (h2, t1) ∈ UPDATEDmp,k in contradiction to the definition
of hlast. �
Lemma 16. The tlast of the last UPDATEDmp,k series (mp is the highest match-point in column k) loses its single
active chain and becomes inactive. This is the tail that disappears from row k of TAILS.

Proof. Let j denote the size of the active chain from hlast to tlast in Gk+1. We claim that tlast is the tail that disappears
in Gk . By Lemma 14 we know that hlast is de-activated in Gk . We will show that hlast was the only active head in Hlast
in Gk+1, and therefore, in Gk , tlast becomes inactive upon losing its last active head.

Suppose by contradiction, that tlast had ended another active chain in Gk+1. Then, by Lemma 8, the size of this
additional chain would be j + 1, and the head h1 of this chain would therefore be higher than hlast. Since h1 is not the
new chain of tlast, then by Lemma 8 and the definition of ht , the chain from h1 to tlast was not the shortest chain in the
span of th1 in Gk+1, and there was at least one additional chain of size shorter than j that started in h1 and ended in
some tail t1 such that t1 < tlast. This would imply, by Observation 1, that (h1, t1) ∈ UPDATEDmp,k , in contradiction
to the definition of hlast. �
4.7. Description and analysis of the second algorithm

The second algorithm computes the rows of TAILS incrementally, in decreasing row order. Row k of TAILS will be
computed from row k +1 of TAILS by inserting the new tail k, (if such exists) and by removing the “disappearing” tail
(if such exists). The algorithm maintains the dynamic linked list PAIRS of active head-to-tail pairs. Each pair (hi, ti) is
annotated with two fields: the row index of hi and the column index of ti . Upon the advancement of the computation
from row k + 1 of the TAILS table to row k, the graph of match-points is extended by one column to the left to include
the match-points of column k of the LCS graph for A versus B . Given the list PAIRSk+1, which is sorted by increasing
head row index, the algorithm computes the new list PAIRSk , obtained by merging and applying the match-points of
column k to PAIRSk+1 as described in the previous section, and the “disappearing entry” for row k of TAILS is finally
realized.

The pseudo-code for the second algorithm is given in Fig. 16.

5. Time and space complexity

Since, by Lemma 1, r � nL, the total cost of merging r match-points with n lists of size L each is O(nL). In
iteration k, up to Lk+1 new head row index values may be updated, and up to one new head created. The linked list of
Lk+1 heads is then traversed once, and for each item on the list up to one, constant time, swap operation is executed.
Therefore, the total work for n iterations is O(nL). There is an additional O(n log |Σ |) preprocessing term for the
construction of MatchLists. Thus, the second algorithm runs in O(nL + n log |Σ |) time. (Note that, since we only
need to create MatchLists for characters appearing in B , an alphabet of size |Σ | > n can be reduced in O(n logn)

time to an n-sized alphabet. Therefore, throughout the paper we assume |Σ | � n.)
As for the space complexity, O(L) key values are maintained throughout the algorithm, however the MatchLists

data structures are of O(n) size, and therefore the space complexity is O(n).

6. Conclusions

In this paper we investigate the “evolution” of the LCS as longer suffixes are considered. In one line of investiga-
tion, the evolution of columnwise partition points is examined. This leads to a fairly simple O(nL) time and space
algorithm for strings A and B of length n over a constant alphabet, that computes a partition encoding of the dynamic
programming matrices for the alignment of each suffix of A with B . The second line of investigation looks closely at
the evolution of a well-characterized “basis set” of common subsequences, and shows that it can be tracked efficiently
using O(n) space. This leads to another algorithm that extends the results of the first algorithm to apply to general
alphabets, and yields an O(nL+n log |Σ |) time, O(n) space Consecutive Suffix Alignment algorithm, that computes
a representation of the last row of each of the Dynamic Programming matrices that are computed during the alignment
of each suffix of A with B .

1116 G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117
Algorithm ConsecutiveSuffixAlignment:

input: For each character A[k], k = 1 . . . n in A, a list of match-points
with row index values reflecting the characters in B that match A[k].

output: The changes to TAILS in each generation.

Let M[k] denote the list of match-points for A[k] versus B , sorted in increasing row index.
Let PAIRS denote the list of (head, tail) pair items, initialized as an empty list, where each
pair item consists of two integer keys: a row index, denoted head and a column index, denoted tail.
The (head, tail) pair items in PAIRS are sorted in increasing row index.

For each column k, from n down to 1, such that M[k] is non-empty Do
1 Write: “Tail k joins TAILS in generation k”;
2 Merge M[k] with PAIRS by row index key;

For each match-point mp ∈ M[k] in increasing row index,
If ∃hfirst such that (hfirst, tfirst) ∈ PAIRS

and mp falls directly below hfirst in the merge Then Do
3 Remove (hfirst, tfirst) from PAIRS;

If mp is the first match point in M[k] Then
4 Create the pair item (mp, k) and Insert it to PAIRS;
5 else Create the pair item (mp, ti−1) and Insert it to PAIRS;
6 ti−1 ← tfirst;

Let mp+1 denote the next match point above mp in m[k];
For each item (hi , ti) ∈ PAIRS in increasing order, Such That hfirst < hi < mp+1 Do

If ti < ti−1 Then
7 (hi , ti) ∈ PAIRS ← (hi , ti−1);
8 ti−1 ← ti ;
9 hi−1 ← hi ;

If there is no match-point in M[k] which falls above hi−1, Then
10 Write: “Tail ti−1 disappears from TAILS in generation k.”

Else
Let mp+1 denote the first match-point in m[k] such that mp+1 > hi−1;

11 Create the pair item (mp+1, ti−1) and Insert it to PAIRS;

Fig. 16. The pseudo-code for the second Consecutive Suffix Alignment algorithm.

We point out that both algorithms are extremely simple and practical, and use the most naive data structures.
(The proof of correctness for second solution is complex and involves 11 lemmas, however, as can be seen from the
pseudo-code, the algorithm itself is a simple iterative traversal of a linked list, combined with plain merge operations.)

It remains an interesting challenge to try and extend some of the new ideas and observations from this paper to
other LCS-related application domains.

Acknowledgments

We thank the anonymous referees for their very thorough and helpful comments.

References

[1] A. Apostolico, String editing and longest common subsequences, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages,
vol. 2, Springer-Verlag, Berlin, 1997, pp. 361–398.

[2] A. Apostolico, C. Guerra, The longest common subsequence problem revisited, Algorithmica 2 (1987) 315–336.
[3] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950) 161–165.
[4] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: Linear cost functions, J. ACM 39 (1992) 546–567.
[5] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.
[6] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Commun. ACM 20 (1977) 350–353.
[7] S. Jukna, Extremal Combinatorics with Applications in Computer Science, Texts Theoret. Comput. Sci. EATCS Ser., Springer-Verlag, ISBN 3-

540-66313-4, 2001.
[8] S. Kim, K. Park, A dynamic edit distance table, in: Proc. 11th Annual Symposium on Combinatorial Pattern Matching, 2000, pp. 60–68.
[9] G.M. Landau, E.W. Myers, J.P. Schmidt, Incremental string comparison, SIAM J. Comput. 27 (2) (1998) 557–582.

G.M. Landau et al. / Journal of Computer and System Sciences 73 (2007) 1095–1117 1117
[10] G.M. Landau, M. Ziv-Ukelson, On the shared substring alignment problem, Proc. Sympos. Discrete Algorithms (2000) 804–814.
[11] G.M. Landau, M. Ziv-Ukelson, On the common substring alignment problem, J. Algorithms 41 (2) (2001) 338–359.
[12] G.M. Landau, B. Schieber, M. Ziv-Ukelson, Sparse LCS common substring alignment, in: Proc. 14th Annual Symposium on Combinatorial

Pattern Matching, 2003, pp. 225–236.
[13] J.P. Schmidt, All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings, SIAM J.

Comput. 27 (4) (1998) 972–992.
[14] J.S. Sim, C.S. Iliopoulos, K. Park, Approximate periods of strings, in: Proc. 10th Annual Symposium on Combinatorial Pattern Matching,

1999, pp. 132–137.

