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ABSTRACT Disulfide bridges stabilize protein
structures covalently and play an important role in
protein folding. Predicting disulfide connectivity
precisely helps towards the solution of protein struc-
ture prediction. Previous methods for disulfide con-
nectivity prediction either infer the bonding poten-
tial of cysteine pairs or rank alternative disulfide
bonding patterns. As a result, these methods encode
data according to cysteine pairs (pair-wise) or disul-
fide bonding patterns (pattern-wise). However, us-
ing either encoding scheme alone cannot fully uti-
lize the local and global information of proteins, so
the accuracies of previous methods are limited. In
this work, we propose a novel two-level framework
to predict disulfide connectivity. With this frame-
work, both the pair-wise and pattern-wise encoding
schemes are considered. Our models were validated
on the datasets derived from SWISS-PROT 39 and
43, and the results demonstrate that our models can
combine both local and global information. Com-
pared to previous methods, significant improve-
ments were obtained by our models. Our work may
also provide insights to further improvements of
disulfide connectivity prediction and increase its
applicability in protein structure analysis and pre-
diction. Proteins 2006;64:246–252.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

When a protein folds into its native structure, two
cysteine residues within a reasonable distance can be
oxidized to form a disulfide bond. This kind of covalent
bonding is commonly found in extracellular proteins, and
is able to stabilize their conformations as it contributes to
the stability of the three dimensional structures from the
thermodynamics aspect.1 It has been further described as
a reduction of the conformational entropy of an unfolded
polypeptide chain, leading to the transition from the
unfolded state to the native state.2 Furthermore, disulfide
bonds impose length and angle constraints on the back-
bone of a protein. Therefore, the information of disulfide
connectivity can be employed to reduce the search in
conformational space dramatically and raise the accuracy
for the prediction of the structure of a folded protein
greatly.3

Usually there are two steps in predicting the disulfide
connectivity patterns. First, the bonding state of each
cysteine residue in a protein is inferred. Various algo-
rithms with statistical methods4 or machine-learning tech-
niques5 have been developed for this purpose. In 1999,
Fariselli and coworkers6 used neural network (NN) to
obtain 80% accuracy by introducing evolutionary informa-
tion (i.e., profiles extracted from multiple sequence align-
ments). With the promising results from evolutionary
information, more methods based on NN7,8 were further
employed to improve the prediction accuracy. In 2004, a
support vector machine9 (SVM) was used to achieve an
extraordinary accuracy of 90% for bonding states predic-
tion.10

Once the bonding states of cysteine residues are known,
the second step is to predict the bonding patterns of
disulfide bridges. This article focuses on this stage with
the prior knowledge of the oxidization states of cysteine
residues. Different methods11–18 have been developed to
solve this problem. These methods can be classified into
two categories: pair-wise or pattern-wise. The major differ-
ence between them is whether the methodology is devel-
oped to deal with the relation between cysteine pairs or the
disulfide connectivity patterns alternatively. Methods clas-
sified as “pair-wise” focus on the bonding potential be-
tween two cysteines, whereas the “pattern-wise” ones rank
connectivity patterns.

Focusing on the local environment of cysteine residues,
the pair-wise methods attempt to predict the bonding
between two cysteines. Stochastic global optimization11

and neural networks12 were adopted to assign contact
potentials between cysteine pairs. Recently, similar formu-
lation was employed by Baldi et al.,15 Ferrè et al.,16 and
Tsai et al.,18 with the bonding potentials output by variant
NNs or SVMs. However, as the pair-wise models mainly
consider the local information, the global knowledge of a
protein is not easy to be utilized. As a result, the informa-
tion provided for these methods is usually limited to the
scope of local environments of cysteines, lacking the over-
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view of the whole protein. Because a disulfide bridge is a
long-range interaction between two sequentially distant
cysteines, the performance of the pair-wise models built
with only local information is restricted.

On the other hand, the pattern-wise approaches take a
whole protein as a unit directly. The global information of
a protein, such as the sequence length, amino acid con-
tents, or the positions of all cysteines can be easily
included into the data encoding. In 2004, recursive neural
networks (RNN) were developed by Vullo and Frasconi13

to score labeled undirected graphs that represent connec-
tivity patterns. Other pattern-wise models, such as CSP
proposed by Zhao et al.14 and SVM by Chen and Hwang,17

were also employed to predict disulfide connectivity. How-
ever, for these pattern-wise methods, the local information
of cysteine residues is difficult to be fully examined.
Moreover, the pattern-wise methods may suffer from the
imbalance of data during the training phase (see the
Material and Methods section). All these issues limited the
accuracy of pattern-wise methods to around 50%.

In this article, a novel approach with two-level hierarchi-
cal framework was proposed to combine both the pair-wise
and pattern-wise methods. In the first level, our models
focus on the local relations of cysteine residues, whereas
the second level incorporates the global information of
proteins. Our models were validated with three datasets
derived from SWISS-PROT19 version nos. 39 and 43. For
the dataset derived from SWISS-PROT 39, our method
achieved a remarkable accuracy of 70%, which outper-
forms previous approaches. These results show our models
take advantages of both pair-wise and pattern-wise meth-
ods and utilize the local and global information to achieve
the optimal performance.

MATERIALS AND METHODS
Dataset

Three datasets, extracted from SWISS-PROT19 releases
39 and 43, were used to evaluate the predicting power of
our method. Because less than 20% of the filtered SWISS-
PROT sequences in our datasets contain more than five
disulfide bridges,13 the experiments were conducted against
the sequences with two to five disulfide bonds. The number
of sequences in each dataset is summarized in Table I.

To compare our method to other approaches,13,15 the
same dataset extracted from SWISS-PROT database re-
lease no. 39 was employed (denoted as SP39). The same
filtering procedure11 was applied to ensure only high-
quality and experimentally verified intrachain disulfide
bridge annotations were included. Only the sequences

containing information in the Protein Data Bank (PDB)
were included in the filtered dataset. In addition, se-
quences with disulfide annotation described as “probable,”
“potential,” or “by similarity” were excluded. For crossvali-
dation, this dataset was further divided into four subsets
so that each two of them shared a sequence homology of
�30%. Each subset contained an approximately equal
number of sequences.

To further validate the predicting power of our method,
the holdout-prediction assessment employed by Zhao et
al.14 was also adopted. Two datasets, SP43 and SP39-
template, were built for this purpose. With the aforemen-
tioned filter, SP43 was extracted from SWISSPROT re-
lease no. 43, where sequences in release 39 were excluded.
This dataset was further filtered so that the sequences
share less than 25% identity with each other. SP39-
template was built from SWISSPROT release 39, with the
same filter except for the PDB match. Furthermore, SP39-
template was filtered to contain only sequences that share
similarity �30% with SP43. To assess the test accuracy,
our model was trained with SP39-template to predict
SP43, which contains the newly added proteins since
release no. 39.

Method

In this work, a two-level framework is proposed to
predict disulfide connectivity. Because the two aforemen-
tioned encoding schemes have different strength and
weakness, the two-level framework we proposed attempts
to integrate them to achieve better performance. The idea
of the two-level framework is to extend the modeling from
a local view (pair-wise) to a global perspective (pattern-
wise). In the first level, our models focus on the relation
between two cysteine residues. The resulting models infer
the bonding probabilities for cysteine pairs (Fig. 1). On the
other hand, the level-2 models take the pattern-wise
encoding to solve the problem. In this level, the models
take the results from the level-1 along with other global
information of proteins to predict disulfide connectivity
(Fig. 2). In addition, the framework proposed here is
flexible; different machine-learning techniques, such as
NN or SVM, can also be applied in both levels. In this
article, we used SVM9 and its probability output20 in both
levels.

Level-1: Pair-wise

In the first level, SVM models infer the bonding poten-
tial between two cysteines. Figure 1 illustrates the pair-
wise modeling. Given a protein with oxidized cysteines,

TABLE I. The Number of Sequences in the Datasets,
Divided According to the Number of Disulfide Bridges (B)

Datasets B � 2 B � 3 B � 4 B � 5 B � 2. . .5

SP39a 156 146 99 45 446
SP39-templateb 243 198 97 45 583
SP43b 119 116 43 35 313
aDataset from the work of Vullo and Frasconi.13

bDataset from Zhao et al.14
Fig. 1. Level-1: pair-wise model infers the bonding potential between

cysteine residues.
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the data were first encoded with respect to each possible
cysteine pair. For the protein with B disulfide bonds, there
are B(2B-1) combinations of cysteines pairs to be encoded.
(Note that although a cysteine pair can be symmetrically
encoded as (i, j) or (j, i), where i � j, we simply used (i, j) for
our models.) With these encoded data, SVM models were
trained to infer the bonding probabilities for cysteine
pairs.

To encode the data with respect to cysteine pairs, two
descriptors were considered: (1) local sequence profiles
(evolutionary information) around target cysteines from
multiple sequence alignments, and (2) the sequential
distance between oxidized cysteines (denoted as DOC).

Profiles

The sequence profiles were generated by performing
multiple sequence alignments with PSI-BLAST.21 For
each cysteine pair Cys (i, j), profiles were extracted using a
window centered at cysteines i and j. Each residue in the
sequence window was encoded as a vector of 20 elements,
which were extracted from the position specific scoring
matrix generated by PSI-BLAST. The window size used in
this work was set to 13. Therefore, for a cysteine pair,
there are 520 features containing the evolutionary informa-
tion.

DOC

Because the sequence separation between bonded cys-
teines correlates with specific connectivity patterns,2 an-
other feature used to encode data is the linear distance
between two cysteines. In this article, DOC is defined as
��i � j��, where i and j are the sequence indices of two
cysteines. Moreover, as observed in our analysis, we found
there are fewer instances of connectivity if DOC is larger
than 100. For example, there are only 6.6% of bonded
cysteine pairs with the sequential distance longer than
100 in SP39. Therefore, to encode the sequential distance

into our data, the normalization min(DOC/100, 1) was
applied.

Many previous works have employed pair-wise encoding
to solve the disulfide connectivity.13,14,17,18 With the bond-
ing probabilities generated from the models, previous
methods transform the disulfide connectivity problem to
an undirected complete graph, where oxidized cysteines
are considered as vertices and the probabilities of connec-
tivity between cysteine pairs are assigned as the weights
of the edges between corresponding vertices. The disulfide
connectivity pattern can be solved by finding the maxi-
mum weight matching of this graph. However, this tech-
nique was not applied in this work, because our concern in
level-1 is the bonding potential between cysteine residues.
Instead of finding the disulfide bonding patterns in level-1,
we generated the bonding probabilities between cysteines
so that they can be further encoded in the second level of
our framework.

Level-2: Pattern-wise

In the second level, we considered the pattern-wise
encoding to tackle the problem from a global perspective.
An illustration of our two-level framework is in Figure 2.
For each protein, all possible disulfide bonding patterns
were generated for encoding. Three descriptors were con-
sidered to encode disulfide bonding patterns: (1) the confi-
dence scores from the level-1 SVM, (2) the results of CSP
search,14 and (3) the global information of the protein.
These descriptors are elaborated in the following.

Confidence scores from pair-wise SVM (denoted
as S)

In level-1, each cysteine pair was assigned with a
probability indicating the potential of bonding. The value
of this probability can further be interpreted as how
confident the level-1 model is toward the prediction. Let
Tptn be the set of cysteine pairs that comprise the disulfide
bonding pattern ptn. For ptn, we can calculate a confidence
score (Sptn) from the bonding probabilities of cysteine pairs
by

Sptn � exp( �
t�Tptn

p�t�), (1)

where t is a cysteine pair in Tptn; p(.) is the bonding
probability generated in the level-1 SVM and exp(.) is the
exponential function. In level-2, we use the confidence
scores as measures for the probabilities of possible bonding
patterns. In fact, if the problem is transformed into a
graph in level-1, the predicted connectivity will be the one
with the largest Sptn.

CSP search (denoted as C)

CSP search14 is a simple method based on the assump-
tion that two proteins with similar cysteine separation
share the same disulfide connectivity.17,22 Given a protein
with the positions of oxidized cysteines, this method
searches the database for the protein that has the most
resembled cysteine separation and returns its disulfide
connectivity. The similarity of cysteine separation is de-

Fig. 2. Two-level framework: from pair-wise to pattern-wise encoding,
models integrate various data to generate prediction. In CSP search, “hit”
represents the returned bonding pattern; in global information, “cys-
ordering” denotes cysteine-ordering, and “plen” stands for protein length
(after scaling).
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cided by the one-norm distance. With CSP search, a
predicted bonding pattern and the similarity of cysteine
separation against the returned pattern can be acquired
for each protein. Thus, in this level, we further used this
information to encode data. We added a binary feature to
indicate whether the encoded pattern is the predicted one
from CSP. Following the binary, another feature was used
to encode the similarity by

�1 � log10�1 �
d
10��

�1

, (2)

where d is the similarity computed during CSP search.
These two features contain nonzero values only when the
encoded bonding pattern is the predicted one from CSP
search. Otherwise, these two features are set to 0.

Global information (denoted as G)

For the global information of a protein, two simple
descriptors were used:

1. Cysteine ordering: to distinguish each possible disulfide
pattern of a protein, the order of cysteines were encoded
to represent the bonding. For example, if a protein has
oxidized cysteines in positions 2, 5, 10, and 20, and is
assumed to have 2–10 and 5–20 as disulfide bonds, we
used the order of cysteines (1, 3, 2, 4) to represent the
bonding pattern. Moreover, the values were normalized
by the number of oxidized cysteines. Therefore, the
pattern above was encoded as (0.25, 0.75, 0.5, 1). For a
protein of unknown disulfide connectivity, all possible
orderings were generated in the data pool for further
prediction.

2. Protein length: because the length of a protein may
affect the conformation,2 it was also considered for data
encoding. For each disulfide bonding pattern, the pro-
tein length was added as a feature. In addition, this
feature was normalized by the maximum protein length
in the dataset.

Using these descriptors, possible bonding patterns were
encoded for our level-2 SVM models. Because the level-2
models employ pattern-wise encoding, the number of
features vary according to the numbers of bonds. There-
fore, SVM models were separately trained for proteins
with different numbers of bonds in our experiments.

Reduction for Imbalance

A serious issue for the pattern-wise encoding is the
imbalance between the number of positive and negative
data. The imbalance issue is especially severe when the
number of bonds is large. Taking a protein with five
disulfide bonds as an example, there are 945 possible
disulfide bonding patterns, but only one of them is the
answer. This results in a positive/negative ratio of 1:944.
Such an imbalance among the training data can attribute
greatly to the difficulty of prediction.

To handle this issue, we took advantage of our level-1
SVM. As we used the level-1 SVM to generate confidence
scores (Sptn) for all the possible patterns, we can also use

the confidence scores to ease the imbalance for the level-2
models. That is, using the confidence scores, we selected
the top k possible patterns as candidates for the level-2
models. In our experiments, k is set to 15. For proteins
with two bonds, there are only three possible disulfide
bonding patterns included. Thus, for the proteins with
more than two bonds, the imbalance ratio (positive/
negative) was reduced to 1:14. One thing has to be clarified
is that reducing the imbalance by candidate selection can
also pose a risk of sacrificing the real answers. Because we
only selected k patterns for each protein, the actual
bonding pattern might not be included in the candidate
set. This will be discussed later in more details.

Evaluation

Evaluation of our models focuses on the metric Qp

computed by

Qp �
Nc

Nt
, (3)

where Nc is the number of proteins whose bonding pat-
terns are correctly predicted, and Nt is the total number of
proteins.

RESULTS AND DISCUSSION

In our experiments, LIBSVM23 was used for SVM
implementation. Different models were built for the data-
sets. Because parameters are important for SVM, their
values were selected by cross-validation procedures. The
results are summarized in Table II and Table III.

Validation with SP39 and SP43

The dataset SP39 was used for fourfold cross-validation.
In Table II, the accuracies of our SVM models along with
the results from previous works are listed. As observed in
the table, our models outperformed other approaches. In
previous methods, either pair-wise11,12,15,16,18 or pattern-
wise13,14,17 models, the overall accuracy is limited. Our
two-level SVM, combining both pair-wise and pattern-wise

TABLE II. Results in Terms of Qp (%) of Cross-validation on
the Data Extracted from SWISS-PROT no. 39

Methods B � 2 B � 3 B � 4 B � 5 B � 2. . .5

MC graph-matchinga 56 21 17 2 29
NN graph-matchingb 68 22 20 2 34
BiRnn-2 profilec 73 41 24 13 44
2D-Rnn profiled 74 51 27 11 49
dNN2c 62 40 55 26 49
CSP 72 54 33 18 52
Pattern-wise SVMf 74 61 30 12 55
Pair-wise SVMg 79 53 55 58 63
2-level SVM 85 67 57 58 70
aReported by Fariselli and Casadio.11

bReported by Fariselli et al.12

cReported by Vullo and Frasconi.13

dReported by Baldi et al.15

eReported by Ferrè and Clote.16

fReported by Chen and Hwang.17

gReported by Tsai et al.18
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encoding, can reach an overall accuracy of 70%. Especially
for B � 2, the two-level SVM can obtain an outstanding
accuracy of 85%. Moreover, compared to previous methods,
our SVM models also have remarkable improvement to
predict the proteins with more than three disulfide bonds:
the accuracy for B � 4 and 5 is above 57%.

Using the dataset SP39-template as the training data-
set, we further tested our models with the prediction for
SP43. The accuracies of our models and CSP search are
listed in Table III. For this dataset, our SVM models show
its predicting power for the newly added proteins with an
accuracy of 63%. Compared to the simple CSP search,
which can be categorized as a pattern-wise method, the
accuracy was improved by 10% on average.

The result of SP43 is only for comparison with the CSP
method. For fair comparison with other previous methods,
the SP39 dataset should be considered. In the SP39-
template, the sequences were not filtered by the PDB
database, and therefore might contain incorrect disulfide
annotation. Such sequences, in turn, contributed noise to
the model and affected the testing accuracy. This kind of
noisy information in the SP39-template might be the cause
of the 7% difference in accuracy for SP39 and SP43.

Effects of Descriptors

To evaluate the influence of the three descriptors used,
we further built different models for testing. The results
are shown in Figure 3. In the figure, effects of three
descriptors are shown, with “S” standing for the confidence
scores from pair-wise SVMs, “C” for the CSP search and
“G” for the global information. The combination “S � C �
G” denotes the models with all three descriptors, whereas
“S � C” denotes the models using the confidence scores and
the CSP result. In addition, predictions made from pair-
wise models and CSP search were also shown in the figure,
denoted as “S” and “C.”

Pair-wise relation from Level-1 (S)

The descriptor S provides much information for the
two-level SVM models. As shown in the figure, the pair-
wise models can achieve a fair result. When combined with
C and G, the prediction accuracies were further improved.
Additionally, we tried to exclude S from the data encoding
(using only C and G) and found the accuracy was seriously
affected. The reason is that when S was not used, our SVM
became simply pattern-wise models. Without the confi-
dence scores representing the local relations between
cysteine residues, the models can only rely on the CSP
search and the global information. As a result, the accu-
racy is merely better than that of the CSP search. The

overall accuracy is 55 and 54% for SP39 and SP43, similar
to the result of previous pattern-wise models.17 From the
results, we observed that S is crucial to our two-level SVM,
because it can provide the pair-wise information from a
local aspect, to compensate the global view of the pattern-
wise encoding.

CSP implication (C)

Figure 3 shows that inclusion of C enhanced the accura-
cies for both datasets. This indicates the information
provided by C also has a major positive effect on the
prediction. Moreover, C can provide complementary infor-
mation to the confidence scores. For some sequences, their
actual disulfide bonding patterns may not have high
confidence scores from the pair-wise models. The models
built with S and G may fail to predict the disulfide
connectivity for these sequences. However, with the infor-
mation provided by C, these bonding patterns may still be
correctly predicted. One example is ITR2_ECBEL (PDB
code: 2LET) in SP39. As shown in Figure 4, the actual
disulfide connectivity is ranked as 14th among all the
possible patterns according to the confidence scores from
the level-1. If only S and G are used, the disulfide
connectivity of this sequence cannot be correctly predicted.
Nevertheless, because of the correct inference ([1–4, 2–5,
3–6]) by CSP search, our two-level SVM can predict the
bonding pattern correctly.

Global information (G)

As shown in Figure 3, adding the descriptor G also
improved the prediction, compared to using only S and C
(“S � C”). This suggests the descriptor G can supply
further information to optimize our two-level SVM. In our
experiments, we also found a few sequences whose predic-
tions can be attributed to the global information. An
example is shown in Figure 5 (LDTI_HIRME in SP39,
PDB code: 1LDT). For this sequence, using the model built
only with S and C cannot generate the correct disulfide

TABLE III. Results in Terms of Qp (%) for the Holdout Test
on the Dataset SP43

Methods B � 2 B � 3 B � 4 B � 5 B � 2. . .5

CSP 71 49 30 28 53
Pair-wise SVMa 77 52 53 29 59
2-level SVM 77 59 56 31 63
aReported by Tsai et al.18

Fig. 3. Accuracies of models built with different descriptors (S:
confidence scores from pair-wise SVM, C: CSP search, and G: global
information): “S � C � G” represents models built with three descriptors;
“S � C” is for models built with S and C information; “S” is for the
predictions from the level-1 models, using maximum confidence scores to
find bonding patterns; and “C” is for the results of CSP search.
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connectivity. Note that the result from the CSP search is
also incorrect ([1–6, 2–5, 3–4]) for this sequence. However,
after including the global information, the two-level SVM
finally predicts the connectivity ([1–5, 2–4, 3–6]) correctly.

Comparing these three descriptors used, we find that
the most influential ones are S and C, because their
information weight more for the prediction. As for G,
although its effect is less obvious than S and C, it can
provide auxiliary information to further optimize the
models. Moreover, from the effects of these three descrip-
tors, we show our two-level framework successfully com-
bines both pair-wise and pattern-wise methods. The local
relations (suggested by S) and the global information
(provided by C and G) complement each other and produce
the optimal results. Therefore, we combine these three
kinds of information to build the two-level models for
disulfide connectivity prediction.

Effect of Candidate Selection

Candidate selection also plays an important role in our
experiments. In our experiments, we used the confidence
score S to filter some data entries. This filtering process
might exclude some actual disulfide bonding patterns.
Taking SP39 for an example, there were 28 sequences with
B � 4, whose actual bonding patterns were excluded from
the candidate set when testing. However, such exclusion of
the actual bonding patterns did not affect the prediction
much. Because the confidence scores of these bonding
patterns are too small, they are not likely to be predicted
as the connectivity anyway. In our experiments, we also
built models without candidate selection. The resulting
accuracies for SP39 and SP43 are 69 and 62%, respec-
tively. Compared to the models with candidate selection,
the accuracy dropped slightly. This is because without
candidate selection, the imbalance of data may affect
model training. Also, when all possible patterns are consid-
ered, the models take much more time to train. As a result,
the candidate selection not only eases the severe imbal-
ance of data but also speeds up the model training.

CONCLUSION

Previous solutions to disulfide connectivity have been
restricted to either pair-wise or pattern-wise methods. Due
to the data encoding scheme, the information used for
modeling is also confined to the local view or global aspect.
In this article, we devised a novel two-level framework to
combine both encoding schemes. Our results show that our
final models have outstanding performance for disulfide
connectivity prediction.

For the pair-wise methods,11,12,15,16,18 the idea is to
concentrate on the relation between two cysteine residues.
Although the local information can be fully examined, the
encoding is difficult to include the global information of a
protein. On the other hand, the pattern-wise meth-
ods13,14,17 have the global view of proteins. The global
information, such as the positions of cysteines,13 the
protein length,13 the composition of amino acids,17 or the
cysteine separation profiles14,17 can be easily encoded for
the models. Yet, the pattern-wise methods cannot fully
explore the local environment of cysteine residues. In
addition, the pattern-wise methods may suffer from the
imbalance of training data. These conditions also restrict
the performance of the pattern-wise models.

Our two-level framework takes the advantages of both
encoding schemes and attempts to avoid the limitation of
both methods. The local information of cysteine pairs is
fully explored in the level-1 models, whereas the level-2
further incorporates the information from a global aspect.
With the two-level framework, both the local and global
information can be included to provide more comprehen-
sive data to our models. As shown in our experiments, such
combination indeed contributes to better performance
than either pair-wise or pattern-wise models.

Furthermore, the proposed framework is flexible and
extensible. The models employed in this study are SVMs,
but other machine-learning algorithms, such as neural
networks, can also be applied. The first level can be

Fig. 4. ITR2_ECBEL: the structure is shown on the left; possible
disulfide bonding patterns are on the right where “S rank” is the ranking of
the confidence scores. “CSP” and “LV2” indicate the CSP and level-2
SVM prediction. The actual bonding pattern is boxed.

Fig. 5. LDTI_HIRME: the structure is shown on the left; possible
disulfide bonding patterns are on the right where “S rank” is the ranking of
the confidence scores. “CSP” and “LV2” indicate the CSP and level-2
SVM prediction. The actual bonding pattern is boxed.
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extended with multiple models to provide more accurate
inference of the pair-wise relation between cysteines. In
the level-2, more features can also be encoded to enrich the
information provided to models. This encourages future
research to extend the framework for disulfide connectiv-
ity prediction. The results from our method may also be
useful for advanced studies in protein structure prediction,
protein structure modeling, and protein engineering.
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