
1

Efficient Algorithms for the Longest Common Subsequence Problem with Sequential
Substring Constraints

Chiou-Ting Tseng, Chang-Biau Yang* and Hsing-Yen Ann
Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung 80424, Taiwan
cbyang@cse.nsysu.edu.tw

Abstract—In this paper, we generalize the inclusion constrained
longest common subsequence (CLCS) problem to the hybrid
CLCS problem which is the combination of the sequence
inclusion CLCS and the string inclusion CLCS, called the
sequential substring constrained longest common subsequence
(SSCLCS) problem. In the SSCLCS problem, we are given two
strings A and B of lengths m and n, respectively, formed by
alphabet Σ and a constraint sequence C formed by ordered
strings (C1, C2, C3, · · · , Cl) with total length r. We are to find
the longest common subsequence D of A and B containing
C1, C2, C3, · · · , Cl as substrings and the order of C’s are
retained. This problem have two variants that the strings in
C may or may not overlap. We proposed algorithms with
O(mnl + (m + n)(|Σ|+ r)) and O(mnr + (m + n)|Σ|) time for
the two variants of the problem. For the special case with one or
two constraints, our algorithms runs in O(mn+(m+n)(|Σ|+r))
and O(mnr + (m + n)|Σ|) time, which are an order faster than
the algorithm proposed by Chen and Chao [1].

Keywords-constrained longest common subsequence; hybrid;
sequential substring;

I. INTRODUCTION

Given two strings A = a1a2a3 · · · am and B =
b1b2b3 · · · bn, the longest common subsequence (LCS) problem
is to find the longest common part of A and B by deleting
zero or more characters from A and B. It was first proposed
in 1974 by Wagner and Fischer [2]. Much ink has been spent
on this topic in the past decades [3–5], and lots of variants to
the LCS problem have also been proposed, such as the mosaic
LCS problem [6], the merged LCS problem [7, 8], the cyclic
string correction problem [9] and the block edit problem [10].

Given two strings A and B and a constraint sequence C
with length m, n and r respectively, the constrained longest
common subsequence (CLCS) problem is to find the LCS of
A and B containing C as a subsequence. In 2003, Tsai [11]
first proposed an algorithm with complexity O(m2n2r). In the
same year, Peng [12] also proposed an improved algorithm
with O(mnr) time and space complexity. Later on, many
other papers [13–15] also proposed improved algorithms for
the CLCS problem. Recently, Gotthilf et al. [16], Chen and
Chao [1] proposed the related variant which excludes the given
constraint as a subsequence. Chen and Chao [1] also provided
solutions for another two variants which are string inclusion
and string exclusion CLCS problems, although the algorithm
for string exclusion CLCS is wrong as stated by Ann et al.
[17]. In 2010, Chen [18] proposed an algorithm for the hybrid
CLCS problem which is the combination of sequence inclusion
CLCS and sequence exclusion CLCS. In this problem, two
strings A, B and two constraint sequences P , Q are given,

we are asked to find the CLCS of A and B containing P as
a subsequence and excluding Q as a subsequence. Adi et al.
[19] and Boni et al. [20] paid attention to the CLCS problem
which the occurrence of each symbol is limited.

In this paper, we generalize the inclusion CLCS problem to
the hybrid CLCS problem which involves the sequence inclu-
sion CLCS and the string inclusion CLCS, called sequential
substring constrained longest common subsequence (SSCLCS)
problem. The problem is defined as follows.

Definition 1. (SSCLCS) Given two strings A and B of lengths
m and n, respectively, and a constraint sequence C formed by
ordered strings (C1, C2, C3, · · · , Cl) of total length r, where
Ci is called the ith partition of the constraint and each Ci =
ci1c

i
2 · · · cili , the SSCLCS problem is to find the LCS D of A

and B such that D contains substrings C1, C2, C3, · · · , Cl
and the partition order is retained.

The sequence inclusion CLCS is a special case of SSCLCS
when each partition is a single character and the string
inclusion CLCS is also a special case of SSCLCS when there is
only one partition. There are two different definitions that the
partition order is retained. First, the partitions cannot overlap
in the resulting SSCLCS. Second, the partitions may overlap
in the resulting SSCLCS but the positions are monotonically
increasing, that is, the starting and ending positions of the
partitions in the resulting SSCLCS are both increasing. For
example, consider A = atcatatgag, B = atcatctagg and
C = (acat, tag). acatagg is an SSCLCS of the second
variant, but it is not the first one. Here, we only consider the
monotonically increasing case. If two neighboring partitions
have the containing relation in the SSCLCS, it means one of
the partition is a substring of the other. In this case, there is
no use of the shorter string, and we can spend O(r2) time
to preprocess the input constraints to filter the contained ones
out.

The rest of this paper is organized as follows. In Section II,
we give an improved algorithm for the string inclusion CLCS
problem with one partition. The required time is improved
from O(mnr) [1] to O(mn+ (m+ n)(|Σ|+ r)). In Section
III, we propose an algorithm for the SSCLCS problem with
multiple partitions which do not overlap in the resulting
answer. In Section IV, we present an algorithm for the multi-
partition case that the partitions may overlap in the resulting
SSCLCS. Our algorithms require O(mnl+ (m+n)(|Σ|+ r))
and O(mnr + (m + n)|Σ|) time for the two variants of the
problem, respectively. Finally, in Section V, we will give some
conclusions and future work.

2

II. AN IMPROVED ALGORITHM FOR THE STRING
INCLUSION CLCS PROBLEM

In this section, exactly one partition is considered, so we
omit the superscript when we refer to the constraint C. That is,
C = c1c2c3 · · · cr. Chen and Chao [1] proposed an algorithm
with O(mnr) time for solving the string inclusion CLCS
problem by calculating a 3D lattice directly with the dynamic
programming technique applying to A, B and C. As noted
above, the string inclusion CLCS problem is a special case of
the SSCLCS problem with only one partition. Because many
cells in their lattice are not used, we can compact the 3D lattice
into a 2D lattice. Since the characters of the constraint C need
to be consecutive in SSCLCS, after the first character of C is
matched, the next character in SSCLCS must be the second
character of C. With this fact, we can find the possible match
of the constraint by continuously finding the next occurrence
of the next character in the constraint in A and B. For example,
consider A = atcatatgag, B = atcatctagg and C = tag.
We have a2 = b5 = c1, so we can find the best SSCLCS
containing C starting at (2, 5) by jumping through (4,8), (8,
9). On the other side, we can wait until the last character of
C is matched, and then we find the nearest occurrence of the
previous character reversely. Since we perform the dynamic
programming approach, we should not refer to cells that have
not yet calculated. Thus, we will perform the matching process
in the backward (reverse) way.

We use LCS(S1, S2) to denote the LCS between S1 and S2

and |LCS(S1, S2)| to denote its length. Ai..j is also used to
represent the substring of a string A starting at position i and
ending at position j. It is easy to obtain the following fact.

Proposition 1. Suppose that ai = bj = cr. If Aî..i and Bĵ..j
contains C as their subsequences, then LCS(A1..̂i−1, B1..ĵ−1)
⊕C⊕ LCS(Ai+1..m, Bj+1..n) forms a feasible solution of the
SSCLCS problem, where ⊕ denotes the string concatenation
operation.

Furthermore, if there is another i′, î ≤ i′, and Ai′..i
also contains C as its subsequence, then the solution derived
from Ai′..i is no worse than the above solution obtained in
Proposition 1. Thus, we can conclude the following theorem.

Theorem 1. Let T = {(i′, j′, i, j)|ai = bj = cr, i′ and j′ are
the largest indices such that Ai′..i and Bj′..j contains C as
their subsequences.} The SSCLCS solution can be obtained
by finding the maximum of LCS(A1..i′−1, B1..j′−1) ⊕C⊕
LCS(Ai+1..m, Bj+1..n), where (i′, j′, i, j) ∈ T .

To find the previous occurrence of a certain character,
we reverse the NextMatch table proposed by Landau et al.
[21] into the PrevMatch table which records the previous
occurrence position of each symbol in every position. An
example of the PrevMatch table for A = atcatatgag is shown
in Table I, where -1 means that the character never appears.
The PrevMatch table can be constructed in O(|S||Σ|) time
and space, where S denotes the input string and Σ denotes
the alphabet set of S.

We call the index i′(j′) in Theorem 1 as the corresponding
starting position to ending position i(j). For each ending

TABLE I
THE PrevMatch TABLE FOR A = atcatatgag.

1 2 3 4 5 6 7 8 9 10
a t c a t a t g a g

a -1 1 1 1 4 4 6 6 6 9
c -1 -1 -1 3 3 3 3 3 3 3
g -1 -1 -1 -1 -1 -1 -1 -1 8 8
t -1 -1 2 2 2 5 5 7 7 7

position, the corresponding starting position can be calculated
by using the PrevMatch table. We name the starting position
table for A and B as ζA and ζB , respectively. For the positions
where the starting position does not exist, we fill −1 in the ζ
table. For example, suppose A = atcatatgag and C = acat.
Then, we have ζA = [−1,−1,−1,−1, 1,−1, 1,−1,−1,−1].
For the same A, suppose C = tag, we have ζA =
[−1,−1,−1,−1,−1,−1,−1, 5,−1, 7]. The time required for
constructing ζA and ζB is O((m+ n)r).

We find the string inclusion CLCS with a two-layer dynamic
programming lattice. Let M [i, j, k] denote the length of SS-
CLCS between A1..i and B1..j with k constraints satisfied.
When k = 0, it is layer 0 that represents the lattice of the
ordinary LCS, in which no constraint is considered. And, when
k = 1, it is layer 1 that represents the lattice of CLCS length,
containing the given constraint string. Layer 0 can be con-
structed by the ordinary LCS dynamic programming formula,
with an additional boundary condition that M [i, j, 0] = −∞
if i < 0 or j < 0. The dynamic programming formula of
layer 1 is described in Equation 1. The string inclusion CLCS
can be found by tracing back from M [m,n, 1] following the
PrevMatch table and the ordinary LCS trace back link in the
dynamic programming lattice.

For example, the 2 layers for A = atcatatgag, B =
atcatctagg and C = acat are illustrated in Table II.

Theorem 2. The string inclusion CLCS problem can be solved
by Equation 1.

Proof: The correctness of layer 0 follows from the ordinary
dynamic programming for LCS. For layer 1, initially there is
no CLCS containing the constraint, so we set the length to
−∞. The value on layer 1 becomes nonnegative only after
we refer to layer 0 and the ζ tables does not return -1, that is,
when we find an occurrence of the constraint string. And since
there cannot be any other character in the region matching the
constraint string, adding the length of the constraint is safe.
After we find the constraint string, the rest of the part can be
found with the ordinary dynamic programming formula.

The time complexity of our algorithm is O(mn + (m +
n)(|Σ| + r)), which improves a lot from Chen and Chao’s
method [1] with O(mnr) time. Our space complexity is
O(mn+ (m+ n)|Σ|).

III. ALGORITHMS FOR NON-OVERLAPPING PARTITIONS

In Section II, we presented an algorithm for the case where
there is a single partition in the constraint sequence. In this
section, we are going to extend it to two or more partitions
which do not overlap in the SSCLCS answer.

3

M [i, j, 1] = max

−∞ if i ≤ 0 or j ≤ 0;
M [i− 1, j − 1, 1] + 1 if ai = bj ;
M [ζA[i]− 1, ζB [j]− 1, 0] + r if ai = bj = cr;

max
{
M [i− 1, j, 1]
M [i, j − 1, 1] otherwise.

(1)

TABLE II
THE 2-LAYER DYNAMIC PROGRAMMING LATTICE FOR THE STRING INCLUSION CLCS PROBLEM WITH A = atcatatgag, B = atcatctagg AND

C = acat.

Layer 0
HHHHi

j 0 1 2 3 4 5 6 7 8 9 10

- a t c a t c t a g g
0 - 0 0 0 0 0 0 0 0 0 0 0
1 a 0 1 1 1 1 1 1 1 1 1 1
2 t 0 1 2 2 2 2 2 2 2 2 2
3 c 0 1 2 3 3 3 3 3 3 3 3
4 a 0 1 2 3 4 4 4 4 4 4 4
5 t 0 1 2 3 4 5 5 5 5 5 5
6 a 0 1 2 3 4 5 5 5 6 6 6
7 t 0 1 2 3 4 5 5 6 6 6 6
8 g 0 1 2 3 4 5 5 6 6 7 7
9 a 0 1 2 3 4 5 5 6 7 7 7

10 g 0 1 2 3 4 5 5 6 7 8 8
Layer 1

- a t c a t c t a g g
0 - −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
1 a −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
2 t −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
3 c −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
4 a −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
5 t −∞ −∞ −∞ −∞ −∞ 4 4 4 4 4 4
6 a −∞ −∞ −∞ −∞ −∞ 4 4 4 5 5 5
7 t −∞ −∞ −∞ −∞ −∞ 4 4 5 5 5 5
8 g −∞ −∞ −∞ −∞ −∞ 4 4 5 5 6 6
9 a −∞ −∞ −∞ −∞ −∞ 4 4 5 6 6 6

10 g −∞ −∞ −∞ −∞ −∞ 4 4 5 6 7 7

For ease of understanding, we will first discuss the case that
exactly two partitions are involved in the constraint sequence.
We extend the idea used in the previous section to solve this
problem. Layer 0 stores the ordinary LCS length, in which
no constraint is considered. Layers 1 and 2 correspond to the
matching of the first partition and both partitions, respectively.
We also construct the PrevMatch tables of A and B first. Since
the ζ table depends on the constraint, the ζ tables for the two
partitions are different. We denote them as ζ1 and ζ2. Layers
0 and 1 are constructed as the previous section. For layer 2,
because these two partitions cannot overlap, we can apply the
similar DP as layer 1 to it. Note that the value in layer 1 will
become positive only after the end of the first matching to C1.
If the corresponding starting position of C2 is in the middle
of the first matching to C1 in the layer 1, the SSCLCS length
will still be −∞. For example, if we add a second partition
tag to the example in Table II, the values of layer 2 are all
−∞ except that the values of (10, 9) and (10, 10) are 7. When
M [8, 9, 2] refers to M [4, 6, 1], there is no LCS between atca
and atcatc containing acat, so the SSCLCS should still be
−∞.

Now, we propose the algorithm for an arbitrary number of
partitions. Let ζkA and ζkB denote the ζ tables for Ck on A and
B, respectively. The dynamic programming formula is given

in Equation 2.

Theorem 3. Equation 2 solves the SSCLCS problem with k
partitions that the partitions cannot overlap.

Proof: The correctness of each M [i, j, k] is shown as fol-
lows. For k = 0 the dynamic programming formula is similar
to the ordinary dynamic programming formula for computing
LCS because there is no constraint in layer 0. The only
difference is having pseudo-cells with i, j ≤ 0 with value −∞
to deal with the case when C1 is not found in layer 1. For
k ≥ 1, it is separated into four cases. First, before the partition
of this layer is contained in the SSCLCS, its length should be
−∞, so we set the initial value of the boundary condition
to −∞. Second, when ai 6= bj , the LCS length cannot be
increased, so we adopt the ordinary dynamic programming
formula. Third, when ai = bj , it can be added into the
SSCLCS of A1,··· ,i−1 and B1,··· ,j−1. In this case, if the
partition of this layer is not contained in SSCLCS(A1,··· ,i−1,
B1,··· ,j−1), then M [i−1, j−1, k] will be −∞, so the obtained
M [i, j, k] will still be −∞. Otherwise, the constraint cannot
stop us from adding it in. Fourth, when ai = bj = Cklk , it
possibly satisfies the partition of this layer. We try to find the
shortest suffix of A1,··· ,i−1 and B1,··· ,j−1 containing Ck1···lk−1

to maximize the SSCLCS length, with the help of the ζ table.

4

M [i, j, k] = max

−∞ if k = 0 and (i < 0 or j < 0);
0 if k = 0 and i = 0 and j ≥ 0;
0 if k = 0 and i ≥ 0 and j = 0;
−∞ if k ≥ 1 and (i ≤ 0 or j ≤ 0);
M [i− 1, j − 1, k] + 1 if ai = bj ;
M [ζkA[i]− 1, ζkB [j]− 1, k − 1] + lk if k ≥ 1 and ai = bj = cklk ;

max
{
M [i− 1, j, k]
M [i, j − 1, k] otherwise.

(2)

But if Ck is not a subsequence of A1,··· ,i−1 or B1,··· ,j−1 the
ζ table will return -1, so we set the virtual boundary condition
with i < 0 or j < 0 to return −∞.

The time and space complexity of the preprocessing are
O((m + n)(|Σ| + r)). Both time and space complexities
of Equation 2 are O(mnl). So the total time and space
complexities are O(mnl + (m+ n)(|Σ|+ r)).

IV. ALGORITHMS FOR OVERLAPPING PARTITIONS

In this section, we discuss the SSCLCS variant that the
partitions may overlap, but the starting and ending positions
are both increasing. We first discuss the case of two partitions
in Subsection IV-A and then we extend the algorithm to an
arbitrary number of partitions in Subsection IV-B

A. An Algorithm for two Partitions

We can divide the problem into two cases: the two partitions
do not overlap and the two partitions overlap in the SSCLCS
answer. The first case was solved in the previous section.
For the second case, the situations will be different for each
overlapping length. Because the number of valid overlapping
lengths is no more than min(l1, l2), it is beneficial to find all
valid overlapping lengths in advance. We can apply the brute
force method with time complexity of O(l1l2) since this is not
the dominating part of the time complexity.

The DP formula for layers 0 and 1 is the same as Equation
2. For layer 2, when we match to c2l2 , we cannot directly
refer to ζ2

A[i] − 1 or ζ2
B [j] − 1. Instead, we have to consider

every valid overlapping length and add the suffix length of
C2 after the overlap to the length of the SSCLCS ending
with C1. To achieve this, we need to extend the ζ table from
one dimension to two dimensions. Each ζ2

A[i,$](ζ2
B [j,$])

records the corresponding starting position where the match
to C2

l2−$+1,··· ,l2 ends at ai(bj). So the original ζ2
A table is

equal to ζ2
A[i, l2]. We set virtual ζ2

A[i, l2 + 1] = ζ2
A[i, l2] − 1

and ζ2
B [j, l2 + 1] = ζ2

B [j, l2]− 1 for the non-overlapping case.
For example, the ζ tables for A = atcatagtag, C = acat and
tag are shown in Table III.

Let W2 be the set of all valid overlapping lengths between
C2 and C1. For a valid overlapping length w ∈ W2, the
SSCLCS length is equal to M [ζA[i, l2 − w + 1], ζB [j, l2 −
w+ 1], 1] + l2−w. Thus, the DP formula for layer 2 is given
as follows.

Consider our previous example, A = atcatatgag, B =
atcatctagg and C = (acat, tag), whose valid overlap-
ping lengths are 0 and 1. The earliest matching to C2

TABLE III
THE ζ TABLE FOR A = atcatatgag, C = acat AND tag.

acat
HH

HHw
i 1 2 3 4 5 6 7 8 9 10

a t c a t a t g a g
1(t) -1 2 -1 -1 5 -1 7 -1 -1 -1
2(a) -1 1 -1 -1 4 -1 6 -1 -1 -1
3(c) -1 -1 -1 -1 3 -1 3 -1 -1 7
4(a) -1 -1 -1 -1 1 -1 1 -1 -1 -1
5(-) -2 -2 -2 -2 0 -2 0 -2 -2 -2

tag
a t c a t a t g a g

1(g) -1 -1 -1 -1 -1 -1 -1 8 -1 10
2(a) -1 -1 -1 -1 -1 -1 -1 6 -1 9
3(t) -1 -1 -1 -1 -1 -1 -1 5 -1 7
4(-) -2 -2 -2 -2 -2 -2 -2 4 -2 6

occurs at M [8, 9, 2], referring to Table II, M [8, 9, 2] =
max(M [5, 7, 1] + 2,M [4, 6, 1] + 3) = 6.

The required time and space is analyzed as follows. Let
|W2| be the total number of valid overlaps between the two
partitions where |W2| ≤ min(l1, l2). For the preprocessing,
we spend O((m + n)|Σ|) time and space to construct the
PrevMatch tables of A and B. O((m + n)l1)) time and
O(m+n) space are required to construct the ζ1 tables. We take
O((m+n)l2)) time and space to construct the new ζ2 tables.
It takes O(l1l2) time and O(|W2|) space to calculate the valid
overlapping lengths. For the DP lattice, layers 0 and 1 are
constructed in O(mn) time and space. Layer 2 is constructed
in O(mn|W2|) time and space because there are at most |W2|
cases in each cell. So the total time and space complexity is
O(mn|W2|+(m+n)(|Σ|+r)+l1l2) = O(mnr+(m+n)|Σ|),
where r = l1 + l2.

Chen and Chao [1] proposed an algorithm for the case
that two constraints of lengths ρ1 and ρ2, respectively, are
given and their order are arbitrary in the CLCS. The algorithm
requires O(mnρ1ρ2) time and O(mn(ρ1 + ρ2)) space. To
solve this problem, we need can perform our algorithm in this
subsection twice by setting the two partitions differently. So
our algorithm is an order faster than the algorithm proposed
by Chen and Chao.

B. An Algorithm for an Arbitrary Number of Partitions

In this section, we extend the algorithm for two partitions
into an arbitrary number of partitions. M [i, j, k] still denotes
the SSCLCS length between a1,··· ,i and b1,··· ,j containing
C1, · · · , Ck as substrings. In the preprocessing phase, we will
first construct the PrevMatch tables for A and B. Second, we

5

M [i, j, 2] = max

−∞ if i ≤ 0 or j ≤ 0;
M [i− 1, j − 1, 2] + 1 if ai = bj ;
M [ζ2

A[i, l2 − w + 1], ζ2
B [j, l2 − w + 1], 1] + l2 − w,

where w is a valid overlapping length in W2 if ai = bj = c2l2 ;
M [i− 1, j, 2]
M [i, j − 1, 2]

(3)

will use the PrevMatch tables to construct the corresponding ζ
tables for all partitions with all suffix lengths. Third, between
every two consevutive partitions Ck and Ck−1, we will find
out all valid overlapping lengths,which forms a set Wk.

The DP formula of layers 0 and 1 is the same as Equation
2. The DP formula for the remaining layers, k ≥ 2, is given
in Equation 4.

Theorem 4. The combination of Equations 2 and 4 solve the
k-partition SSCLCS problem where the partitions may overlap.

Proof: The SSCLCS answer corresponds to characters in
positions pa,1, pa,2, · · · , pa,l from A and pb,1, pb,2, · · · , pb,l
from B. And Ck1 matches pa,νk

and pb,υk
for all 1 ≤

k ≤ l. If two adjacent layers does not overlap, then
the correctness follows from Theorem 3. If Ck overlaps
with Ck+1 in SSCLCS with length %k, it follows that
Cklk−%k+1,··· ,lk = Ck+1

1,··· ,%k
. We always find the near-

est match in both A and B, so when we match for
Ck+1

1,··· ,%k
from M [pa,νk+1+%k−1, pb,υk+1+%k−1, k + 1] and

M [pa,νk+1+%k−1, pb,υk+1+%k−1, k], we will trace both back to
M [pa,νk+1 , pb,υk+1 , k]. Thus, M [pa,νk+1+lk , pb,υk+1+lk , k+ 1]
= M [pa,νk

− 1, pb,υk
− 1, k] + lk + lk+1 − %k which matches

with our assumption.
The complexity of our algorithm is analyzed as follows.

In the preprocessing phase, we need O((m + n)|Σ|) time
and space to construct the PrevMatch table of A and B. For
each partition Ck, we require O((m + n)lk) time and space
to construct the ζ table, so the total time for the ζ tables
is O((m + n)r). For every two consecutive partitions Ck−1

and Ck, we take O(lk−1lk) time to find the valid overlapping
lengths and use O(|Wk|) = O(lk) space to store it, where
|Wk| ≤ min(lk−1, lk). So the total time and space for finding
all valid overlapping lengths are O(r2) and O(r), respectively.
For the DP lattice, O(|Wk|) = O(lk) time and O(1) space
are required in each cell. So the total time and space for
the DP lattice are O(mnr) and O(mnl), respectively. Thus,
the overall time and space are O(mnr + (m + n)|Σ|) and
O(mnl + (m+ n)(|Σ|+ r)), respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new variant of the CLCS prob-
lem, called sequential-substring CLCS, which the constraint
consists of a set partitions whose positions in the SSCLCS an-
swer are monotonically increasing. We propose algorithms for
two different variants to this problem that the partitions cannot
overlap or may overlap. For the former variant, we propose an
algorithm with complexity O(mnl+ (m+ n)(|Σ|+ r)). And
for the second variant, we proposed an O(mnr+(m+n)|Σ|)
time and O(mnl+(m+n)(|Σ|+r)) space algorithm. We also

proposed algorithms for the string inclusion CLCS problem
with one or two constraint strings and our algorithms achieve
an order improvement to the previous known algorithms by
Chen and Chao [1]

There are two possible future work to our SSCLCS problem.
The first one is to restrict the range between the partitions
which might be able to be used in the motif finding. The
second one is to exclude the constraint, that is, the CLCS
does not contain the sequential subsequences.

REFERENCES

[1] Y. C. Chen and K. M. Chao, “On the generalized con-
strained longest common subsequence problems,” Jour-
nal of Combinatorial Optimization, vol. 21, no. 3, pp.
383–392, 2009.

[2] R. A. Wagner and M. J. Fischer, “The string-to-string
correction problem,” Journal of the Association for Com-
puting Machinery, vol. 21, no. 1, pp. 168–173, 1974.

[3] C. B. Yang and R. C. T. Lee, “Systolic algorithm for the
longest common subsequence problem,” Journal of the
Chinese Institue of Engineers, vol. 10, no. 6, pp. 691–
699, 1987.

[4] A. Apostolico and C. Guerra, “The longest common
subsequences problem revisited,” Algorithmica, vol. 18,
pp. 1–11, 1987.

[5] C. Rick, “Simple and fast linear space computation of
longest common subsequences,” Information Processing
Letters, vol. 75, pp. 275–281, 2000.

[6] K. S. Huang, C. B. Yang, K. T. Tseng, Y. H. Peng, and
H. Y. Ann, “Dynamic programming algorithms for the
mosaic longest common subsequence problem,” Infor-
mation Processing Letters, vol. 102, pp. 99–103, 2007.

[7] K. S. Huang, C. B. Yang, K. T. Tseng, H. Y. Ann, and
Y. H. Peng, “Efficient algorithms for finding interleaving
relationship between sequences,” Information Processing
Letters, vol. 105, no. 5, pp. 188–193, 2008.

[8] Y. H. Peng, C. B. Yang, K. S. Huang, C. T. Tseng, and
C.-Y. Hor, “Efficient sparse dynamic programming for
the merged lcs problem with block constraints,” Interna-
tional Journal of Innovative Computing, Information and
Control, vol. 6, no. 4, pp. 1935–1947.

[9] F. Nicolas and E. Rivals, “Longest common subsequence
problem for unoriented and cyclic strings,” Theoretical
Computer Science, vol. 370, pp. 1–18, Feb. 2007.

[10] H. Y. Ann, C. B. Yang, Y. H. Peng, and B. C. Liaw,
“Efficient algorithms for the block edit problems,” Infor-
mation and Computation, vol. 208, no. 3, pp. 221–229,
Mar. 2010.

6

M [i, j, k] = max

−∞ if i ≤ 0 or j ≤ 0;
M [i− 1, j − 1, k] + 1 if ai = bj ;
M [ζA[i, lk − w + 1], ζB [j, lk − w + 1], k − 1] + l2 − w,

where w is a valid overlapping length in Wk if ai = bj = cklk ;
M [i− 1, j, k]
M [i, j − 1, k]

(4)

[11] Y. T. Tsai, “The constrained longest common sub-
sequence problem,” Information Processing Letters,
vol. 88, pp. 173–176, 2003.

[12] C.-L. Peng, “An approach for solving the constrained
longest common subsequence problem,” Master Thesis,
Department of Computer Science and Engineering, Na-
tional Sun Yat-sen University, Taiwan, July 2003.

[13] A. N. Arslan and O. Egecioglu, “Algorithms for the
constrained longest common subsequence problems,” In-
ternational Journal of Foundations Computer Science,
vol. 16, no. 5, pp. 1099–1109, 2005.

[14] F. Y. L. Chin, A. D. Santis, A. L. Ferrara, N. L. Ho,
and S. K. Kim, “A simple algorithm for the constrained
sequence problems,” Information Processing Letters,
vol. 90, no. 4, pp. 175–179, 2004.

[15] C. S. Iliopoulos and M. S. Rahman, “New efficient
algorithms for the LCS and constrained LCS problems,”
Information Processing Letters, vol. 106, no. 1, pp. 13–
18, 2008.

[16] Z. Gotthilf, D. Hermelin, G. M. Landau, and M. Lewen-
stein, “Restricted LCS,” in Proceedings of the 17th inter-
national conference on String processing and information
retrieval, ser. SPIRE’10, 2010, pp. 250–257.

[17] H. Y. Ann, C. B. Yang, and C. T. Tseng, “Efficient
polynomial-time algorithms for variants of the multiple
constrained LCS problem,” in Proceedings of the 2011
International Conference on Computing and Security
(ICCS’11), Ulaanbaatar, Mongolia, July 2011.

[18] Y. C. Chen, “Algorithms for the hybrid constrained
longest common subsequence problem,” in Proc. of the
27th Workshop on Combinatorial Mathematics and Com-
putation Theory, Taichung, Taiwan, 2010, pp. 32–37.

[19] S. S. Adi, M. D. Braga, C. G. Fernandes, C. E. Fer-
reira, F. V. Martinez, M.-F. Sagot, M. A. Stefanes,
C. Tjandraatmadja, and Y. Wakabayashi, “Repetition-
free longest common subsequence,” Electronic Notes in
Discrete Mathematics, vol. 30, pp. 243–248, Feb. 2008.

[20] P. Bonizzoni, G. Della Vedova, R. Dondi, and Y. Pirola,
“Variants of constrained longest common subsequence,”
Information Processing Letters, vol. 110, pp. 877–881,
Sept. 2010.

[21] G. M. Landau, E. Myers, and M. Ziv-Ukelson, “Two al-
gorithms for LCS consecutive suffix alignment,” Journal
of Computer and System Sciences, vol. 73, no. 7, pp.
1095–1117, 2007.

