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SUMMARY 
A logarithmic assessment of the performance of a predicting density is found to lead 
to asymptotic equivalence of choice of model by cross-validation and Akaike's 
criterion, when maximum likelihood estimation is used within each model. 
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VALIDATION 

1. INTRODUCTION 
AKAIKE (1973) proposed a criterion for model choice equivalent to the following: If oa indexes 
the model, choose ao to maximize 

L(os, &)-pa, (1.1) 

where L(oz, 06) is the log-likelihood function, A0 is the maximum likelihood estimate of the 
parameter 06. in the model a and p< is the dimensionality of 06t. 

Akaike's derivation of (1.1) was for hierarchical models but, as he finally remarked, this 
restriction is unnecessary. Looking at (1.1), we see p. as a correction term without which 
we would be maximizing L(oa, 6J; models with parameters of high dimensionality are given 
a severe handicap by this correction term. 

For normal multiple linear regression models with known variance, a2, Mallows' C. 
(Gorman and Toman, 1966) is given by 

Cp = (RSS<ja2)- (n-2po), (1.2) 

where RSSO is the residual sum of squares for model ox and n is the sample size. From (1.2) 
we see that maximizing (1.1) is equivalent to minimizing Cp. 

Akaike's criterion stemmed from a recognition that unreserved maximization of likelihood 
provides an unsatisfactory method of choice between models that differ appreciably in their 
parametric dimensionality. Since the method of cross-validatory choice (Stone, 1974) is also 
concerned with the latter problem, it is perhaps unsurprising that a relationship can be 
established between the two approaches. 

2. THE CHOICE PROBLEM 
Adopting the notation of Stone (1974), we suppose we have a data-base 

S = &(i, y), i = 1, ..., n} 

for n items and that our problem is the choice of predicting density for y given x from a 
prescribed class of formal predicting densities 

{f(Y Ix, ot, S),' ot Ed, (2.1) 

whose members are indexed by the choice parameter a<. All densities for y are with respect to 
a common fixed measure with generic element dy. The operational interpretation of (2.1) is 
that the choice of ot specifies a predicting density of y for each x, whose form depends in a 
prescribed way on S. The notation is not intended to carry any other probabilistic interpre- 
tation. 



1977] Notes, Comments and Queries 45 

It is useful to distinguish two complementary cases of (2.1): 
Case 1. f(y x, o, S) = f(y I x, ot) independent of S; 
Case 2. f(y j x, o, S) properly dependent on S. 

In Case 1, (2.1) becomes formally equivalent to a statistical model with ot as conventional 
parameter. In Case 2, our attention will be focused on a general example which we will call 
Example A after Akaike (1973). Its prescription is 

f(y I x, CZ, S) ef(y I x, #,,.(S)), (2.2) 
where 

{fA(YIx, Oa), Qo ce?J (2.3) 

are the densities for a conventional parametric model ot and #,,,(S) is the supposed unique 
maximum likelihood estimator maximizing L(oa, O0) = Ei logf,,(yi I xi, 0a). 

3. LOG-DENSITY ASSESSMENT 
Suppose f(i)(y), i = 1, ..., n, were presented as predicting densities for yi, i = 1, ...,n, 

respectively. As a measure of their success, take the log-density assessment 

A = E logf(i)(y). (3.1) 
i 

Observe that A is the logarithm of Ilif(i)(yi) which may be termed the predicting probability 
density evaluated at the observations. 

For Case 1, use off(i)(y) =f(yC I xi, o), i = 1, ..., n, would have the assessment 

A(c*) = E log f(yi Ixi, oz), (3.2) 
i 

whence we see that choice of a to maximize A(c*) would be equivalent to maximum likelihood 
"estimation" of a for the "log-likelihood" given by the right-hand side of (3.2). Thus Case 1 
introduces no innovations. 

For Case 2, it would be unrealistic to assess the choice of ce with f(i)y) = f(yv xi, CZ, S) 
because S itself contains yi. It is more realistic to use the cross-validatory 

PtOW = fcy xi, a) s t 

where S_ = S-(xi,y). This gives us 

A(ac) = E logf(yi I xi, o, S.f). (3.3) 

We will show in the next section that for Example A, A(oa), given by (3.3), is asymptotically 
equivalent, under weak conditions, to Akaike's criterion (1.1), which, as we have seen, 
"corrects" maximum likelihood as a method of choice of model. 

4. AsYMPTOTIc EQUIVALENCE 
For simplicity, we treat ao as fixed and omit it from the notation. Writing I for logf, with 

f given by (2.2) and (2.3), A in (3.3) equals Yi l(yI xi, #(S-i)). With L(0) = Ejl(yj I x, 0), we 
have that 8(S) [# for short] maximizes L(0) and O(S.i) [&_ for short] maximizes 
L(0) - 1(y xi, 0). We suppose that 0 =(01 ... 6V)T e 0 an open region of RP and thatf is twice- 
differentiable with respect to 0. Write 

I = ', I= (lT a 
~~01 aop aoj aoj 
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with similar notation for L. We suppose that 0 and 'i are unique solutions of L'(0) = 0 and 
L'(0) - (yiIxi, 0) = 0 respectively. Then by Taylor's theorem 

A = L(8) + ( _-i- O)T 1 {yi I xi, #+ a,(&,- O)} (4.1) 
i 

= L"{0++b%(&j- O)} (Li- 0) (4.2) 

with I ai 1, I bi 1, i = 1,. ..,n. Also 

L'(_i) = '(yiI xi, -i). (4.3) 

From (4.1), (4.2) and (4.3), supposing L' in (4.2) is invertible, 

A = L(0) + l'(y I xi, 6.)T [L"{0'+ b( _ - 0)}]-' l'{yi xi, #+ ai(0' - i)}. (4.4) 

Next suppose that S is a random sample from some joint distribution P of (x, y). Let E denote 
expectation with respect to P. With this supposition we can expect: 

(i) P > 00 as n -+ oo where 00 is the supposed unique value of 0 maximizing E{l(yf x, O)}; 

(ii) 8-i P >00 as n ->oo for i = 1, 2,.; 
(iii) n-1L"(#+bi(_ s- )) > E{l"(y x, 00)} = L2, say; 

(iv) n1 i Il'{y I xi, O'+ ai(& -O)} (y.j xi, &_)T - > E{l(y|x, 00) 1l(y I x, OO)T} = L1, say. 

So we have, heuristically, established that A is asymptotically 
L(8) + trace (L-1 L1). (4.5) 

Since 00 maximizes E{l(y I x, 0)}, it follows that E{l"(y Ix, 00)} is negative-definite. Hence the 
correction term in (4.5), written in the form E{l'(y I x, OO)TL41 l'(y Ix, 00)} is seen to be negative. 
However, little more can be said about it without further assumptions of a statistical character. 
The key assumption that gives us our asymptotic equivalence with Akaike's criterion is: The 
conditional distribution of y given x in the distribution P is f(y I x, 6*) for some unique 6* e) 0, 
that is, the conventional model {f(y I x, 0), 0 e ?)} is true. In fact, this assumption implies 6* = 00. 
For 

E{l(y I x, 00)} = E( x, 0*) logf(y Ix, o) dy} 

KE({f(YIX,O *)logf(ylx, 6*)dy} = E{l(ylx, 6*)} 

and 00 is the supposed unique maximizer of E{l(y I x, 0)}. Further, differentiating the identity 
ff(y j x, 0) l'(y Ix, 0) dy = 0 with respect to 0, setting 0 = 00 and taking expectations with 
respect to x, we find L1 = -L2 (the well-known identity). Hence the correction term in (4.5) 
is trace (- Ipxp) = -p and asymptotically 

A = L(8)-p (4.6) 

which is identical to (1.1) once the missing o's are restored. 
While the key assumption italicized above gives us the general equivalence, weaker 

assumptions will suffice for particular choices of {f,(y I x, 6Oj, Oa E ?J. 
If we consider two models c1, ?c of type (2.3) with 

0 OC?LC 6 

and suppose that both are true, then it is well known that, under regularity conditions, 
2{L(o12, 6a) -L(a1 6a)} is asymptotically x2 with d = pa -pa1 degrees of freedom. Hence, by 
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(4.6), A(cx2) -A(acl) is asymptotically 2- d. This shows how the simpler model will be 
favoured by the choice criterion A(oa). 
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