
l

and

of
Information Processing Letters 92 (2004) 293–297

www.elsevier.com/locate/ip

Scaled and permuted string matching

Ayelet Butmana, Revital Eresb,1, Gad M. Landaub,c,∗,2

a Holon Academic Institute of Technology, Israel
b Department of Computer Science, Haifa University, Haifa 31905, Israel

c Department of Computer and Information Science, Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201-3840, USA

Received 24 June 2004; received in revised form 6 September 2004

Available online 12 October 2004

Communicated by L.A. Hemaspaandra

Abstract

The goal ofscaled permuted string matchingis to find all occurrences of a pattern in a text, in all possible scales
permutations. Given a text of lengthn and a pattern of lengthm we present an O(n) algorithm.
 2004 Elsevier B.V. All rights reserved.

Keywords:Algorithms; Approximate string matching; Permutations; Scalings

1. Introduction ern view of stringology can be found in a number
p-
ext

re
re-

een
d-

rant

rael

published books [5,7,11].
es.
ere

ng
as
per
of

a

erved
The well-known string matching problem that a
pears in all algorithm textbooks has as its input a t
T of lengthn and a patternP of lengthm over a given
alphabetΣ . The output is all text locations where the
is an exact match of the pattern. This problem has
ceived much attention, and many algorithms have b
developed to solve it (e.g., [6,13,14]). A detailed mo

* Corresponding author.
E-mail addresses:butmosh@zahav.net.il (A. Butman),

revitale@cslx.haifa.ac.il (R. Eres), landau@poly.edu
(G.M. Landau).

1 Partially supported by the Israel Science Foundation g
282/01.

2 Partially supported by NSF grant CCR-0104307, by the Is
Science Foundation grant 282/01, and by IBM Faculty Award.

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.09.002
Most recent work has dealt with inexact match
Many types of differences between the patterns w
defined, for example, errors (Hamming distance, LCS
[12], Edit distance [15]), rotations [1,3,9,10], scali
[2,4], or permutation. Most of the theoretical work h
dealt with one type of difference at a time. This pa
is one of the first attempts to deal with two types
differences together—scaling and permutation.

Definition 1 (Scaled permuted string matching).

Input: A patternP = p1 · · ·pm and a textT = t1 · · · tn
both over alphabetΣ .

Output: All positions in T where an occurrence of
permuted copy of the patternP , scaled tok starts

.

294 A. Butman et al. / Information Processing Letters 92 (2004) 293–297

(k = 1, . . . , �n/m�). The pattern is first permuted
and then scaled.

a
4],
es
ing
at-
ear

g
bed
re-
led

n-
w

rs.

-

et
s
s

of

per-
ext
ers
et-
the

is
-

e
w

is shifted onT ′ from left to right in order to locate
all the matches. The window is a substring ofT ′ that

ple

ars
it

-

a

s
w

an

ce

a
ft

y of
ven

all

xt

e

Example. The stringbbbbaabbaaccaacc is a scaled
(to 2) permutation ofbaabbacc.

The scaled (only) string matching problem is
well studied problem. The algorithm presented in [
which follows the method described in [8], achiev
a linear running time for the scaled string match
problem. In [2] the case where the scaling of the p
tern is by real numbers was considered, and a lin
time algorithm was introduced.

An algorithm for the permuted string matchin
problem over run-length encoded strings is descri
in Section 2. In Section 3 we present the main
sult of this paper, an algorithm that solves the sca
permuted string matching problem in O(n) time and
space. Open problems are given in Section 4.

2. Permuted string matching over run-length
encoded text

The permuted string matching problem over u
compressed text is simply solved. A sliding windo
of size |P | can be moved overT to count, for each
location ofT , the order of statistics of the characte
Obviously, this can be done in O(n) time.

The run-length of a stringS is a popular encod
ing method. According to this encodingS can be de-
scribed as a sequence of ordered pairs(σ, i), often de-
noted by thesymbolσ i , each consisting of an alphab
characterσ and an integeri. Each pair correspond
to a run inS, consisting ofi consecutive occurrence
of σ .

Let T ′ be the run-length compressed version
T whereT ′ = σ

r1
1 · · ·σ r|T ′ |

|T ′| . Similarly, P ′ is the run-
length compressed pattern. The pattern can be
muted, and therefore, in each location of the t
we check if the order of statistics of the charact
is equal to that of the pattern. As a result, a b
ter compression can be achieved. Symbols with
same character are compressed. For example, letP =
aabbbaccaab, its run-length compressed version
P ′ = a2b3a1c2a2b1 and a permuted run-length com
pressed version isP ′′ = a5b4c2. The technique we us
is similar to the sliding window technique: a windo
represents a candidate for a match. Unlike the sim
algorithm, this time the window size is not fixed.

We will define avalid window as a substring ofT ′
that fulfills the following two properties:

sufficient The number of times each character appe
in the window is at least the number of times
appears in the pattern.

minimal Removing the rightmost or the leftmost sym
bol of the window violates thesufficientproperty.

Note that:

(a) The valid window property does not ensure
match.

(b) If a permutation of the pattern occurs in avalid
window ofT ′, σ ri

i · · ·σ rj
j , then only the character

σi andσj can appear more times in this windo
than they appear inP ′′.

(c) If σi = σj then the pattern may occur more th
once in thevalid window. Also, if σi−1 = σj

(σi = σj+1) the pattern may occur more than on
in σ

ri−1
i−1 · · ·σ rj

j (σ ri
i · · ·σ rj+1

j+1).
(d) A permuted pattern occurs in the text only in

valid window (including the symbols on the le
and right of the window).

The algorithm scans the text, locates allvalid win-
dows and finds the ones in which a permuted cop
the pattern occurs. During the scan of the text, gi
a valid window, it is trivial to check if it contains a
match. Hence, we will describe only how to locate
valid windows.

Note that given a textT ′ = σ
r1
1 · · ·σ r|T ′ |

|T ′| :

(a) At most onevalid window may start on eachσ ri
i .

(b) A valid window does not contain anothervalid
window.

The valid windows are found by scanning the te
from left to right, using two pointers,left andright. To
discover eachvalid window, theright pointer moves
first to find asufficientwindow and then theleft pointer
moves to find thevalid window within thesufficient
window. Each move of theright pointer increases th

A. Butman et al. / Information Processing Letters 92 (2004) 293–297 295

size of the window. The right pointer moves as long as
deleting the leftmost symbol of the window violates

-

nter
the

ll

l-

s-

ses
in-
t

as

is
in

(1) Preprocessing the textT ′. Computing compact
copies of the text for each possible scale 1� s �

he
on

for

ols
ta-

t

s
er.

new

dd a
thesufficientproperty of the window. When this sym
bol can finally be removed, theright pointer stops and
the left pointer starts moving. Each move of theleft
pointer decreases the size of the window. The poi
moves as long as deleting the leftmost symbol of
window does not violate thesufficientproperty of the
window. At this point, a newvalid window has been
found.

Example. LetP ′′=a2b3c2d2 andT ′=c3a2c2a3d2b3c1

thenc3a2c2a3d2b3 is the firstsufficientwindow, and
c2a3d2b3 is the firstvalid window (but not a match).

Claim 1. The algorithm finds all(and only) valid win-
dows.

Proof. The algorithm reports onlyvalid windows. We
will prove by contradiction that the algorithm finds a
the valid windows. Denote by�1 and �2 two con-
secutivevalid windows that are discovered by the a
gorithm, and byileft1, iright1, ileft2 and iright2 the left
and right pointers of those windows, respectively. A
sume that there exists avalid window �3 (with left
and right pointersileft3 and iright3, respectively) be-
tween �1 and �2 (iright1 < iright3 < iright2) that the
algorithm does not discover. By theminimal propri-
ety we get thatileft1 < ileft3. After reporting�1 the
algorithm looks for the nextvalid window. During
the scanning of the right pointer the algorithm pas
iright3 and does not stop, which means that the w
dow ileft1 + 1 · · · iright3 does not satisfy the sufficien
property. Since,ileft1 + 1 � ileft3 we conclude that the
window �3 does not satisfy the sufficient property
well, and hence, it is notvalid. �
Time complexity. We assume that|Σ| is O(|P ′′|),
hence, the time complexity of the algorithm
O(|P ′′|+ |T ′|). In case the input pattern is not given
a permuted run-length compressed format, an O(|P |)
time preprocessing step is added.

3. A linear time algorithm for the scaled
permuted string matching problem

The algorithm is composed of two stages:
n/m.
(2) Applying the permuted string matching over t

run-length encoded text algorithm (Section 2)
the copies of the text.

Observation 1. If a permutation ofP scaled tos oc-
curs inσ

ji

i · · ·σjk

k thenji+1, . . . , jk−1 are multiples of
s, andji, jk � s.

Following the above observation, we compute
each scales a compact textT ′

s in the following two
steps:

Step1: Locate all the regions inT ′ where the sym-
bols appear with multiples ofs. Add the symbol $ as
a separator between the regions.

Step2: Expand these regions to include the symb
on their boundaries. In order to simplify the compu
tion of stage 2, a symbolt

rj
j of T ′ is replaced inT ′

s by

t
�rj /s�
j .

Step 1. Locating the regions—T ′ is scanned from lef
to right. Consider a symboltrii . A new symboltri /si is
added toT ′

s if ri is a multiple ofs. The following code
describes this idea.

Step 1—The parallel construction of the new text

For every symbol inT ′ do:
{ let ar be the current symbol being examined}
s = 1
Repeat Untils >

√
r

If (r mods = 0) Then
Add ar/s to T ′

s{ skip the next line ifs = √
r }

Add as to T ′
r/s

s = s + 1

Note that the efficiency ofthis procedure depend
on the method that finds all the divisors of an integ
In the above example we used a naive method. A
symbol that is added at the end ofT ′

s may continue a
region or start a new one. In the second case we a
separator ($) between the regions.

Step 2. Expansion of the regions—The last refine-
ment is done by scanning eachT ′

s text from left to

296 A. Butman et al. / Information Processing Letters 92 (2004) 293–297

right and expanding all the regions we generated in
step 1. In the next procedure we deal with symbols

e

r

run-
the

-

ha-
th

om
$

separator to each new symbol. In step 2, two new sym-
bols may be added to each $ separator. Hence the total

is
otal

to
the

hen

led
les.
are

eir

,
ns,

g,

n

s,

m,

r-

s
ut.

nd
w-

ium
that appear on the left side of a $ separator inT ′
s . The

opposite case is treated in the same way.

Step 2

For every $ separator inT ′
s do:

{ let t ri/s
i

be the symbol appearing on the left side of th

current $ separator onT ′
s , and lett

ri+1
i+1 be the adjacent

symbol tot
ri
i onT ′ }

If (ri+1 > s) then

Add t
�(ri+1)/s�
i+1 to T ′

s betweent ri/s
i

and the $ separato

Example. Let T ′ = a6b2c4a3d5b9d2c8b4a7, the new
text after applying step 2 is:

T ′
1 = $a6b2c4a3d5b9d2c8b4a7$,

T ′
2 = $a3b1c2a1$b4d1c4b2a3$,

T ′
3 = $a2$c1a1d1$d1b3$,

T ′
4 = $c1$c2b1a1$,

T ′
5 = $d1b1$,

T ′
6 = $a1$,

T ′
7 = $a1$,

T ′
8 = $c1$,

T ′
9 = $b1$.

Stage 2 runs the permuted string matching over a
length encoded text algorithm (Section 2) on all
new compact texts.

Time complexity. The input to our problem is a com
pressed textT ′ = t1

r1 · · · tkrk , whose original length is
n, and a patternP ′′ of length|P ′′| (or a patternP of
lengthm). Both the pattern and the text are over alp
betΣ . The following claim shows that the total leng
of all compact new texts is linear.

Claim 2. The total length of all the new textsT ′
s (1 �

s � n/m) is O(n).

Proof. In step 1, we consider each symbolt
ri
i in T ′,

and the number of new symbols that we produce fr
t
ri
i is bounded by 2

√
ri . In addition we may add a
length of all new texts is: 8· ∑k
i=1

√
ri = O(n). �

The running time of both stage 1 and stage 2
bounded by the length of the new texts, hence the t
time complexity is O(n).

4. Open problems

The algorithm described in this paper is the first
deal with scaling and permutation. We considered
case in which the pattern is first permuted and t
scaled. The first challenge is to design an o(nm) algo-
rithm for the case in which the pattern is first sca
and then permuted. We also dealt with integer sca
The second challenge is to deal with scales that
real numbers.

Acknowledgements

The authors are grateful to the referees for th
helpful comments.

References

[1] A. Amir, A. Butman, M. Crocehmore, G.M. Landau
M. Schaps, Two-dimensional pattern matching with rotatio
Theoret. Comput. Sci. 314 (1–2) (2004) 173–187.

[2] A. Amir, A. Butman, M. Lewenstein, Real scaled matchin
Inform. Process. Lett. 70 (4) (1999) 185–190.

[3] A. Amir, O. Kapah, D. Tsur, Faster two dimensional patter
matching with rotations, in:Proc. 15th Annual Symposium
on Combinatorial Pattern Matching (CPM 2004), in: Lecture
Notes in Comput. Sci., vol. 3109, Springer, Berlin, 2004.

[4] A. Amir, G.M. Landau, U. Vishkin, Efficient pattern matching
with scaling, J. Algorithms 13 (1) (1992) 2–32.

[5] A. Apostolico, Z. Galil (Eds.), Pattern Matching Algorithm
Oxford University Press, 1997.

[6] R.S. Boyer, J.S. Moore, A fast string searching algorith
Comm. ACM 20 (1977) 762–772.

[7] M. Crochemore, W. Rytter, Text Algorithms, Oxford Unive
sity Press, 1994.

[8] T. Eilam-Tsoreff, U. Vishkin, Matching patterns in string
subject to multilinear transformations, Theoret. Comp
Sci. 60 (3) (1988) 231–254.

[9] K. Fredriksson, G. Navarro, E. Ukkonen, Optimal exact a
fast approximate two dimensional pattern matching allo
ing rotations, in: Proceedings of the 13th Annual Sympos

A. Butman et al. / Information Processing Letters 92 (2004) 293–297 297

on Combinatorial Pattern Matching (CPM 2002), in: Lec-
ture Notes in Comput. Sci., vol. 2373, Springer, Berlin, 2002,

m-
:
lin,

ces:

[12] D.S. Hirshberg, Algorithms for the longest common subse-
quence problem, J. ACM. 24 (4) (1977) 664–675.

ing

in

s,
07–
pp. 235–248.
[10] K. Fredriksson, E. Ukkonen,A rotation invariant filter for

two-dimensional string matching, in: Proc. 9th Annual Sy
posium on Combinatorial Pattern Matching (CPM 1998), in
Lecture Notes in Comput. Sci., vol. 1448, Springer, Ber
1998, pp. 118–125.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequen
Computer Science and Computational Biology, Cambridge
University Press, 1997.
[13] R. Karp, M.O. Rabin, Efficient randomized pattern-match
algorithms, IBM J. Res. Dev. (1987) 249–260.

[14] D.E. Knuth, J.H. Morris, V.R.Pratt, Fast pattern matching
strings, SIAM J. Comput. 6 (1977) 323–350.

[15] V.I. Levenshtein, Binary codes capable of correcting, deletion
insertions and reversals, Soviet Phys. Dokl. 10 (1966) 7
710.

