Available online at www.sciencedirect.com

SGIENCE@DIRECT" Informa.tion
Processing
£l Letters
ELSEVIE Information Processing Letters 92 (2004) 293-297

www.elsevier.com/locatefipl

Scaled and permuted string matching

Ayelet Butmart, Revital Ere$?, Gad M. Landa®¢*2

2Holon Academic Institute of Technology, Israel
b Department of Computer Science, Haifa University, Haifa 31905, Israel
¢ Department of Computer and Information Science, Polytecbniversity, Six MetroTech Center, Brooklyn, NY 11201-3840, USA

Received 24 June 2004; received in revised form 6 September 2004
Available online 12 October 2004

Communicated by L.A. Hemaspaandra

Abstract

The goal ofscaled permuted string matching to find all occurrences of a pattern in a text, in all possible scales and
permutations. Given a text of lengthand a pattern of lengtix we present an @) algorithm.
0 2004 Elsevier B.V. All rights reserved.

Keywords:Algorithms; Approximate string ntehing; Permutations; Scalings

1. Introduction ern view of stringology can be found in a number of
_) published books [5,7,11].
The well-known string matching problem that ap- \ost recent work has dealt with inexact matches.

pears in all algorithm textbooks has as its input a text Many types of differences between the patterns were

T oflengthn and a patterm of lengthm overagiven qefined, for example, errs (Hamming distance, LCS
alphabety. The outputis all text locations where there [12], Edit distance [15]), rotations [1,3,9,10], scaling

Is an gxactrr]‘natttcht(_)f the pdattern. Tlhis pt:]obler:n ha; re- [2,4], or permutation. Most of the theoretical work has
gel\\llel mléct a (Iavn Ii?n, an ?igyligoz dmtSiIac\j/(ren ?ﬁndealt with one type of difference at a time. This paper
evelopedto solve it (e.g., [6,13,14]). A detailed mo is one of the first attempts to deal with two types of

differences together—scaling and permutation.
* Corresponding author.
_ E-mail addrt_assesb_utmosh@zahav.net.iI (A. Butman), Definition 1 (Scaled permuted string matching
revitale@cslx.haifa.ac.il (R. Eres), landau@poly.edu
(G.M. Landau).

Input A patternP = pq---p,, andatextl =¢,---¢
1 Partially supported by the Israel Science Foundation grant P P PL e Pm ! "

282/01 both over alphabeX.
2 partially supported by NSF grant CCR-0104307, by the Israel Output All positions in 7 where an occurrence of a
Science Foundation grant 282/01, and by IBM Faculty Award. permuted copy of the pattei, scaled tok starts

0020-0190/$ — see front mattéi 2004 Elsevier B.V. All rights reserved.
doi:10.1016/).ipl.2004.09.002

294

(k=1,...,|n/m]). The pattern is first permuted
and then scaled.

Example. The stringbbbbaabbaaccaacc is a scaled
(to 2) permutation obaabbacc.

The scaled (only) string matching problem is a
well studied problem. The algorithm presented in [4],
which follows the method described in [8], achieves
a linear running time for the scaled string matching

A. Butman et al. / Information Processing Letters 92 (2004) 293-297

is shifted onT’ from left to right in order to locate
all the matches. The window is a substringTdfthat
represents a candidate for a match. Unlike the simple
algorithm, this time the window size is not fixed.

We will define avalid window as a substring df’
that fulfills the following two properties:

sufficient The number of times each character appears
in the window is at least the number of times it
appears in the pattern.

problem. In [2] the case where the scaling of the pat- minimal Removing the rightmost or the leftmost sym-

tern is by real numbers was considered, and a linear

time algorithm was introduced.
An algorithm for the permuted string matching

problem over run-length encoded strings is described

bol of the window violates theufficientproperty.

Note that:

in Section 2. In Section 3 we present the main re- () The valid window property does not ensure a

sult of this paper, an algorithm that solves the scaled

permuted string matching problem in(®) time and
space. Open problems are given in Section 4.

2. Permuted string matching over run-length
encoded text

The permuted string matching problem over un-
compressed text is simply solved. A sliding window
of size | P| can be moved oveT to count, for each
location of T, the order of statistics of the characters.
Obviously, this can be done in(@) time.

The run-length of a string is a popular encod-
ing method. According to this encodirfycan be de-
scribed as a sequence of ordered p&its), often de-
noted by thesymbol’, each consisting of an alphabet
charactero and an integet. Each pair corresponds
to aruninS, consisting ofi consecutive occurrences
ofo.

Let T’ be the run-length compressed version of

Fypr . . .
T whereT’' = o;*-- 'GlT‘T’l" Similarly, P’ is the run-

match.

(b) If a permutation of the pattern occurs invalid
window of 77, 5" - - ~ojr.j, then only the characters
o; ando; can appear more times in this window
than they appear i®”.

(c) If o; = o; then the pattern may occur more than
once in thevalid window. Also, if o;_1 = o
(07 = 0j41) the pattern may occur more than once
ino/ -0 (o] 0.

(d) A permuted pattern occurs in the text only in a
valid window (including the symbols on the left

and right of the window).

The algorithm scans the text, locates\adlid win-
dows and finds the ones in which a permuted copy of
the pattern occurs. During the scan of the text, given
a valid window, it is trivial to check if it contains a
match. Hence, we will describe only how to locate all
valid windows.

Note that given a text’ = o,* - - ~a|r}T,|/‘:

length compressed pattern. The pattern can be per-(a) At most onevalid window may start on eanf;-”_-
muted, and therefore, in each location of the text (b) A valid window does not contain anothealid

we check if the order of statistics of the characters
is equal to that of the pattern. As a result, a bet-

window.

ter compression can be achieved. Symbols with the The valid windows are found by scanning the text

same character are compressed. For exampl®, iet
aabbbaccaab, its run-length compressed version is
P’ = a?b3atc?a®b! and a permuted run-length com-
pressed version iB” = a®b*c?. The technique we use
is similar to the sliding window technique: a window

from left to right, using two pointerseft andright. To
discover eaclvalid window, theright pointer moves
first to find asufficientwindow and then thieft pointer
moves to find thevalid window within thesufficient
window. Each move of thaght pointer increases the

A. Butman et al. / Information Processing Letters 92 (2004) 293-297

size of the window. The right pointer moves as long as
deleting the leftmost symbol of the window violates
the sufficientproperty of the window. When this sym-
bol can finally be removed, théght pointer stops and
the left pointer starts moving. Each move of thedt

pointer decreases the size of the window. The pointer

moves as long as deleting the leftmost symbol of the
window does not violate thsufficientproperty of the
window. At this point, a newalid window has been
found.

Example. Let P"=a?b3¢2d? andT’'=c3a?c%ad?b3ct
then c3a?c?a®d?b? is the firstsufficientwindow, and
c?a®d?b3 is the firstvalid window (but not a match).

Claim 1. The algorithm finds al{and only valid win-
dows.

Proof. The algorithm reports onlyalid windows. We
will prove by contradiction that the algorithm finds all
the valid windows. Denote byl1; and IT, two con-
secutivevalid windows that are discovered by the al-
gorithm, and byieft,, iright » ilef, @Ndiright, the left
and right pointers of those windows, respectively. As-
sume that there exists\alid window I3 (with left
and right pointersief; and irignt,, respectively) be-
tweenIly and Iz (irighy, < irighty < iright,) that the
algorithm does not discover. By thminimal propri-
ety we get thatiert, < ileft;. After reportingIl; the
algorithm looks for the nextvalid window. During
the scanning of the right pointer the algorithm passes
iright; and does not stop, which means that the win-
dow ilef; + 1---iright, does not satisfy the sufficient
property. Sinceijjef, + 1 < ileft; We conclude that the
window IT3 does not satisfy the sufficient property as
well, and hence, itis notalid. O

Time complexity. We assume thatX| is O(|P”|),
hence, the time complexity of the algorithm is
O(|P"|+|T’)). In case the input pattern is not given in
a permuted run-length compressed format, &hPQ
time preprocessing step is added.

3. Alinear timealgorithm for the scaled
permuted string matching problem

The algorithm is composed of two stages:

295

(1) Preprocessing the text’. Computing compact
copies of the text for each possible scalg & <
n/m.

(2) Applying the permuted string matching over the
run-length encoded text algorithm (Section 2) on
the copies of the text.

Observation 1. If a permutation ofP scaled tas oc-
cursing/’ ---o/* thenjiya, ..., jx—1 are multiples of
s, andji, jk = s.

Following the above observation, we compute for
each scale a compact text; in the following two
steps:

Stepl: Locate all the regions ifi” where the sym-
bols appear with multiples of. Add the symbol $ as
a separator between the regions.

Step2: Expand these regions to include the symbols
on their boundaries. In order to simplify the computa-
tion of stage 2, a symbmjf of T’ is replaced irT; by
(el
J

Step 1. Locatingtheregions—7" is scanned from left
to right. Consider a symbaf’. A new symboltl.’i/s is

added tdZy if r; is a multiple ofs. The following code
describes this idea.

Step 1—The parallel construction of the new text

For every symbol irf”’ do:
{ leta” be the current symbol being examined
s=1
Repeat Untils > /r
If (r mods =0) Then
Adda’/S to T}
{ skip the next line if = /7 }
Adda®to T/ /s
s=s+1

Note that the efficiency atis procedure depends
on the method that finds all the divisors of an integer.
In the above example we used a naive method. A new
symbol that is added at the end Bf may continue a
region or start a new one. In the second case we add a
separator ($) between the regions.

Step 2. Expansion of the regions—The last refine-
ment is done by scanning eadlj text from left to

296

right and expanding all the regions we generated in
step 1. In the next procedure we deal with symbols
that appear on the left side of a $ separatdfinThe
opposite case is treated in the same way.

Step 2

For every $ separator ifij do:

{let rl.r"/s be the symbol appearing on the left side of the
current $ separator ofy, and Ietrl.rfll be the adjacent
symbol tor;* on T’}

If (ri41 > s) then
Add tiLJ(rri'“)/ *)to 7] between!"/* and the $ separator

Example. Let 77 = a®b?c*a3d®b%d?cBb%a’, the new
text after applying step 2 is:

T] = $a8b2c*a3d®b%a?cBpta’$

T,= $ap cPat$b?drc*h%a®s,

T4 = $a%$cLad $d b,
T, = c'c?hla’s,

T, = $d'b's,

T4 =a',

Ty = $a’$,

Ty = c',

Ty =b'.

Stage 2 runs the permuted string matching over a run-
length encoded text algorithm (Section 2) on all the
new compact texts.

Time complexity. The input to our problem is a com-
pressed text’ =111 - - - 1;"*, whose original length is
n, and a patterr?” of length|P”| (or a patternP of
lengthm). Both the pattern and the text are over alpha-
betX. The following claim shows that the total length
of all compact new texts is linear.

Claim 2. The total length of all the new texi¥ (1 <
s <n/m)isOn).

Proof. In step 1, we consider each symbglin 7',
and the number of new symbols that we produce from
ti”' is bounded by 2/;. In addition we may add a $

A. Butman et al. / Information Processing Letters 92 (2004) 293-297

separator to each new symbol. In step 2, two new sym-
bols may be added to each $ separator. Hence the total
length of all new texts is: 83 *_, ./ri =O(n). O

The running time of both stage 1 and stage 2 is
bounded by the length of the new texts, hence the total
time complexity is @n).

4. Open problems

The algorithm described in this paper is the first to
deal with scaling and permutation. We considered the
case in which the pattern is first permuted and then
scaled. The first challenge is to design &nm) algo-
rithm for the case in which the pattern is first scaled
and then permuted. We also dealt with integer scales.
The second challenge is to deal with scales that are
real numbers.

Acknowledgements

The authors are grateful to the referees for their
helpful comments.

References

[1] A. Amir, A. Butman, M. Crocehmore, G.M. Landau,
M. Schaps, Two-dimensional pattern matching with rotations,
Theoret. Comput. Sci. 314 (1-2) (2004) 173-187.

[2] A. Amir, A. Butman, M. Lewenstein, Real scaled matching,
Inform. Process. Lett. 70 (4) (1999) 185-190.

[3] A. Amir, O. Kapah, D. Tsur, Bster two dimensional pattern
matching with rotations, inProc. 15th Annual Symposium
on Combinatorial Pattern Mehing (CPM 2004), in: Lecture
Notes in Comput. Sci., vol. 3109, Springer, Berlin, 2004.

[4] A. Amir, G.M. Landau, U. Viskin, Efficient pattern matching
with scaling, J. Algorithms 13 (1) (1992) 2-32.

[5] A. Apostolico, Z. Galil (Eds.), Pattern Matching Algorithms,
Oxford University Press, 1997.

[6] R.S. Boyer, J.S. Moore, A fast string searching algorithm,
Comm. ACM 20 (1977) 762-772.

[7] M. Crochemore, W. Rytter, Text Algorithms, Oxford Univer-
sity Press, 1994.

[8] T. Eilam-Tsoreff, U. Vishkn, Matching patterns in strings
subject to multilinear transformations, Theoret. Comput.
Sci. 60 (3) (1988) 231-254.

[9] K. Fredriksson, G. Navarro, E. Ukkonen, Optimal exact and
fast approximate two dimensional pattern matching allow-
ing rotations, in: Proceedings of the 13th Annual Symposium

A. Butman et al. / Information Processing Letters 92 (2004) 293-297 297

on Combinatorial Pattern Matching (CPM 2002), in: Lec-
ture Notes in Comput. Sci., vol. 2373, Springer, Berlin, 2002,
pp. 235-248.

[10] K. Fredriksson, E. UkkonenA rotation invariant filter for
two-dimensional string matching, in: Proc. 9th Annual Sym-
posium on Combinatorial Bern Matching (CPM 1998), in:
Lecture Notes in Comput. Sci., vol. 1448, Springer, Berlin,
1998, pp. 118-125.

[11] D. Gusfield, Algorithms on Strings, Trees, and Sequences:

Computer Science and Comaptibnal Biology, Cambridge
University Press, 1997.

[12] D.S. Hirshberg, Algorithms for the longest common subse-
guence problem, J. ACM. 24 (4) (1977) 664-675.

[13] R. Karp, M.O. Rabin, Efficient randomized pattern-matching
algorithms, IBM J. Res. Dev. (1987) 249-260.

[14] D.E. Knuth, J.H. Morris, V.RPratt, Fast pattern matching in
strings, SIAM J. Comput. 6 (1977) 323-350.

[15] V.I. Levenshtein, Binary codecapable of correcting, deletions,
insertions and reversals, Soviet Phys. Dokl. 10 (1966) 707—
710.

