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Homing sort, i.e., sorting by placement and shift, is a natural way to do hand-sorting.
Elizalde and Winkler showed that (1) any n-element permutation can be sorted by n −1 or
less one-dimensional homing operations; (2) no n-element permutation admits a sequence
of 2n−1 or more homing operations; and (3) the number of n-element permutations that
admit a sequence of 2n−1 − 1 homing operations is super-exponential in n. In the present
paper, we study sorting via two-dimensional homing operations and obtain the following
observations: (1) Any m ×n permutation can be sorted by at most mn − 1 two-dimensional
homing operations. (2) If both vertical-first and horizontal-first homing operations are
allowed, for any integers m � 2 and n � 2, there is an m × n permutation that admits an
infinite sequence of two-dimensional homing operations. (3) If only vertical-first homing
operations are allowed, for any integers m � 3 and n � 2, there is an m × n permutation
that admits an infinite sequence of two-dimensional homing operations. (4) The number of
2 × n permutations that admit sequences of Ω(2n) vertical-first two-dimensional homing
operations is super-exponential in n. (5) No 2 × n permutation admits a sequence of (2n)!
or more vertical-first two-dimensional homing operations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let π be an n-element permutation. Let π [i] be the element in position i of π . Let π(i) be the position of element i
in π . Permutation π is sorted if π [i] = i holds for each i = 1,2, . . . ,n. Let home(i) be the one-dimensional homing operation
such that the permutation π ′ = π ◦ home(i) obtained by applying home(i) on π is as follows: If π [i] < i, let

π ′[ j] =
⎧⎨
⎩

π [ j] if j < π(i) or j > i

i if j = i

π [ j + 1] if π(i) < j < i

If i < π [i], let

π ′[ j] =
⎧⎨
⎩

π [ j] if j < i or j > π(i)

i if j = i

π [ j − 1] if i < j < π(i)
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That is, home(i) places element i at the i-th position of π and shifts accordingly the elements of π between positions i and
π(i). For instance, let π1, π2, π3, and π4 be the following 7-element permutations.

We have π2 = π1 ◦ home(6), π3 = π2 ◦ home(4), and π4 = π3 ◦ home(2). We say that permutation π1 admits a sequence of
� homing operations home(i1),home(i2), . . . ,home(i�) if for each j = 1,2, . . . , �, element i j is not at the i j-th position of
permutation π j+1 = π j ◦ home(i j). For instance, in the above example, π1 admits the sequence home(6),home(4),home(2)

of three homing operations. However, π4 does not admit any sequence of two or more homing operations, since π4 admits
exactly two homing operations home(4) and home(5) and π4 ◦ home(4) = π4 ◦ home(5) is the sorted permutation, which
does not admit any homing operation. Elizalde and Winkler [1] studied one-dimensional homing sort, i.e., sorting via the
above “placement-and-shift” one-dimensional homing operations, and obtained the following results: (1) Any n-element
permutation can be sorted by at most n − 1 homing operations. (2) The number of n-element permutations that admit a
sequence of 2n−1 − 1 homing operations is super-exponential in n. (3) No n-element permutation admits a sequence of
2n−1 or more one-dimensional homing operations. Therefore, if one iteratively applies homing operations on an n-element
permutation, the permutation has to be sorted in 2n−1 − 1 or less iterations.

One-dimensional homing sort can be naturally extended to two dimension. Let π be an m × n permutation. Let [i, j]
be the position at the i-th row and the j-th column. Let row[i, j] = i and col[i, j] = j. Let (i, j) be the element whose
home position is [i, j]. Let π [i, j] be the element at position [i, j] of π . Let π(i, j) be the position of element (i, j) in π .
Permutation π is sorted if π [i, j] = (i, j) holds for all indices 1 � i � m and 1 � j � n, i.e., each element is at its home
position. For any element (i, j) of π , we have two kinds of two-dimensional homing operations.

• Let homev(i, j) be the vertical-first two-dimensional homing operation, which (1) vertically places element (i, j) to position
[i, col(π(i, j))], (2) vertically shifts all the elements between positions π(i, j) and [i, col(π(i, j))], (3) horizontally places
element (i, j) to its home position [i, j], and (4) horizontally shifts all the elements between positions [i, col(π(i, j))]
and [i, j].

• Let homeh(i, j) be the horizontal-first two-dimensional homing operation, which (1) horizontally places element (i, j) to
position [row(π(i, j)), j], (2) horizontally shifts all the elements between position π(i, j) and [row(π(i, j)), j], (3) ver-
tically places element (i, j) to its home position [i, j], and (4) vertically shifts all the elements between positions
[row(π(i, j)), j] and [i, j].

For instance, let π1, π2, and π3 be as follows.

We have π2 = π1 ◦ homev(1,3) and π3 = π1 ◦ homeh(1,3). Permutation π1 admits a sequence of � homing operations
homex1 (i1, j1),homex2 (i2, j2), . . . ,homex�

(i�, j�) if for each k = 1,2, . . . , �, element (ik, jk) is not at position [ik, jk] of permu-
tation πk+1 = πk ◦ homexk (ik, jk). In the present paper, we make an initial attempt in studying sorting via two-dimensional
homing operations and obtain the following observations.
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Theorem 1.1.

1. Any m × n permutation can be sorted by at most mn − 1 two-dimensional homing operations.
2. If both vertical-first and horizontal-first homing operations are allowed, for any integers m � 2 and n � 2, there is an m × n

permutation that admits an infinite sequence of two-dimensional homing operations.
3. If only vertical-first homing operations are allowed, for any integers m � 3 and n � 2, there is an m × n permutation that admits

an infinite sequence of two-dimensional homing operations.
4. The number of 2 × n permutations that admit a sequence of Ω(2n) vertical-first two-dimensional homing operations is super-

exponential in n.
5. No 2 × n permutation admits a sequence of (2n)! or more vertical-first two-dimensional homing operations.

For related work of one-dimensional homing sort, see Elizalde and Winkler [1] and the references therein. In particular,
a similar Topswops algorithm of Conway was discussed by Gardner [2, p. 76].

The rest of the paper is organized as follows. Section 2 gives the preliminaries. Section 3 proves the theorem of the
paper. Section 4 concludes the paper with a couple of open questions.

2. Preliminaries

Let counth(π, i) be the number of elements in the first i rows of π whose home positions are also in the first i rows
of π . Let countv(π, j) be the number of elements in the first j columns of π whose home positions are also in the first j
columns of π .

Lemma 2.1. If π and π ′ are m × n permutations such that π = π ′ ◦ homev(i, j) holds for some element (i, j), then countv(π ′, c) �
countv(π, c) holds for each c = 1,2, . . . ,n and counth(π ′, r) � counth(π, r) holds for each r = 1,2, . . . ,m.

Proof. We prove the inequality for countv . The inequality for counth can be proved similarly. Since the statement holds
trivially when c = n or countv(π ′, c) = countv(π, c), the proof focuses on the cases with 1 � c < n and countv(π ′, c) �=
countv(π, c). Suppose that π = π ′ ◦ homev(i, j). Since π [i, j] = (i, j), we have j = col(π(i, j)). Let j′ = col(π ′(i, j)). Let
i′ = row(π ′(i, j)). By countv (π, c) �= countv (π ′, c), operation homev(i, j) moves some elements across the boundary between
columns c and c + 1, implying that either j � c < j′ or j′ � c < j holds.

Case 1. j � c < j′ . Operation homev(i, j) moves element (i, j) into the first c columns and shifts element π [i, c] out of the
first c columns. By j � c, element (i, j) is in the first c columns of π . If element (i, c) is also in the first c columns of π ,
then countv(π ′, c) = countv (π, c); otherwise, countv (π ′, c) < countv(π, c).

Case 2. j′ � c < j. Operation homev (i, j) moves element (i, j) out of the first c columns and shifts element π [i, c + 1] into
the first c columns. By j > c, element (i, j) is not in the first c columns of π . If element (i, c + 1) is not in the first c
columns of π , then countv(π ′, c) = countv(π, c); otherwise, countv(π ′, c) < countv(π, c). �
3. Our proof

This section proves Theorem 1.1.

Proof. To see Theorem 1.1(1), one can verify that any m × n permutation π can be sorted by the following mn iterations:
For each � = 1,2, . . . ,mn, if π(i, j) �= [i, j] holds for the numbers i and j with � = i + ( j − 1) · m, then we replace π by
π ◦ homev(i, j).

To see Theorem 1.1(2), let π1,π2,π3,π4 be as follows.

One can verify π2 = π1 ◦ homev(1,1), π3 = π2 ◦ homeh(2,1), π4 = π3 ◦ homev (2,2), and π1 = π4 ◦ homeh(1,2).
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To see Theorem 1.1(3), let π1,π2, . . . ,π8 be as follows.

We have π2 = π1 ◦ homev(3,1), π3 = π2 ◦ homev(2,2), π4 = π3 ◦ homev(1,1), π5 = π4 ◦ homev(2,2), π6 = π5 ◦ homev(3,2),
π7 = π6 ◦ homev(2,1), π8 = π7 ◦ homev(1,2), and π1 = π8 ◦ homev(2,1). Hence we have an infinite sequence of two-
dimensional homing operations for some 3 × 2 permutation, which can be embedded into an m × n permutation for any
integers m � 3 and n � 2. Theorem 1.1(3) is proved.

Theorem 1.1(4) follows from result (3) of Elizalde and Winkler [1] by considering those 2 × n permutations π such that
row(π(i, j)) = i holds for each i = 1,2 and j = 1,2, . . . ,n.

The rest of the section lets home(i, j) = homev (i, j) and proves Theorem 1.1(5). Assume for contradiction that some
2 × n permutation admits a sequence of more than (2n)! vertical-first two-dimensional homing operations. Since there are
exactly (2n)! distinct 2 × n permutations, there are � distinct 2 × n permutations π1,π2, . . . ,π� = π0 for some integer �

with 2 � � � (2n)! such that

πk+1 = πk ◦ home(ik, jk)

holds for each k = 0,1, . . . , � − 1. There is an integer k with 0 � k � � − 1 such that col(πk(ik, jk)) �= jk , since otherwise
this homing sequence would yield a 1-dimensional homing cycle, contradicting with result (3) of Elizalde and Winkler [1].
Without loss of generality, we assume that an element (ik, jk) with 0 � k � � − 1 is homed to the left in the above homing
cycle. That is,

L = {
k

∣∣ 0 � k � � − 1 and col
(
πk+1(ik, jk)

)
< col

(
πk(ik, jk)

)}

is non-empty. Without loss of generality, we may assume 0 ∈ L, i0 = 1, and j0 � jk holds for each k ∈ L. Hence we have
1 � j0 � n − 1. By Lemma 2.1, equation

counth(πk+1,1) = counth(πk,1) (1)

holds for each k = 0,1, . . . , � − 1. Since π0 = π� , by Lemma 2.1, equation

countv(πk+1, c) = countv(πk, c) (2)

holds for each k = 0,1, . . . , � − 1 and each c = 1,2, . . . ,n. We have π1[1, j0] = (1, j0), so π1 is as follows.

By 0 ∈ L, element (1, j0) is shifted from the j0-th column to the ( j0 + 1)-st column at some point. The only way to shift
element (1, j0) out of the first j0 columns is by operation home(2, j0) which shifts element (1, j0) from position [2, j0] to
position [2, j0 + 1].

Let k0 be the smallest integer such that πk0 is as follows.

Let k∗ be the largest integer with k0 � k∗ such that element (1, j0) is in the second row of permutations πk0 ,πk0+1, . . . ,πk∗ .
By Eq. (1) and the definition of j0, the only way for element (1, j0) to leave the second row is through operation home(1, j0),
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implying (ik∗ , jk∗ ) = (1, j0). Element (2, j0) is not at its home position in permutation πk∗ , since otherwise elements (1, j0)

and (2, j0) would never get out of the first j0 columns for the rest of the homing cycle, a contradiction. Let k∗
0 be the largest

integer with k0 � k∗
0 < k∗ such that element (2, j0) is at its home position [2, j0] in permutations πk0 ,πk0+1, . . . ,πk∗

0
.

By the definitions of L and j0, operation home(ik∗
0
, jk∗

0
) shifts element (2, j0) from position [2, j0] to position [1, j0] or

[2, j0 − 1]. We have ik∗
0
= 2, jk∗

0
� j0 + 1, and col(πk∗

0
(ik∗

0
, jk∗

0
)) � j0. Therefore, element (1, j0) is not at position [1, j0 + 1]

in permutation πk∗
0
, since otherwise we would have countv(πk∗

0+1, j0) = countv (πk∗
0
, j0) + 1, contradicting with Eq. (2).

Let k1 be the smallest integer with k0 < k1 � k∗
0 such that element (1, j0) is not at position [2, j0 +1] in permutation πk1 .

By k0 < k1 � k∗
0 < k∗ , element (2, j0) is at its home position in πk1 and element (1, j0) is in the second row of πk1 . Thus,

operation home(ik1−1, jk1−1) shifts element (1, j0) to position [2, j0 + 2]. Hence we know j0 � n − 2 and (ik1−1, jk1−1) =
(2, j0 + 1). Permutation πk1 is as follows.

Let k∗
1 be the largest integer with k1 � k∗

1 � k∗
0 such that element (2, j0 + 1) is at its home position in permutations

πk1 ,πk1+1, . . . ,πk∗
1
. Since operation home(ik∗

1
, jk∗

1
) shifts element (2, j0 + 1) out of position [2, j0 + 1], it follows from the

definitions of j0 and L that ik∗
1
= 2, jk∗

1
� j0 + 2, and col(πk∗

1
(ik∗

1
, jk∗

1
)) � j0 + 1. Thus, πk∗

1
(1, j0) �= [1, j0 + 2], since otherwise

we would have countv(πk∗
1+1, j0 + 1) = countv(πk∗

1
, j0 + 1) + 1, contradicting with Eq. (2). It follows that there is a smallest

integer k2 with k1 < k2 � k∗
1 such that element (1, j0) is not at position [2, j0 + 2] in permutation πk2 . By k0 < k1 < k2 �

k∗
1 � k∗

0 � k∗ , elements (2, j0) and (2, j0 + 1) are at their home positions in πk2 and element (1, j0) is in the second row of
πk2 . Therefore, operation home(ik2−1, jk2−1) shifts element (1, j0) from position [2, j0 + 2] to position [2, j0 + 3]. Hence we
know j0 � n − 3 and (ik2−1, jk2−1) = (2, j0 + 2). Permutation πk2 is as follows.

By continuing the above argument, there is a smallest integer k with k0 < k < k∗ such that πk is as below and (ik, jk) =
(2,n) and col(πk(2,n)) � n − 1 hold.

We have countv(πk+1,n − 1) = countv(πk,n − 1) + 1, contradicting with Eq. (2). Theorem 1.1(5) is proved. �
4. Concluding remarks

It would be of interest to see bounds tighter than Theorems 1.1(4) and 1.1(5). Following Elizalde and Winkler [1], we
leave open the exact number of worst-case 2 × n permutations.
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