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Abstract—It is known that protein complexes play 

important roles in many cellular processes. Many 

protein complex prediction methods are based on the 

identification of pseudo-cliques, and dense protein-

protein interaction (PPI) regions. Amino acids’ 

physiochemical properties are not generally used in the 

feature representation of protein complexes. The results 

of the physiochemical properties study for yeast protein 

complexes are reported. A 10-fold cross-validation test is 

performed based on the features to test the classification 

accuracy of the Support Vector Machine (SVM). It is 

found that the physiochemical properties serve as 

additional important features besides PPI and Gene 

Ontology. 

Index Terms- protein complexes, physiochemical 

properties, principle component analysis, logistic 

regression, support vector machine 

 INTRODUCTION 

Proteins perform distinct and well-defined functions. In 
the last ten years or so, we have seen many high-throughput 
experimental techniques attempt to crystallize proteins [1], 
determine peptide sequences using mass spectrometry [2-4] , 
three-dimensional structures, and protein-protein interaction 
networks (PPIN) through, such as, NMR spectroscopy [5-6] 
and the genome-wide yeast two hybrid [7]. A lot is known 
about how proteins interact at the cellular level.  There are a 
few major publicly available databases on PPI, which 
include DIP [8-9] (Xenarios et al. 2001, Salwinski et al. 
2004), BOND [10] (Alfarano et al. 2006), HPRD [11] 
(Mishra et al. 2006), IntAct [12] (Kerrien et al. 2007), MINT  
[13] (Chatraryamontri et al. 2007), MIPS [14] (Mewes et al. 
2008) and BioGRID [15] (Breitkreutz et al. 2008). 

It was reported that [16] in the yeast organism, the 
protein-protein interactions (PPI) are not random but well 

organized. It was also found that most of the neighbors of 
highly connected proteins have few neighbors, that is highly 
connected proteins are unlikely to interact with each other. 

It is known that proteins do not work alone; rather they 
act in a cooperative manner through the formation of protein 
complex in many biological processes [17]. Yeast is chosen 
as the model system for the present study for three reasons; 
(i) the complete genome sequence has been completed since 
year 1996 [18], (ii) the PPI are well studied [19], and (iii) 
there are many molecular tools, such as cDNA, genomic 
libraries, bacterial artificial chromosomes, microarray[20], 
and ESTs are available for the biological functions study.  
Furthermore, various approaches, such as genomic datasets 
[21] or the mass spectrometry scores and PPI data [22], are 
used to make yeast protein complexes prediction. 

Recent experimental studies indicate that the protein 
complex can be visualized as a unit composed of the cores, 
modules and attachments [23-24]. Core proteins are proteins 
that have relatively more interactions among themselves and 
belong to a unique protein complex [25-26]. Attachment 
proteins bind to the core proteins with relative fewer 
interactions among them. Module proteins are a subset of the 
attachment, which are always present together, and module 
proteins can be present in more than one complex. A recent 
study indicated that the prediction of protein complexes 
based on the core-attachment model can achieve better 
performance than graphical approaches [27].  

It is known that many protein complex prediction 
calculations are based on the identification of pseudo-cliques 
[28-31]. Our previous study indicated that interaction dense 
regions represent yeast protein complexes in up to 20% of 
cases [32]. A rather large proportion of protein complexes 
have a lower density of PPI. It is conjectured that prediction 
approaches based on the assumption that complexes are 
composed of highly PPI dense regions can predict a rather 
limited number of complexes. 

In this study we propose characterizing the protein 
complexes by considering physiochemical properties. Amino 
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acids’ physiochemical properties are not generally used in 
the feature representation of protein complexes. There is an 
attempt in using physiochemical properties in detecting 
remote protein homology [33] with rather successive 
performance. Here we propose to consider the following 
physiochemical properties of a complex; i.e. hydrophobic, 
hydrophilic, pI value (iso-electric point), half-life, length 
distribution and amino acid compositions. Instead of trying 
to classify complexes from PPI data only, one of the major 
objectives of the present study is to classify complexes based 
on physiochemical properties as well as PPI information.  

It is proposed that the results of this work are helpful in 
improving the prediction accuracy whether a complex 
predicted by PPI is a real complex or not; assuming that 
physiochemical parameters are supplied. In a previous study 
[34] it is suggested that physiochemical properties may serve 
as additional important features in classifying yeast protein 
complexes. 

Physiochemical parameters are used to construct the 
feature vectors and trained by support vector machine (SVM) 
[35] for protein complexes classification purpose. A 6-fold 
cross-validation test is performed to validate the 
classification accuracy of SVM based on the major features. 

METHODS 

A total of 1643 and 491 yeast protein complexes data 
were retrieved from BOND [36] and Yeast [37] respectively. 
All the subunits’ accession numbers are labeled according to 
gene index for protein. 

A. Protien-protein interaction density 

The first parameter is called the density of interaction, 
which describes the experimentally recorded PPI among the 
subunits of a protein complex relative to the maximum 
possible PPI (i.e. clique). Given that a protein complex has N 
subunits, it can have 2/)1(* NN  possible PPIs, including 

self-interaction. Then the density of PPI, , among the 
subunits of a protein complex, is given by 

 %100*
)1(*

2




NN

s
  

where s is the observed number of PPIs among the subunits, 

and the fraction of nodes in the largest connected cluster, , 

so-called connectedness, of a protein complex is defined by, 

N

M 1
                                         (2) 

where M is the largest distance of the largest connected 
cluster obtained by the Floyd-Warshall shortest path 

algorithm. For M equals to zero,  is set to zero, this simply 
means no subunit is connected. PPI data are obtained from 
the BioGrid database. 

B. Sequence similarity 

An all-against-all pairwise sequence alignment is 

performed by using the BLAST program. Output files 

reported by the BLAST program for the whole yeast 

complexes are parsed, and the average of the percentage of 

similarity value for each complex is computed. The average 

of the sequence similarity of a complex C, IC, is defined by, 
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where Iij denotes the sequence similarity percentage 
reported by BLAST, i and j are labels (i = 1, … N-1) which 
denote the complex subunits, and C denotes one of the yeast  
protein complexes.  

It is also noted that special care is required for 

complexes consisting of repeated subunits. Let D denote a 

complex composed of n and k distinct and repeated subunits 

respectively, i.e. D = {A, …..N, 1, …. k}, where 1, …. 

and k are repeated subunits. For the complex D, the 

sequence similarity percentage, I, received contributions 

from I
cross

 and I
repeated

, which are defined by 
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and I
repeated

 equals to k(k-1)/2. The average of the sequence 
similarity of D is given by 
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The same argument can be generalized for more than one 

type of repeated subunits. In order to demonstrate the 

statistical significance of the BLAST results, a randomize 

version of the protein complexes is performed, in which 

subunits are randomly assigned to each complex, while 

keeping the total number of protein complexes, subunits, 

and the number of subunits within each complex the same 

as the original. The randomized results are compared with 

the raw results. 

C. Jaccard index of Gene Ontology 

Given the Gene Onotology (GO) annotation of protein 

complexes A and B, the Jaccard index (JI) of GO is defined 

as 

||

||

BA

BA
JI




                                       (6) 

where || BA  and || BA denote the cardinality of BA  

and BA respectively. 

D. Physiochemical properties 

Values of the physiochemical properties for the subunits 
can be computed from several bioinformatics tools; see 
Table 1.  

The hydrophobic and hydrophilic values for the twenty 
types of amino acids are provided by the Kyte and Doolittle 
(KD) scale [38]. ExPASy provides the tool, ProtParam [39], 
to compute the physicochemical parameters of a protein 
sequence, such as pI, half-life, length distribution of subunits 
within a complex. ProtParam computes various 
physicochemical properties that can be deduced from the 
protein sequence. 
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TABLE I.  TOOLS USED FOR COMPUTING THE PHYSIOCHEMICAL 

PROPERTY OF A PROTEIN SUBUNIT 

Physiochemical property Tool 

hydrophobic, hydrophilic KD scale [38] 

pI value ProtParam [39] 

half-life ProtParam 

 
The half-life is a prediction of the time it takes for half of 

the amount of protein in a cell to disappear after its synthesis 
in the cell. ProtParam relies on the "N-end rule", which 
relates the half-life of a protein to the identity of its N-
terminal residue [40]. The length and amino acid 
compositions are obtained from the subunit’s sequence 
information. 

Since the physiochemical value varies from subunit to 
subunit, the coefficient of variation (CV) is introduced to 
represent the whole complex.  Assuming a protein complex 
D contains n subunits, given that subunit i has a 
physiochemical value xi, let CV(D) represents the coefficient 
of variation for physiochemical value x for the whole 
complex, and it is defined by 
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where x  denotes the average of the physiochemical value 

for the whole complex. 
Machine learning method SVM is used to train the input 

feature vectors. In particular, the LIBSVM [41] is used for 
complex classification in our study. LIBSVM provide 
several kernel function for classification, i.e. linear, 
polynomial, sigmoid and radial basis function (RBF). 

Randomized samples are generated in order to train 
protein complex classification using SVM. Tests are 
performed in which assignment of protein subunits is 
randomized while keeping seven subunits for each complex 
in forming random complexes.  

Since the random set will resulted in trivial classification, 
therefore, we made use of the BioGrid data, input that in 
COACH [31] to generated a set of 542 pseudo-complexes. 
COACH is a protein complex prediction method which 
infers complexes using graph clustering techniques. This set 
of pseudo-complexes is put together with the random set to 
form the complete randomized set. Then, the physiochemical 
values for each of the complex in the randomized set are 
computed. The results of the randomized set are taken 
together with the original complexes’ values to form the 
training set, and input into the SVM for training.  

RESULTS 

E. Protien-protein interaction density 

Figure 1 showed that around 45% of the protein 

complexes obtained from BOND has a density of interaction 

of over 90%, and the other 55% of complexes account for 

other  values. It is also a surprise that more than 90% 

(yeast data) of protein complexes have  values less than 

30%.  

 

 
Figure 1.  The plot of relative frequency of density of protein-protein 

interaction of yeast protein conplexes obtained from the Yeast and BOND 

databases. 

 

In other words, quite a significant number of complexes 

do not have PPI among their subunits. These results 

suggested that algorithms based on the assumption that 

complexes are composed of highly PPI dense regions can 

only predict a limited numbers of complexes. 

F. Seqeunce similarity 

For the protein complex subunits sequence similarity 

study, the relative frequency of protein complexes versus 

the sequence identity and similarity percentage intervals is 

depicted in Figure 2 and 3 respectively. It is noted that the 

distributions of the relative frequency of protein complexes 

against the sequence identity and similarity interval are not 

uniform. Most of the protein complexes have an average 

sequence identity and similarity in the 30% -40% and 50%-

60% intervals respectively. 

 

 
Figure 2.  The plot of relative frequency of sequence identity of yeast 
protein conplexes obtained from the Yeast and BOND databases. 
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Figure 3.  The plot of relative frequency of sequence similarity of yeast 

protein conplexes obtained from the Yeast and BOND databases. 

 

If it is assumed that the “twilight zone” of the sequence 

similarity for two protein sequences is taken to be 30%, then 

all of the complexes have an overall average sequence 

similarity over the 30% threshold. In other words, protein 

complexes are composed of subunits with similar protein 

sequences. Furthermore, both of the yeast and BOND data 

show similar distributions of relative frequency. 

G. Gene ontology 

In Figure 4, we plot the relative frequency of Jaccard 

index of GO for all the yeast protein complexes. It is found 

that about 28.9% and 17.5% of the complexes have Jaccard 

index over 0.3 for the BOND and yeast database 

respectively. This suggests that protein complexes are 

composed of subunits with a fair amount of similar 

molecular functions. It is noted that both of the yeast and 

BOND data show similar distributions of relative frequency. 

 

 
Figure 4.  The plot of relative frequency of Jaccard index of gene ontology 

of yeast protein conplexes obtained from the Yeast and BOND databases. 

 

H. Hydrophobic and hydrophilic properties  

The hydrophobic (Hb) and hydrophilic (Hp) values for the 
amino acids in each subunit are added together. Since both 
the Hb and Hp values vary from subunit to subunit within a 
complex, therefore, their averages are computed, and these 
two averages are used to represent the whole complex.  

 

 
Figure 5.  The plot of relative frequecny of CV of hydrophilic for yeast 

protein conplexes obtained from the Yeast and BOND databases.  

 
Figure 6.  The plot of relative frequecny of CV of hydrophobic for yeast 

protein conplexes obtained from the Yeast and BOND databases. 

It is noted that the BOND data shows a smaller CV 

hydrophilic and hydrophobic value relative to the yeast 

database. 

I. pI value 

The pI value for every protein complex’s subunit is 

obtained from Protoparm. For each complex, the CV for pI 

is computed, after that we grouped the values CV into a 10% 

interval. And the plot of the relative frequency versus the 

10% interval is shown in Figure 7. It is noted that the 

BOND data shows a smaller CV pI value relative to the 

yeast database. 
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Figure 7.  The plot of relative frequecny of CV of pI for yeast protein 

conplexes obtained from the Yeast and BOND databases.  

J. Length distribution of subunits within a 

complex 

Length of every protein subunits for the complexes is 
computed. For each complex, the CV is computed, then we 
group the CV into a 10% interval, the plot of the relative 
frequency versus the 10% interval is shown in Figure 8. 
Again, it is noted that the BOND data shows a smaller CV 
value relative to the yeast database. 

 

Figure 8.  The plot of relative frequecny of CV of length of yeast protein 

conplexes obtained from the Yeast and BOND databases. 

K. Support vector machine classification results 

Using the RBF kernel, the classification results predicted 

by the SVM for several combinations of the major features 

are given in Table I.  

TABLE I.  CLASSFICATION RESULTS OF PROTEIN CO MPLEX FOR DIFFERENT 

FEATURES AND PHYSIOCHEMICAL PROPERTY COMBINATIONS 

Classification features 
Accuracy(%) 

Yeast BOND 

GO 84.4 79.5 

bit score 65.9 64.1 

Density of PPI 84.5 96.1 

CV of pI 64.0 58.1 

hydrophilic 52.5 58.0 

CV of length 53.4 57.8 

GO & Density of PPI 89.6 96.1 

GO & bit score 86.4 79.5 

Density of PPI  & bit score 84.9 95.7 

GO & CV of pI 84.5 79.6 

GO & hydrophilic 84.4 79.5 

GO & CV of length 84.9 79.5 

Density of PPI & CV of pI 83.7 96.1 

Density of PPI & hydrophilic 84.4 96.1 

Density of PPI & CV of length 84.6 96.1 

GO, Density of PPI & bit score 88.8 95.8 

GO, Density of PPI & pI 89.0 96.2 

GO, Density of PPI & hydrophilic 89.4 96.2 

GO, Density of PPI, bit score & pI 89.0 95.9 

GO, Density of PPI, bit score & hydrophilic 88.6 95.8 

GO, Density of PPI, bit score, pI & length 88.5 95.8 

 
The results indicate that classification based only on 

single feature can achieve a 63.9-80.7% accuracy, with GO 
and pI obtain the highest accuracy for topological parameter 
and physiochemical feature respectively. With the addition 
of a second feature, the classification accuracy raises to 69.8-
82.6%. Classification accuracy remains more or less over 
83% on adding a third feature, where the three features; (i) 
GO, density of PPI & sequence similarity and (ii) GO, 
density of PPI & CV of pI achieves the highest (84.8%) and 
the second highest (84.2%) accuracy respectively. It is found 
that the highest accuracy (85.1%) is achieved for the 
combination of five features, i.e. GO, density of PPI, 
sequence similarity, pI and length. 

SUMMARY 

Several topological features and physiochemcial 
parameters are combined to describe protein complexes and 
gain better insights for our understanding of protein complex 
architecture.  

Given the physiochemical features for a predicted 
complex, a possible application of the present study is on 
improving the accuracy of determining whether the complex 
inferred by PPI is a real complex or not. The present work 
can be an interesting discovery that strongly suggests 
integrating physiochemical data to improve protein 
complexes prediction. 
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