
Theoretical Computer Science 332 (2005) 391–404
www.elsevier.com/locate/tcs

The wide window string matching algorithm

Longtao Hea,∗, Binxing Fanga, Jie Suib
aResearch Center of Computer Network and Information Security Technology, Harbin Institute of Technology,

Harbin 150001, PR China
bGraduate School of the Chinese Academy of Sciences, Beijing 100039, PR China

Received 19 December 2003; received in revised form 11 November 2004; accepted 25 November 2004
Communicated by M. Crochemore

Abstract

Generally, current string matching algorithms make use of a window whose size is equal to pattern
length. In this paper, we present a novel string matching algorithm named WW (for Wide Window)
algorithm, which divides the text into�n/m� overlappingwindows of size 2m−1. In thewindows, the
algorithm attemptsmpossible occurrence positions in parallel. It firstly searches pattern suffixes from
middle to right with a forward suffix automaton, shifts the window directly when it fails, otherwise,
scans the corresponding prefixes backward with a reverse prefix automaton. Theoretical analysis
shows thatWW has optimal time complexity of O(n) in the worst, O(n/m) best and O(n(log� m)/m)

for average case. Experimental comparison ofWWwith existing algorithms validates our theoretical
claims for searching long patterns. It further reveals that WW is also efficient for searching short
patterns.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Suffix automaton; Reverse prefix automaton; Bit parallelism; Wide window algorithm; String
matching

1. Introduction

String matching is always one of the research focuses in computer science[18,12,22].
It is a very important component of many problems, such as text processing, linguistic

∗ Corresponding author.
E-mail addresses:hlt@hit.edu.cn(L. He),bxfang@mail.nisac.gov.cn(B. Fang)
URL: http://icuc.sf.net/cucme/.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.002

http://www.elsevier.com/locate/tcs
mailto:hlt@hit.edu.cn
mailto:bxfang@mail.nisac.gov.cn
http://icuc.sf.net/cucme/

392 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

Table 1
Four types of string matching algorithms

Pattern factor Scanning forward Scanning backward

Prefix KMP, Shift-Or RF, TRF, BNDM
Suffix FDM, TNDM BM and its variants

translating, data compression, search engine, speech recognition, information retrieval,
computational biology, computer virus detection, network intrusion detection, and so on.
Formally, the stringmatching problem consists of finding all occurrences (or the first occur-
rence) of a pattern in a text, where the pattern and the text are strings over some alphabet.
In this paper, thepatternand thetextare denoted, respectively, asx = x1x2 . . . xm of

lengthmandy = y1y2 . . . yn of lengthn. Thealphabetis denoted as� of size�. And the
set of all suffixes of stringx is denoted asSuf(x). Likewise, the set of all prefixes is denoted
asPre(x).
Current stringmatching algorithmswork as follows[4]. They scan the text with awindow

whose size is generallym. They first align the left ends of the window and the text—this
specific work is called anattempt—then inspect the symbols in the window with different
strategies, and after a whole match of the pattern or a mismatch, they shift the window to
the right. They repeat the same procedure until the right end of the window goes beyond
the right end of the text. This mechanism is usually called thesliding window mechanism.
According to the scanning strategies in the sliding window, string matching algorithms are
classified into four categories (see Table1):
(1) Scanning pattern prefixes forward: The algorithms such as KMP[15] and Shift Or[2],

perform the inspections from left to right in the window. They keep the information
about all matched pattern prefixes with some automata. The worst case time complex-
ities of this kind of algorithms are O(n), which is optimal in theory. But since they
inspect the symbols one by one, their average case time complexities are bad.

(2) Scanning pattern suffixes backward: In order to exploit the inspected information, BM
[3] and its variants[23] scan from right to left in the window. They shift the window
mainly according to the inspected pattern suffixes. These suffixes, which are also the
suffixes of the window, are able to improve the length of the shifts, so many symbols of
the text are not necessary to inspect. Thus, though the worst case time complexities of
the kind of algorithms are O(mn), their average case time complexities are sublinear.

(3) Scanning pattern prefixes backward: This kind of algorithms, like RF[16], TRF [9],
and BNDM [17], match pattern prefixes by scanning the symbols with the suffix
automaton1 [10] of the reverse pattern from right to left in the window, to improve the
lengthof theshifts further.Their averagecase timecomplexities reachO(n(log� m)/m),
which is theoretically optimal[25].

(4) Scanning pattern suffixes forward: FDM [4] is the first one in this category. But since it
does not take full advantage of the suffix automaton, FDM has the same complexities
as KMP. TNDM[19] is a two-way modification of BNDM. It scans a pattern suffix

1Also called DAWG for Directed Acyclic Word Graph.

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 393

forward before normal backward scan as BNDM.The experiments indicate that TNDM
examines less symbols than BNDM on the average.

In this paper, we studied on the idea of scanning pattern suffixes forward. A new string
matching algorithm (called WW for Wide Window) is proposed. We prove via theoretical
analysis that the time complexities of this algorithm are optimal in worst, best and average
cases:O(n), O(n/m) andO(n(log� m)/m). Experimental comparison ofWWwith existing
algorithms validates our theoretical claims for searching long patterns. It further reveals that
WW is also efficient for searching short patterns.
The rest of this paper is organized as follows. In Section2, the basic idea and two

important automata are introduced. Section3 presents the detailed algorithm and a step-
by-step example. In Section4, the time and space complexities are analyzed. Experimental
results are given in Section5, followed by conclusions in Section6.

2. Basic idea and two useful automata

2.1. Basic idea

After each alignment, the symbolyi being inspected in the text is not only related to
them − 1 symbolsyi−m+1, yi−m+2, . . . , yi−1 before (according to which, the algorithms
such as BM scan from right to left in the window of sizem), but also them − 1 symbols
yi+1, yi+2, . . . , yi+m−1 after (according to which, the algorithms such as KMP scan from
left to right in the window of sizem). Well then, current inspected symbol and its left and
rightm − 1 symbols compose the window of size 2m − 1. Charras et al.[5] have studied
the similar idea. They presented three algorithms: Skip, KMPSkip, and AlphaSkip. The
algorithms perform well for small alphabets and very long patterns. But since they make
the attempts in an isolated manner in the same alignment, the most useful information is
lost. Thus, many improvements can be made on this idea.
In the window, we can scan the pattern suffixes frommiddle to right with a suffix automa-

ton first, and then scan corresponding pattern prefixes from middle to left with a reverse
prefix automaton if necessary. In this way, the useful information relevant to the middle
symbol can be scanned completely, and all occurrences containing the middle symbol in
the window can be found, so that the loss of the information is minimized.
Our new algorithm makes use of two kinds of automata, respectively: forward suffix

automaton and reverse prefix automaton.

2.2. Suffix automaton(SA)

The suffix automaton of a stringx of lengthm is defined as the minimal deterministic
(non-necessarily complete) automaton that recognizes the (finite) set of suffixes ofx [6]. It
is denoted bySA(x) in this paper.
An example of suffix automaton is displayed in Fig.1, which accepts the set of suffixes

of stringaabbabb: {�, b, bb, abb, babb, bbabb, abbabb, aabbabb}.
The suffix automaton is a well-known structure[6,11,20,1,8]. The size ofSA(x) is linear

in m (counting both nodes and edges), and a linear on-line construction algorithm exists

394 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

a

2 3b 4b 5a 6b1 a b0 a

3' bb 4'

ab
b

3"

7

Fig. 1.SA(aabbabb).

7 6a 5a 4b 3b 2a 1b

b
b

b b

0b

a

a

Fig. 2.RPA(aabbabb).

[6]. A very important fact for our algorithm is that this automaton can not only be used
reversedly to recognize the pattern prefixes[16,11], but also be used forward to recognize
the pattern suffixes.

2.3. Reverse prefix automaton(RPA)

Reverse prefix automaton mentioned in this paper is in fact the deterministic finite au-
tomaton of reverse pattern, except for running in the reverse direction. The algorithm runs
RPAonly if SAhas matched at least one non-null suffix.RPAdoes not start from the tradi-
tional initial state, but from the corresponding state of the maximal suffix matched bySA.
Formally:

Definition 1. The RPA of a stringx is a quintupleA(Q,�, �, S, T), where
Q = Suf (x) = {�, xm, xm−1xm, . . . , x2 . . . xm−1xm, x}. In practice, stateq = xtxt+1

. . . xm is usually represented by its length|q| = m− t + 1;
� is the set of all symbols appearing in the text and pattern;
� : Q× �→ Q is the transition function.�(q, a) = aq, if and only if aq ∈ Suf (x); or

�(q, a) = p, wherep is the maximum inSuf (x) ∩ Pre(aq);
S = Q−{�} is the set of initial states,� /∈ S because scanning withRPAis not necessary

when the suffix matched bySAis �;
T = {x} is the set of terminal states, denoting a prefix (which concatenates the suffix

matched bySAinto a pattern) is matched.

As an example,RPA(aabbabb) is given in Fig.2. Starting from different initial states
1, 2, 3, 4, 5, 6 and 7, theRPAcan accept different prefixes in a reverse way, respectively:
aabbab, aabba, aabb, aab, aa, a and�.

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 395

The construction ofRPAis similar to that of the string matching automaton[7]. The time
complexity is O(m+ �), and the space complexity is O(m�).

3. The wide window algorithm

The main characteristic of the algorithm in this paper is the use of a wide window (of
size 2m− 1), so we call it the WW algorithm.

3.1. The WW algorithm

The initialization of the algorithm is to construct two automata, respectively:SA(x) and
RPA(x). Existing construct algorithms are applied in this paper.
Before the scanning stage is introduced, some definitions are given as follows:

Definition 2. Theattempt positionsare theith {i|i = km,1�k� �n/m�} positions in the
text. Anattempt windowis defined as a slice window of size 2m − 1 whose middle is the
attempt position2 . In the window, the series ofm− 1 symbols before the attempt position
is denoted asleft window, and the rest is denoted asright window.

In this way,WW divides the text into�n/m� overlapping windows of size 2m− 1. Each
window hasm− 1 same symbols as previous and next windows, respectively, and each at-
tempt position occurs only in one window.WWattempts on the windowsy(k−1)m+1 . . . ykm

. . . y(k+1)m−1 in turn, wherek ranges from 1 to�n/m�.
In the windows, the inspections consist of two phases. To facilitate the discussion, the

following variables are introduced:r, Rwhich denote the next inspecting position and the
current state ofSA(x) respectively, andl, L which denote the next inspecting position and
the current state ofRPA(x). L also records the maximal matched suffix in the first stage.
Because the states ofRPA(x) are the length of the maximal matched suffix,L is just the
initial state ofRPA(x) after the first stage. All the initial values ofr, R, l andL are set to 0.
(1) As shown in Fig.3, the algorithm scans the right windowykm . . . y(k+1)m−1 from left

to right withSA(x). WhenSA(x) reaches a terminal state, the next scanning positionr
which is the length of matched suffix is recorded in the variableL. It goes until the tran-
sition for the current symbol in the current state is undefined. IfL > 0,ykm . . . ykm+L−1
is the maximal matched suffix, and then the algorithm turns into the second phase, else
the maximal matched suffix is�, and the algorithm can shift to next window directly.

(2) As shown in Fig.4, the algorithm scans the left windowy(k−1)m+1 . . . ykm−1 from right
to left withRPA(x) starting from the stateL. When the automaton reaches the terminal
state, an occurrence is found at current scanning positionl. This stage continues when
m−L�m− 1− l (namelyL > l) because there will not be any occurrence remained
in the window asRPA(x) consumes at leastm− L symbols to transfer from stateL to
terminal statem, but there arem− 1− l symbols remained. BecauseRPA(x) scans the

2The last window is an exception, which has onlyn−m �n/m� +m symbols, and has very little effect on the
algorithm, so we will have no supplementary explanation about it later.

396 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

a

left window (m-1) right window (m)

km L

y

r

Fig. 3. Searching forward for the pattern suffixes withSA(x) till there is no transition ata. Record nextr in Lwhen
a terminal state is reached.

a

left window (m-1) right window (m)

kml

y

r

Fig. 4. Searching backward for corresponding prefixes withRPA(x) till no more occurrence exists. Output an
occurrence atl when the terminal state is reached.

WW (x = x1x2 · · · xm, y = y1y2 · · · yn)
1. Preprocessing
2. Build SA(x) and RPA(x)
3. Search
4. For k ∈ 1 · · · ⌊ n

m

⌋
do

5. R← 0,L← 0, r ← 0, l← 0
6. While R �= null do
7. R← �SA(R, ykm+r)

8. r ← r + 1
9. If R is terminalthenL← r

10. End of while
11. While L > l do
12. If L is terminalthen
13. report an occurrence atkm− l

14. End of if
15. l← l + 1
16. If l = m then break
17. L← �RPA(L, ykm−l)

18. End of while
19. End of For

Fig. 5. The pseudo-code of WW.

left window from right to left, it outputs in reverse orderwhenmore than one occurrence
of pattern exists in the window.

The pseudo-code of WW is shown in Fig.5. We note�SA(p, c) the transition function of
SA(x). �SA(p, c) is the node that we reach if we move along the edge labeled byc from
the nodep. If such an edge does not exist,�SA(p, c) is null. Also we note�RPA(q, c) the
transition function ofRPA(x). Some optimizations and boundary checks done on the real
code are not shown for clarity.

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 397

3.2. Search example

To illustrateWW,wegiveanexampleby searchingall occurrencesof thepatternaabbabb
in the textababababababaabbabba.
We first buildSA(aabbabb) as Fig.1andRPA(aabbabb) as Fig.2, respectively.We note

the current window between square brackets, also the current maximal matched suffix be-
tween vertical lines, and inspected letters underlined.We begin with[ababab||S0abababa]
abbabba, whereSq (Pq) denotes thatSA(RPA) is running in stateq, and reading the symbol
next toSq (Pq).
(1) [ababab||S0abababa]abbabba �⇒
[ababab||aS1bababa]abbabba �⇒
[ababab||abS3′ababa]abbabba �⇒
[ababab||abaSnullbaba]abbabba. Because thematchedsuffix is�, thealgorithmshifts
to next window directly. We search again:

(2) abababa[bababa||S0abbabba] �⇒
abababa[bababa||aS1bbabba] �⇒
abababa[bababa||abS3′babba] �⇒
abababa[bababa|abb|S4′abba] �⇒
abababa[bababa|abb|aS5bba] �⇒
abababa[bababa|abb|abS6ba] �⇒
abababa[bababa|abbabb|S7a] �⇒
abababa[bababa|abbabb|aSnull]. The maximal matched suffix isabbabb, and its
corresponding state inRPAis 6. We resume the scan:

(3) abababa[bababP6a|abbabb|a] �⇒
abababa[babaP7b|aabbabb|a]. Because 7 is a terminal state, output an occurrence at
current position 13. In addition, the shortest (non-�) path from current to terminal state
is of length 7, and only 5 symbols remain in thewindow. There are nomore occurrences
in current window. Backward scanning stage ends. And the algorithm ends too.

Hence, WW reads 11 symbols totally in the text and reports a match at 13.

4. Theoretical analysis

4.1. Theoretical verification

Theorem 1. WW can only find all occurrences of the pattern in the text.

Proof. Firstly, we show that all occurrences in the window can be found in each attempt.
Based on the definition ofSA, WW can recognize the position of the maximal matched
suffix which includesxkm (i.e. recognize all suffixes) in the first stage. In the second stage,
WWonly scans thematched result from the first stage. Thus, in the window, it is impossible
tomatch an occurrencewhich is not ended in current right windowxkmxkm+1 . . . x(k+1)m−1.
In the second stage, WW just runs like a reversed DFA, whose correctness is self evident.
Therefore, WW can match all the occurrences correctly in the window. On the other hand,
according to the algorithm, though all the windows are overlapped, their right windows are

398 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

non-overlap and consecutive. So every occurrence in the text can always be found in only
one attempt. �

WWscans the windows from left to right, but because of attemptingmpossible positions
in parallel in one window, it outputs in reverse order when more than one occurrence of
pattern exists in the window. This is different from traditional algorithms, which output
positions in order. So WW is suitable for the applications that are not sensitive to the
output sequence of occurrence positions, such as finding all the occurrences, checking the
existence, or counting the occurrences of a pattern.
By making slight modification to the algorithm, we can adjust the output sequence of

occurrence positions. During the second phase, we add a stack of sizem (there are not
more thanmoccurrences in one window).When the automaton reaches a terminal state, the
algorithm pushes current scanning position into the stack instead of outputting it directly.
When the second phase ends, WW pops and outputs all the elements in the stack one by
one. In this way, it has the same output sequence as traditional algorithms. Because the
modification has no effect on the time complexities of the algorithm, original algorithm is
considered as follows for clarity.

4.2. Analysis of complexities

WWmakes use of two automata:SA(x) andRPA(x), and their space complexities both
are O(m�), then:

Proposition 1. The space complexity of WW isO(m�).

The preprocess of WW is mainly to construct two automata:SA(x) andRPA(x). Both
their constructing time complexities are O(m), therefore:

Proposition 2. The preprocess time complexity of WW isO(m).

It is proved as follows that the worst, best and average time complexities of WW are all
theoretically optimal.

Theorem 2. The worst case time complexity of WW isO(n).

Proof.WW inspects every symbol once at most in every attempt window (of size 2m− 1).
On the other hand, after each attempt, the algorithm will shift the window for a length ofm
fixedly, that is to say, the algorithm attempts only�n/m� times. Consequently, the algorithm
scans the text(2m−1) �n/m� �2n−n/m < 2n times at most. Hence, the worst case time
complexity of WW is O(n). �

The upper bound of scanning symbols is reached in the case of searching all occurrences
of am in an.

Theorem 3. The best case time complexity of WW isO(n/m).

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 399

Proof. If the symbols at all attempt positions are not included in the pattern, the algorithm
will scan only one symbol per window. So the algorithm inspects�n/m� symbols in all.
Thus, the best case time complexity is O(n/m). �

The lower bound of scanning�n/m� symbols is reached in the case of searching all
occurrences ofbm in an.
The average running time of string matching algorithm is generally analyzed in the

situation where the text is random. The probability that a specified symbol occurs at any
position in the text is 1/�. And this does not depend on the context of the symbol.

Theorem 4. Under independent equiprobability condition, the average case time complex-
ity of WW isO(n(log� m)/m).

Proof. Firstly, count the average number of symbol inspections at each attempt.
Let r = 2

⌈
log� m

⌉
. There are not less thanm2 possible values for the strings of length

r. The pattern has not more thanm substrings of lengthr. Illustrated with the window
y(k−1)m+1 . . . ykm . . . y(k+1)m−1, three cases are discussed as follows:
(1) SAinspects more thanr symbols in the right window. Then the stringykm . . . ykm+r−1

must be a substring of the pattern. The probability is less thanm/m2 = 1/m. In this
case, the number of inspections is less than 2m. (The worst behavior of the algorithm
scanning all the 2m− 1 symbols in the window.)

(2) RPAinspects more thanr symbols in the left window. Then the stringykm−r+1 . . . ykm

must be a substring of the pattern too. The probability is less than 1/m. The number of
inspections is less than 2m too.

(3) Both SA andRPA inspect not more thanr symbols. The number of inspections is
bounded by 2r. The probability is less than 1 of course.

The expected number of inspections at an attempt is thus less than

1

m
× (2m)+ 1

m
× (2m)+ 1× (4 log� m+ 4) (1)

which is O(log� m).
Since the algorithm attempts only�n/m� times, the average case time complexity is

O(n(log� m)/m). �

5. Experimental results

We ran extensive experiments on random and real-world texts in order to show how
efficient our algorithm is in practice. The experiments were run on a Pentium III 933MHz
dual-processor computer with 1GB of RAM, and a computer word of 32 bits, under Linux.
We measured CPU time with gprof and turned on the compiler optimizations.
All the algorithms were implemented with an uniform I/O interface. The code of existing

algorithms is from ESMAJ3 with the exception of TNDM.Wemade our best coding effort

3 http://www-igm.univ-mlv.fr/∼lecroq/string/.

400 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

to implement all the algorithms. We compared the following algorithms.
• KMP: the famous Knuth–Morris–Pratt algorithm[15] has a linear worst case time com-
plexity.
• SO: the more efficient variant of Shift-And algorithm[2] has a linear worst case time
complexity provided that the pattern is not longer than the computer word.
• BM: the famousBoyer–Moore algorithm[3] is the first sublinear algorithm in the average
[24].
• QS: the Quick Search algorithm[23] is very fast in practice for short patterns and large
alphabets.
• TBM: theTunedBoyer–Moorealgorithm[14],which isan implementationofasimplified
version of BM, is very fast in practice.
• AS: the Alpha Skip Search algorithm[5] uses buckets of positions for each factor of
length log� m of the pattern.
• RF: the classical Reverse Factor Matching algorithm[11] is optimal in the average.
• TRF: the Turbo Reverse Factor Matching algorithm[9], which is a refinement of the
Reverse Factor algorithm, is optimal both in the average and the worst.
• BNDM: the Backward Nondeterministic Dawg Matching algorithm[17] Which can be
seen as a bit-parallelism version of RF, is optimal in the average provided that the pattern
is not longer than the computer word.
• TNDM: the Two-way Nondeterministic Dawg Matching algorithm[19] is a two-way
modification of BNDM. Their experiments show that this change of direction will de-
crease the number of the symbol inspections. But it just matches only one suffix before
backward scan stage, this makes TNDM still a quadratic worst case time complexity
algorithm.
• WW: Our Wide Window String Matching algorithm is also optimal both in the average
and the worst. And our WW algorithm can be further improved by using bit-parallel
technique too. Here we refer the bit-parallel WW as BWW.
The texts which we used were of size 10MB, over which we searched for 5000 patterns.

We ran experiments on random text with uniformly distributed alphabets of sizes 2, 4, 8, 16,
32, 64, 128 and 256. The patterns were randomly generated on the corresponding alphabet.
While for real-world texts, we ran experiments on an English text (from the TREC Wall
Street Journal collection) and a network traffic (from the 1999 DARPA Intrusion Detection
Evaluation Data Set). The patterns were randomly selected from the corresponding text (at
word beginnings in the case of English text). For random texts we searched for short (from
2 to 32) and long (multiples of 32 from 64 to 1024) patterns, while for real-world texts we
searched for short patterns only, because English words and network signatures are usually
shorter than 32.
To make the plots more readable, we rescale they axes to the most interesting values.

For example, KMP is often outside the range of interesting values(13–26 s/GB).
Figs.6and7shows the results for short and long patterns over random texts, respectively.

Thex-axis is the length of the patterns, and they-axis shows the average running time in
second per pattern per GB text of each algorithm. It needs to note that BWW, SO, BNDM
and TNDM are only available for searching patterns shorter than the computer word.
For short patterns, WW and BWW are the most efficient algorithms for large alphabets.

BWW is always among the most efficient algorithms.

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 401

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30

alphabet size 128

BWW
WW

BNDM
RF

TNDM
TRF

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30

alphabet size 256

BM
QS

TBM
AS

SO
KMP

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30

alphabet size 32

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5 10 15 20 25 30

alphabet size 64

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30

alphabet size 8

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

alphabet size 16

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

alphabet size 2

 5

 10

 15

 20

 25

 5 10 15 20 25 30

alphabet size 4

Fig. 6. Running time for random text and short pattern length, over different alphabet sizes.

402 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

 1.8

2

 100 200 300 400 500 600 700 800 900 1000

alphabet size 128

WW RF TRF BM

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

 1.8

2

 100 200 300 400 500 600 700 800 900 1000

alphabet size 256

QS AS TBM KMP

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 100 200 300 400 500 600 700 800 900 1000

alphabet size 32

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 100 200 300 400 500 600 700 800 900 1000

alphabet size 64

0

1

2

3

4

5

 100 200 300 400 500 600 700 800 900 1000

alphabet size 8

0

1

2

3

4

5

 100 200 300 400 500 600 700 800 900 1000

alphabet size 16

0

1

2

3

4

5

 100 200 300 400 500 600 700 800 900 1000

alphabet size 2

0

1

2

3

4

5

 100 200 300 400 500 600 700 800 900 1000

alphabet size 4

Fig. 7. Running time for random text and long pattern length, over different alphabet sizes.

L. He et al. / Theoretical Computer Science 332 (2005) 391–404 403

2

3

4

5

6

7

8

9

 10

5 10 15 20 25 30

English

BWW
WW

BNDM
RF

TNDM
TRF

1

2

3

4

5

6

7

8

9

 10

5 10 15 20 25 30

Network Traffic

BM
QS

TBM
AS

SO
KMP

Fig. 8. Running time for real-world texts: English and network traffic.

For long patterns, WW is always the most efficient algorithm, especially for large al-
phabets. As the pattern length grows, the difference betweenWW and RF diminishes. The
results are consistent with the fact that bothWWand RF are theoretical optimal in average.
Among the worst case linear time algorithms: WW, TRF, KMP, SO, and BWW, BWW

is the best one in most cases for searching short patterns. Only SO is better for very short
pattern over very small alphabets. WW is the best one for searching long patterns.
Fig.8 shows the results for English and network traffic texts. The results are very similar

to random text for� = 16 and� = 32, respectively. That is, WW and BWW is reasonably
competitive on English and network traffic.

6. Conclusions and future work

Wepresent a new exact stringmatching algorithm calledWW,whichmakes use of a wide
window (of size 2m−1) to attemptmpositions in parallel.WW divides the text into�n/m�
overlapping windows, in which the inspections consist of two phases. The algorithm scans
thepattern suffixes frommiddle to rightwith the forward suffix automatonof the pattern, and
then scans corresponding prefixes from middle to left with the reverse prefix automaton of
the pattern. Theoretical analysis shows thatWWhas optimal time complexities in the worst,
best and average cases: O(n), O(n/m) and (O(n(log� m)/m)). Experimental comparison
ofWWwith existing algorithms validates our theoretical claims for searching long patterns
in average case time complexity. It further reveals that WW and its bit-parallel variant are
very competitive for searching short patterns. Thus, WW not only suits for off-line pattern
matching, but also fits in high-speed online pattern matching.
Bit-parallelism[2,17,19]is a general way to simulate nondeterministic automata using

the bits of the computer word.We have combined the bit-parallel technique with our idea of
wide window[13]. Since reverse suffix automaton has good applications to multiple string
matching[21], applying forward suffix automaton to multiple string matching is worth

404 L. He et al. / Theoretical Computer Science 332 (2005) 391–404

studying too. Each attempt of WW is completely independent from all the others so that
it could be easy to get a parallel version of WW. As a new idea of string matching, wide
window opens many problems for further research.

References

[1] C. Allauzen, M. Raffinot, Simple optimal string matching algorithm, J. Algorithms 36 (1) (2000) 102–116.
[2] R. Baeza-Yates, G.H. Gonnet, A new approach to text searching, Comm. ACM 35 (10) (1992) 74–82.
[3] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (10) (1977) 62–72.
[4] C. Charras, T. Lecroq, Handbook of Exact StringMatchingAlgorithms, King’s College London Publications,

2004.
[5] C. Charras, T. Lecroq, J.D. Pehoushek, A very fast string matching algorithm for small alphabets and long

patterns, in:M. Farach-Colton (Ed.), Proc. of the 9thAnn. Symp. onCombinatorial PatternMatching, Lecture
Notes in Computer Science, Vol. 1448, Springer, Piscataway, NJ, USA, 1998, pp. 55–64.

[6] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1) (1986) 63–86.
[7] M. Crochemore, Off-line serial exact string searching, in: A. Apostolico, Z. Galil (Eds.), Pattern Matching

Algorithms, Oxford University Press, Oxford, 1997, pp. 1–53, (Chapter 1).
[8] M. Crochemore, Reducing space for index implementation, Theoret. Comput. Sci. 292 (1) (2003) 185–197.
[9] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, W. Rytter, Speeding up

two string-matching algorithms, Algorithmica 12 (4/5) (1994) 247–267.
[10] M.Crochemore,C.Hancart,Automata formatching patterns, in:G.Rozenberg,A. Salomaa (Eds.), Handbook

of Formal Languages, Vol. 2, Linear Modeling: Background and Application, Springer, Berlin, 1997, pp.
399–462 (Chapter 9).

[11] M. Crochemore, W. Rytter, Text algorithms, Oxford University Press, Oxford, 1994, 412pp.
[12] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific, Singapore, 2002.
[13] L. He, B. Fang, Linear nondeterministic dawg string matching algorithm, in: A.Alberto, M. Massimo (Eds.),

String Processing and Information Retrieval, 11th Internat. Symp. (SPIRE 2004), Lecture Notes in Computer
Science, Vol. 3246, Springer, Padova, Italy, 2004, pp. 70–71.

[14] A. Hume, D. Sunday, Fast string searching, Software Pract. Exper. 21 (11) (1991) 1221–1248.
[15] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977)

323–350.
[16] T. Lecroq, A variation on the Boyer–Moore algorithm, Theoret. Comput. Sci. 92 (1) (1992) 119–144.
[17] G. Navarro, M. Raffinot, Fast and flexible string matching by combining bit-parallelism and suffix automata,

ACM J. Exp. Algorithmics (JEA) 5 (4) (2000) 1–36.
[18] G. Navarro,M. Raffinot, Flexible PatternMatching in Strings—Practical On-line SearchAlgorithms for Texts

and Biological Sequences, Cambridge University Press, Cambridge, 2002.
[19] H. Peltola, J. Tarhio, Alternative algorithms for bit-parallel string matching, in: M.A. Nascimento, E.S. de

Moura, A.L. Oliveira (Eds.), Proc. 10th Internat. Symp. on String Processing and Information Retrieval
(SPIRE’03), Lecture Notes in Computer Science, Vol. 2857, Springer, Manaus, Brazil, 2003, pp. 80–94.

[20] M. Raffinot, Asymptotic estimation of the average number of terminal states in dawgs, in: R. Baeza-Yates
(Ed.), Proc. 4thSouthAmericanWorkshop onStringProcessing, CarletonUniversity Press,Valparaíso, Chile,
1997, pp. 140–148.

[21] M. Raffinot, On the multi backward dawg matching algorithm (MultiBDM), in: R. Baeza-Yates (Ed.), Proc.
4th South AmericanWorkshop on String Processing, Carleton University Press, Valparaíso, Chile, 1997, pp.
149–165.

[22] W.F. Smyth, Computing Patterns in Strings, Pearson AddisonWesley, 2003.
[23] D.M. Sunday, A very fast substring search algorithm, Comm. ACM 33 (8) (1990) 132–142.
[24] T.-H. Tsai, Average case analysis of the boyer–moore algorithm, in:

http://www.stat.sinica.edu.tw/chonghi/stat.htm, 2003.
[25] A.C.C. Yao, The complexity of pattern matching for a random string, SIAM J. Comput. 8 (3) (1979)

368–387.

http://www.stat.sinica.edu.tw/chonghi/stat.htm

	The wide window string matching algorithm
	Introduction
	Basic idea and two useful automata
	Basic idea
	Suffix automaton (SA)
	Reverse prefix automaton (RPA)

	The wide window algorithm
	The WW algorithm
	Search example

	Theoretical analysis
	Theoretical verification
	Analysis of complexities

	Experimental results
	Conclusions and future work
	References

