
Discrete Applied Mathematics 158 (2010) 1315–1324

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Repetition-free longest common subsequence
Said S. Adi a, Marília D.V. Braga b, Cristina G. Fernandes c, Carlos E. Ferreira c,
Fábio Viduani Martinez a, Marie-France Sagot b, Marco A. Stefanes a,
Christian Tjandraatmadja c, Yoshiko Wakabayashi c,∗
a Universidade Federal do Mato Grosso do Sul, Brazil
b Université Claude Bernard, Lyon I, France
c Universidade de São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 29 March 2008
Received in revised form 30 September
2008
Accepted 20 April 2009
Available online 3 June 2009

Keywords:
Longest common subsequence
APX-hardness
Approximation algorithms

a b s t r a c t

We study the following problem. Given two sequences x and y over a finite alphabet, find
a repetition-free longest common subsequence of x and y. We show several algorithmic
results, a computational complexity result, and we describe a preliminary experimental
study based on the proposed algorithms. We also show that this problem is APX-hard.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the genome rearrangement domain, gene duplication is rarely considered as it usually makes the problem at hand
harder. Sankoff [11] proposed the so-called exemplar model, which consists in searching, for each family of duplicated
genes, an exemplar representative in each genome. In biological terms, the exemplar gene may correspond to the original
copy of the gene, which later originated all other copies. Following the parsimony principle, the choices of exemplars should
be made so as to minimize the reversal distance between the two simpler versions of both genomes, composed only by the
exemplar genes. An alternative to the exemplar model is the multigene family model, which consists in maximizing the
number of paired genes among a family. Again, the gene pairs should be chosen so as to minimize the reversal distance
between the genomes. Both exemplar and multigene models were proven to lead to NP-hard problems [4,6].
To compare two sequences, we propose a similarity measure that takes into account the concept of exemplar genes.

The measure we propose is the length of a repetition-free longest common subsequence (LCS) between the two sequences.
The concept behind the exemplar model is captured by the repetition-free requirement in the sense that at most one
representative of each family of duplicated genes is taken into account. The length of an LCS is a measure of similarity
between sequences, so the length of a repetition-free LCS can be seen as the edit distance between two sequences where
only deletions are allowed and, furthermore, for each family with k duplicated genes, at least k−1 of themmust be deleted.
An alphabet is a finite set and we refer to each of its elements as a symbol. All sequences considered in this paper are

finite and over some alphabet usually implicit, as it may be considered to be the set of all symbols appearing in the involved
sequences. For a sequence w, we use |w| to denote its length. The problem we are interested, denoted by rflcs, consists

∗ Corresponding address: Universidade de Sao Paulo, Rua do Matao, 1010 Cidade Universitaria, 05508-090 Sao Paulo, Brazil. Tel.: +55 1130916135
; fax: +55 1130916134.
E-mail address: YWakabayashi@gmail.com (Y. Wakabayashi).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.04.023

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:YWakabayashi@gmail.com
http://dx.doi.org/10.1016/j.dam.2009.04.023

1316 S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324

of the following: given two sequences x and y, find a repetition-free LCS of x and y. We write rflcs (x, y) when we refer to
rflcs for a generic instance consisting of a pair (x, y). We denote by opt(rflcs(x, y)) the length of an optimal solution of
rflcs (x, y).
Bonizzoni et al. [5] considered some variants of the rflcs. Among others, they considered the case where some symbols

are required to appear in the sought LCS, and possibly more than once. They showed that these variants are APX-hard and
that, in some cases, it is NP-complete just to decide whether an instance of the variants is feasible. This second complexity
result makes these variants less tractable.
We present some algorithmic and some hardness results for the rflcs. We also report on some computational

experiments with the algorithms proposed in this paper. We start by showing, in Section 2, some polynomial cases and
three approximation algorithms for rflcs. We describe c-approximations for the case where each symbol appears at most c
times in at least one of the sequences. In Section 3, we prove that rflcs is APX-hard evenwhen each symbol appears at most
twice in both sequences. Section 4 presents an integer linear programming formulation (IP) for rflcs. Finally, in Section 5,
we show some computational results we obtained for rflcs, considering the three approximation algorithms and the use of
an IP solver for the formulation presented in Section 4 for finding optimal solutions of the instances.
An extended abstract of this paper was presented at LAGOS 2007 (IV Latin-American Algorithms, Graphs, and

Optimization Symposium) [1].

2. Algorithmic results

We first mention some polynomially solvable cases of rflcs (x, y). If each symbol appears at most once either in x or in
y then the problem is easy: it is enough to find an LCS of x and y. In this case, any LCS has no repetition and is therefore a
solution of rflcs (x, y). There are polynomial algorithms for LCS, so this case is polynomially solvable (see [7]).
For each symbol a and a sequence w, let n(w, a) be the number of appearances of a in w. Let ma(x, y) =

min{n(x, a), n(y, a)}. The case above is the one in which ma(x, y) ≤ 1 for all a. Consider the slightly more general case
in which there is a constant bound k on the number of symbols a for which ma(x, y) > 1. This case is also polynomially
solvable. Indeed, let Ax be the set of symbols for which ma(x, y) = n(x, a), and Ay be the remaining symbols. Try each
subsequence x′ of x and each subsequence y′ of y obtained in the following way. For each symbol a in Ax and each of the
ma(x, y) occurrences of a in x, keep that occurrence and delete all the others from x, obtaining one x′. Do the same for y,
obtaining one y′. For each x′ and y′, find an LCS of x′ and y′. Return a longest one among all obtained LCS s. This method
needs to solve O(nk) different LCS instances and therefore is polynomial.
Now we describe three simple approximation algorithms for the problem: A1, A2, and A3. Algorithm A1 consists of the

following: given x and y, compute an LCS of x and y and remove all repeated symbols but one, in the obtained LCS. Return
the resulting sequence. Let m be the maximum value of ma(x, y) taken over all a. It is not hard to see that Algorithm A1 is
anm-approximation for rflcs (x, y).
Algorithm A2 is probabilistic. It consists of the following: given x and y, for each symbol a, if ma(x, y) = n(x, a), pick

uniformly at random one of the ma(x, y) occurrences of a in x, and delete all the others from x; if ma(x, y) 6= n(x, a), pick
uniformly at random one of thema(x, y) occurrences of a in y, and delete all the others from y. Let x′ and y′ be the resulting
sequences after this clean-up. Compute an LCSw′ of x′ and y′ and returnw′.
Algorithm A3 is a variant of Algorithm A2 that uses less random bits. It works basically as Algorithm A2 in the sense

that, for each repeated symbol a, the sequence (either x or y) that is chosen to keep an occurrence of a is the one with the
least number of repetitions of a. The difference now is that A3 picks uniformly at random only one number, say r , in the
interval [0, 1] and uses r to select which occurrence of each symbol will remain. For each repeated symbol, the selection is
done using the same number r . (If a symbol a occurs k times in the chosen sequence, we partition the interval [0, 1] into
k subintervals of the same size, each one corresponding to an occurrence of a, and then we keep the occurrence of a that
corresponds to the subinterval that contains r .)

2.1. Analysis of the probabilistic algorithms

Algorithms A2 and A3 are obviously polynomial, so we concentrate on their approximation ratio.
Let A denote an arbitrary probabilistic algorithm for rflcs (x, y) and let A(x, y) represent the (probabilistic) output

of A when given x and y as input. For a positive number α, we say A is an α-approximation for rflcs (x, y) if
E[|A(x, y)|] ≥ opt(rflcs(x, y))/α, for all x and y. The number α may depend on x and y.

Theorem 1. Algorithm A2 is an m-approximation for rflcs (x, y), where m is the maximum of ma(x, y), over all symbols a.

Proof. For a subsequence z ′ of a sequence z, denote by I(z ′, z) a set of indices of z that corresponds to an occurrence of z ′ in
z (an arbitrary one, if there is more than one). For instance, if z ′ = abc and z = cacbbac , the set {2, 4, 7} corresponds to an
occurrence of z ′ in z. On the other hand, the set {2, 3, 5} does not correspond to an occurrence of z ′ in z.
Fix x, y, and a repetition-free LCS w of x and y. Recall that x′ and y′ are, respectively, the sequences x and y after the

random clean-up in Algorithm A2, and w′ = A2(x, y). Next we define a random variable Z that is the length of a common
subsequence of x′ and y′ and therefore is a lower bound on |w′|.

S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324 1317

For each symbol a in w, let Za be a binary random variable that is 1 if and only if (i) ma(x, y) = n(x, a) and the index in
I(w, x) that corresponds to a is in I(x′, x) (that is, the random choice for awas from x and corresponds to the occurrence of a
in w); or (ii) ma(x, y) 6= n(x, a) and the index in I(w, y) that corresponds to a is in I(y′, y) (that is, the random choice for a
was from y and corresponds to the occurrence of a inw). Let Z =

∑
Za, where the sum is taken over every symbol a inw.

Note that the set of symbols a in w such that Za = 1 corresponds to a subsequence of both x′ and y′. This implies that
Z ≤ |w′| and therefore that E[|w′|] ≥ E[Z].
By linearity of expectation, E[Z] =

∑
E[Za]. As Za is a binary random variable, E[Za] = Pr[Za = 1]. The random choice

for a is always in a sequence that has ma(x, y) ≤ m appearances of a and each choice is made uniformly at random, so
Pr[Za = 1] ≥ 1/m. Hence,

E[|w′|] ≥ E[Z] =
∑

E[Za] ≥ |w|/m = opt(rflcs(x, y))/m,

and A2 is anm-approximation for rflcs (x, y). �

Note that this proof does not depend on the choices for different symbols being independent from each other. It depends
only on each of the choices being uniformly at random. For this reason, the same proof implies the following.

Theorem 2. Algorithm A3 is an m-approximation for rflcs (x, y), where m is the maximum of ma(x, y), over all symbols a.

2.2. Derandomization

It is not hard to see that Algorithm A3 can be derandomized. Indeed, denote by r the randomly chosen number in
Algorithm A3. For each value of r , Algorithm A3 has a behavior, possibly different. There is however only a polynomial
number of different behaviors that Algorithm A3 can have. Besides, from x and y, one can generate a polynomial number
of values of r that, if given as input to Algorithm A3, make it behave in all possible different ways. The derandomization
of Algorithm A3 consists of trying these polynomially many values of r and choosing the best of the outputs produced by
Algorithm A3.
As for Algorithm A2, one can think of applying the method of conditional expectations to derandomize it (see for

example [2,9]). Unfortunately,we did not succeed in doing that, becausewedonot knowhow to compute certain conditional
expectations exactly. Each of these conditional expectations in question is basically the expected value of the output of
Algorithm A2 for some input. In the previous subsection, we only computed a rough upper bound for this value.

3. Hardness result

We show that rflcs is APX-hard. This is done by presenting an L-reduction [10] to rflcs from a particular version
of max 2-sat, known to be APX-complete. Our result implies Theorems 1 and 2 of Bonizzoni et al. [5], as there are no
‘‘mandatory’’ symbols.
Let V be a set of Boolean variables. Denote by v the negation of a variable v. A literal (over V) is an element of

V∪{v : v ∈ V }. A clause is a set of literals, and it is a k-clause if it has k literals. An assignment forV is a function h : V → {T, F}.
A literal ` is T according to h if, for some v in V , either ` = v and h(v) = T, or ` = v and h(v) = F. A clause is satisfied by an
assignment h if at least one of its literals is T according to h.
The problem max 2,3-sat(V , C) consists of, given a set C of 2-clauses over V , where each literal appears in at

most 3 clauses in C , finding an assignment for V that maximizes the number of satisfied clauses in C . This variant of
max 2-sat is APX-complete [3,10]. We assume that, for any v in V , no clause is of the form {v, v}. For an assignment
h, denote by val(max 2,3-sat(V , C), h) the number of clauses in C that are satisfied by h. Let opt(max 2,3-sat(V , C)) =
max{val(max 2,3-sat(V , C), h) : h is an assignment for V }.
An L-reduction frommax 2,3-sat to rflcs consists of a pair of polynomial-time computable functions (f , g) such that, for

two fixed positive constants α and β , the following two conditions hold:

(C1) for every instance (V , C) of max 2,3-sat, f (V , C) = (x, y) is an instance of rflcs, and

opt(rflcs(x, y)) ≤ α opt(max 2,3-sat(V , C));

(C2) for every instance (V , C) of max 2,3-sat, and every repetition-free subsequence w of x and y, where (x, y) = f (V , C),
we have that h = g(V , C, w) is an assignment for V , and

opt(max 2,3-sat(V , C))− val(max 2,3-sat(V , C), h) ≤ β (opt(rflcs(x, y))− |w|).

Theorem 3. The problem rflcs is APX-complete even when restricted to instances (x, y) in which the number of occurrences of
every symbol in both x and y is bounded by two.

1318 S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324

Proof. First we note that Algorithm A1 presented in Section 2 is a (deterministic) 2-approximation for rflcs(x, y) when
ma(x, y) ≤ 2. So the variant of rflcs(x, y) addressed by this theorem is in APX. Next we show an L-reduction from
max 2,3-sat to rflcs.
For an instance (V , C) of max 2,3-sat, where V = {v1, v2, . . . , vn} and C is a set of 2-clauses over V , we describe an

instance (x, y) = f (V , C) of rflcs. Let {c1, c2, . . . , cm} be a set of distinct labels, one for each of the clauses in C . For simplicity,
we write ci to refer both to the label ci and to the clause whose label is ci. So, in particular, we denote also by C the set of
labels {c1, c2, . . . , cm}.
For each literal `, we denote by s(`) a sequence composed by the (labels of the) clauses in which ` is present, taken in an

arbitrary order. Thus, for each v in V and an assignment h for V , the sequence s(v) contains the clauses of C that would be
satisfied if h(v) = T and the sequence s(v) contains the clauses of C that would be satisfied if h(v) = F. Observe that, since
we do not have a clause of the form {v, v}, then s(v) and s(v) have no common symbol. In addition, as each literal ` may
appear in at most 3 clauses of C , we have that |s(`)| ≤ 3. We also use a new set of symbols D = {d1, d2, . . . , dk}, such that
k = 6(n− 1) and D ∩ C = ∅, and construct the sequences x and y as follows.

x = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn) and
y = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn).

The alphabet adopted is the set C∪D. By definition, the sets C andD are disjoint and each symbol ofD occurs once in both
x and y. In addition, as each clause c in C has two literals, and, for each literal `, the corresponding sequence s(`) appears
once in either x or y, it follows that each symbol c occurs twice in x and also twice in y.
For instance, if V = {v1, v2, v3} and C = {c1, . . . , c9}, with c1 = {v1, v2}, c2 = {v1, v2}, c3 = {v1, v2}, c4 = {v1, v3},

c5 = {v1, v3}, c6 = {v1, v3}, c7 = {v2, v3}, c8 = {v2, v3} and c9 = {v2, v3}, then D = {d1, . . . , d12} and

x =
s(v1)︷ ︸︸ ︷
c1c4c5

s(v1)︷ ︸︸ ︷
c2c3c6 d1d2d3d4d5d6

s(v2)︷ ︸︸ ︷
c1c2c7

s(v2)︷ ︸︸ ︷
c3c8c9 d7d8d9d10d11d12

s(v3)︷ ︸︸ ︷
c4c7c8

s(v3)︷ ︸︸ ︷
c5c6c9

y = c2c3c6︸ ︷︷ ︸
s(v1)

c1c4c5︸ ︷︷ ︸
s(v1)

d1d2d3d4d5d6 c3c8c9︸ ︷︷ ︸
s(v2)

c1c2c7︸ ︷︷ ︸
s(v2)

d7d8d9d10d11d12 c5c6c9︸ ︷︷ ︸
s(v3)

c4c7c8︸ ︷︷ ︸
s(v3)

.

In this case, the subsequence c1c4c5d1d2d3d4d5d6c3c8c9d7d8d9d10d11d12c7 is an optimal solution for rflcs(x, y) that
corresponds to an optimal solution for max 2,3-sat(V , C), given by the assignment h(v1) = T, h(v2) = F, and h(v3) = T.
Note that the construction can be done in polynomial time. As all clauses have two literals, n ≤ 2m, where n = |V |

and m = |C |. Also, each symbol of the adopted alphabet may appear at most once in a repetition-free subsequence of
x and y, thus opt(rflcs(x, y)) ≤ m + 6(n − 1) ≤ 12m. On the other hand, we can easily set an assignment h for V
such that val(max 2,3-sat(V , C), h) ≥ m/2. Indeed, sequentially, for i = 1, 2, . . . , n, define Ci ⊆ C as Ci = {c ∈ C :
c contains either vi or vi} and C = C \ Ci; then make h(vi) = T if vi is more common than vi in the clauses of Ci, otherwise
h(v) = F. Note that the final C is empty and h satisfies at least |Ci|/2 clauses from Ci, for each i. Therefore, as ∪Ci is equal to
the initial C , the assignment h satisfies at leastm/2 clauses from the initial C . So opt(max 2,3-sat(V , C)) ≥ m/2. Putting the
two together, we conclude that opt(rflcs(x, y)) ≤ 24 opt(max 2,3-sat(V , C)), and (C1) holds with α = 24.
Let (V , C) be an instance ofmax 2,3-sat and (x, y) = f (V , C). To prove (C2), essentiallywe show that there is a repetition-

free subsequencew of x and y of length at least p = q+ |D| if and only if there is an assignment h for V that satisfies at least
q = p− |D| clauses of C .

Claim 1. Let (V , C) be an instance of max 2,3-sat and (x, y) = f (V , C). There is a repetition-free subsequence w of x and y of
length at least p = q+ |D| if and only if there is an assignment h for V that satisfies at least q = p− |D| clauses of C.

Proof. Letw be a repetition-free subsequence of x and y of length p. First we describe another repetition-free subsequence z
of x and y of length at least p that contains all symbols inD. Roughly speaking, to construct z (fromw)we substitute all symbol
alignments that ‘‘cross’’ regions consisting of consecutive symbols di’s by a complete alignment of the di’s in these regions.
The number of consecutive di’s in each region was chosen to assure that with this substitution the resulting sequence is at
least as large as the original one. After constructing z, we describe an assignment h that satisfies at least |z| − |D| ≥ p− |D|
clauses of C .
The procedure to construct z from w, so that z is a sequence that contains all the symbols d1, d2, . . . , dk (in this order)

and is at least as long asw, is the following. Sequentially, for i = 1, 2, . . . , n− 1, remove any symbol ofw that comes from
the alignment of a symbol of s(vi)s(vi) in x (of s(vi)s(vi) in y) and a symbol of s(vi+1)s(vi+1)d6(i+1)−5 · · · dks(vn)s(vn) in y (of
s(vi+1)s(vi+1)d6(i+1)−5 · · · dks(vn)s(vn) in x, respectively), and then add d6i−5d6i−4d6i−3d6i−2d6i−1d6i (which are the symbols
from D that are between s(vi) and s(vi+1) in x or y). Call z the resulting subsequence after all these substitutions. At the end,
add to z the symbols from D that are not already present in i, and call z the resulting sequence. Observe that |s(vi)s(vi)| ≤ 6,
thus at each step we replace at most 6 symbols by exactly 6 new symbols from D (that do not occur inw). Hence z is also a
repetition-free subsequence of x and y, with |z| ≥ |w|.
Now, let us describe the assignment h. Since z contains all symbols from D, the other portions of z are subsequences of

s(vi)s(vi) in x and s(vi)s(vi) in y, for each i = 1, 2, . . . , n. Moreover, because all symbols in s(vi) differ from those in s(vi), the

S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324 1319

Table 1
First experiment.

|Σ | n A1 A2 A3 Max Opt

32 4.0 (10/10) 4.0 (10/10) 4.0 (10/10) 4.0 (10) 4.0

64 7.8 (8/8) 8.0 (10/10) 7.9 (9/9) 8.0 (10) 8.0

n/8 128 15.3 (7/6) 15.7 (9/7) 14.2 (1/0) 15.8 (8) 16.0

256 25.8 (9/–) 23.1 (1/–) 21.3 (0/–) 25.9 (-) –

512 52.1 (10/–) 40.5 (0/–) 36.5 (0/–) 52.1 (-) –

32 6.5 (4/4) 7.2 (10/10) 6.9 (7/7) 7.2 (10) 7.2

64 12.7 (3/0) 13.9 (10/1) 12.9 (5/0) 13.9 (1) 15.3

n/4 128 21.7 (8/0) 20.5 (3/0) 19.2 (0/0) 22.0 (0) 26.2

256 36.2 (10/0) 31.0 (0/0) 28.9 (0/0) 36.2 (0) 43.7

512 58.2 (10/–) 46.2 (0/–) 43.2 (0/–) 58.2 (-) –

32 7.8 (3/3) 8.7 (9/7) 7.8 (2/2) 8.8 (8) 9.0

64 13.9 (4/0) 14.7 (7/3) 13.3 (1/0) 15.0 (3) 16.1

3n/8 128 22.5 (8/0) 21.9 (5/0) 20.6 (1/0) 22.8 (0) 25.1

256 35.7 (10/0) 31.6 (1/0) 30.3 (0/0) 35.7 (0) 39.6

512 53.7 (10/0) 44.9 (0/0) 43.3 (0/0) 53.7 (0) 59.0

32 8.2 (6/4) 8.6 (10/8) 7.9 (3/1) 8.6 (8) 8.8

64 13.0 (2/1) 13.9 (9/3) 12.7 (1/0) 14.0 (3) 14.7

n/2 128 21.3 (7/0) 21.0 (5/1) 19.6 (1/0) 21.8 (1) 23.2

256 33.5 (10/0) 30.7 (1/0) 29.3 (0/0) 33.5 (0) 35.8

512 50.3 (10/0) 44.7 (0/0) 42.3 (0/0) 50.3 (0) 54.2

32 7.6 (6/4) 7.8 (8/6) 7.5 (5/4) 8.1 (8) 8.3

64 12.8 (6/4) 12.9 (7/3) 12.5 (4/4) 13.2 (6) 13.7

5n/8 128 20.4 (8/1) 19.8 (5/1) 19.3 (1/0) 20.6 (2) 21.6

256 31.5 (9/2) 29.6 (2/0) 27.9 (0/0) 31.6 (2) 32.8

512 46.2 (9/2) 42.4 (1/0) 41.3 (0/0) 46.4 (2) 48.3

32 6.7 (1/1) 7.6 (10/9) 7.1 (5/4) 7.6 (9) 7.7

64 11.9 (4/3) 12.5 (9/7) 11.9 (3/3) 12.6 (8) 12.8

3n/4 128 19.4 (8/6) 19.2 (6/3) 18.1 (2/1) 19.7 (7) 20.0

256 28.4 (9/2) 28.0 (5/2) 26.9 (3/1) 28.7 (3) 29.9

512 42.5 (10/2) 39.8 (0/0) 39.4 (1/0) 42.5 (2) 43.8

32 7.2 (8/8) 7.4 (9/9) 7.1 (6/6) 7.5 (10) 7.5

64 11.6 (6/5) 11.8 (8/7) 11.3 (4/4) 12.0 (9) 12.1

7n/8 128 18.4 (8/7) 18.4 (8/7) 17.9 (3/3) 18.6 (9) 18.8

256 26.8 (9/6) 26.0 (4/1) 25.2 (1/0) 26.9 (6) 27.4

512 39.2 (10/0) 37.4 (1/0) 36.6 (0/0) 39.2 (0) 40.7

subsequence z does not align simultaneously symbols from both s(vi) and s(vi). So we define the assignment h as follows:
h(vi) = T if z aligns a symbol from s(vi), otherwise h(vi) = F. Set g(V , C, w) = h. Observe that the assignment h satisfies at
least q = |z| − |D| ≥ p− |D| clauses.
For the other direction, consider an assignment h for V that satisfies q clauses of C . Letw be a repetition-free subsequence

of x and y obtained as follows. For i = 1, 2, . . . , n, add tow the symbols that correspond to the clauses in s(vi) if h(vi) = T,
otherwise add the symbols that correspond to the clauses in s(vi). After all the additions, eliminate repetitions and add tow,
at the correct positions, all symbols from D. Thenw is a repetition-free subsequence of x and y such that |w| = q+ |D|.
From this, one can deduce that (C2) holds with β = 1, completing the proof of Theorem 3. �

4. An IP based exact algorithm for the problem

We show in this section an IP formulation for rflcs (x, y). For that, we need first to establish some notation. For each
symbol a, let Ea = {(i, j) : xi = yj = a}. Moreover, set E =

⋃
a Ea. The set Ea represents all possible alignments of the symbol

a in x and y. Given (i, j) and (k, l) in E, we say that (i, j) and (k, l) cross if i < k and j > l. We introduce, for each (i, j) in E, a

1320 S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324

Table 2
Second experiment.

|Σ | # Repts A1 A2 A3 Max Opt

3 3.3 (7/7) 3.6 (10/10) 3.6 (10/10) 3.6 (10) 3.6

4 3.2 (5/5) 3.7 (10/10) 3.7 (10/10) 3.7 (10) 3.7

5 3.5 (7/7) 3.9 (10/10) 3.8 (9/9) 3.9 (10) 3.9

4 6 3.5 (6/6) 3.9 (10/10) 3.9 (10/10) 3.9 (10) 3.9

7 3.5 (6/6) 3.9 (10/10) 3.8 (9/9) 3.9 (10) 3.9

8 3.7 (8/8) 3.9 (10/10) 3.9 (10/10) 3.9 (10) 3.9

3 5.7 (6/6) 6.1 (10/10) 5.9 (8/8) 6.1 (10) 6.1

4 6.5 (8/6) 6.6 (9/7) 6.5 (8/6) 6.7 (8) 6.9

5 6.4 (6/6) 7.0 (10/10) 6.6 (6/6) 7.0 (10) 7.0

8 6 6.6 (4/3) 7.3 (9/7) 6.8 (5/3) 7.4 (8) 7.6

7 6.8 (3/3) 7.5 (9/8) 7.3 (7/6) 7.6 (9) 7.7

8 7.3 (6/5) 7.8 (10/9) 7.6 (8/7) 7.8 (9) 7.9

3 9.6 (5/4) 10.2 (10/7) 9.2 (3/2) 10.2 (7) 10.5

4 9.8 (5/1) 10.7 (9/2) 10.3 (5/1) 10.8 (2) 11.8

5 10.8 (5/0) 11.6 (9/1) 11.1 (6/1) 11.7 (2) 12.7

16 6 11.9 (4/1) 12.7 (8/1) 12.0 (3/0) 12.9 (2) 14.2

7 12.1 (5/1) 12.4 (7/1) 12.2 (6/2) 12.8 (2) 13.9

8 12.2 (3/0) 13.4 (9/1) 12.3 (2/0) 13.5 (1) 14.9

3 14.8 (8/3) 15.2 (10/5) 13.9 (1/0) 15.2 (5) 15.8

4 18.1 (6/1) 17.7 (3/0) 16.7 (2/0) 18.7 (1) 20.3

5 18.3 (6/0) 18.2 (6/0) 17.1 (2/0) 19.0 (0) 22.0

32 6 19.6 (6/0) 19.3 (5/0) 18.7 (2/0) 20.4 (0) 23.9

7 22.1 (8/0) 20.8 (4/0) 19.6 (1/0) 22.3 (0) 26.8

8 20.2 (5/0) 21.6 (7/0) 20.3 (1/0) 21.9 (0) 26.2

3 23.1 (9/2) 22.1 (4/1) 21.5 (0/0) 23.4 (3) 24.4

4 27.2 (9/1) 25.5 (4/0) 24.2 (2/0) 27.3 (1) 30.5

5 31.8 (10/0) 27.8 (0/0) 25.9 (0/0) 31.8 (0) 35.0

64 6 31.9 (9/0) 29.4 (2/0) 28.0 (0/0) 32.0 (0) 38.8

7 34.2 (10/0) 30.7 (1/0) 28.8 (0/0) 34.2 (0) 42.4

8 39.6 (10/0) 32.7 (0/0) 30.6 (0/0) 39.6 (0) 47.8

binary variable zij and impose linear restrictions on zij so that zij = 1 if and only if xi and yj are aligned in a repetition-free
LCS of x and y. The IP formulation is then as follows.

maximize
∑
(i,j)∈E

zij

subject to
∑
(i,j)∈Ea

zij ≤ 1 for each symbol a,

zij + zkl ≤ 1 for each (i, j) and (k, l) in E that cross,
zij ∈ {0, 1} for each (i, j) in E.

(1)

Indeed, the first constraint assures that the set {i : zij = 1 for some j} defines a repetition-free subsequence wx of x and
the set {j : zij = 1 for some i} defines a repetition-free subsequencewy of y. The second constraint assures that the order of
appearance of the symbols in wx and wy is the same, that is, wx = wy and therefore we have a common subsequence. The
objective function maximizes the length of such a subsequence.
We used this IP formulation to solve some instances of rflcs, so that we could evaluate empirically our approximation

algorithms. We used GLPK, a general purpose IP solver, and tested instances of size n = 512 and different alphabet sizes.
For alphabet size 448 (= 7n/8) an optimal solution was found in around 12 min (on the average), but for alphabet size 256
(= n/2) the solver could not find an optimal solution within an hour. However, with a specific branch-and-cut algorithm
(see [8] for more details) these same instances could be solved to optimality: it took (on the average) around 1 min for
alphabet size 448 and 10 min for alphabet size 256.

S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324 1321

Fig. 1. Performance of algorithms A1, A2, A3 for sequences of length n = 128 and n = 512, and alphabet size 3n/4.

5. Computational experiments

We tested the three approximation algorithms on two types of randomly generated instances. In the first type, we
considered two parameters: the length of the sequences and the alphabet size as a function of the length. Each position
of a randomly generated sequence is one of the symbols of the alphabet chosen uniformly at random. In these sequences,
most of the symbols have approximately the same number of occurrences.
In the second type, we considered two parameters: the alphabet size and the maximum number of repetitions of each

symbol. For each symbol, we pick, uniformly at random, the number of repetitions of this symbol in the sequence, respecting
the given maximum. There is a linear-time (shuffling) procedure that produces, uniformly at random, a sequence with
exactly this number of repetitions of each symbol. Note that the expected length of the generated sequence is half of the
alphabet size times the maximum number of repetitions.
The experimental results are shown in Tables 1 and 2. In Table 1, each row corresponds to the average results for 10

instances. The two first columns show the alphabet size (|Σ |) and the sequences length (n). The next three columns show
the average solution length of the approximations A1, A2, and A3. For each of these algorithms, a pair (x/y) indicates that x
is the number of times (out of 10) that the corresponding algorithm is the best of the three, and y is the number of times it
found an optimal solution. The next column shows the average solution length for the algorithm, denoted asMax, that runs
A1, A2, and A3 and outputs the best solution found. In parenthesis, we show the number of times (out of 10) Max found

1322 S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324

Fig. 2. Performance of algorithms A1, A2, A3 for sequences of length n = 512, and alphabet sizes n/2 and 3n/4.

an optimal solution. The last column shows the average length of the optimal value over the 10 instances, obtained by our
branch-and-cut code.When the time required to find an optimal solution exceeded two hours, we interrupted the execution
(therefore in these cases we do not have the optimal value).
In Table 2, each row corresponds to the average results for 10 instances. The two first columns show the alphabet size

and the maximum number of repetitions. The next columns are just like in Table 1. In both tables, the best results in each
of the rows are indicated in a shaded box.
It is interesting to note thatMax finds optimal solutions more often than A1, which means that A2 and A3 complement

sometimes the behavior of A1. In terms of approximation, the ratio between the (average) optimal length and the (average)
length of the solution produced byMaxwas always no more than 5/4 (for the instances where we had the optimal value).
Weobserve that instanceswith alphabet size between n/4 and 3n/8 seem to becomeharder earlier (for shorter instances)

in the sense that the approximation algorithms do not find an optimal solution so often (see Table 1). Indeed, except for these
cases, in all other cases, the ratio above was no more than 11/10. Similar comments hold for the second type instances. For
those, the ratio above is also always at most 5/4.
Some of the results shown in Table 1 are summarized in the graphics exhibited in Figs. 1 and 2. A first observation is

that the performance of the approximation algorithms improves when the number of repetitions decreases (that is, when
the alphabet size increases relatively to n). This can be seen in the graphics shown in Fig. 1. Another observation, now seen
from the graphics shown in Fig. 2, is that, for a fixed (expected) number of repetitions of each symbol, the performance of
the algorithms decays when the length of the sequences increases.

S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324 1323

Fig. 3. Number of times the algorithms found the best (resp. an optimal) solution. Here ‘best’ means not worse than the solution found by the other
algorithm.

Fig. 4. Number of times the algorithms found the best (resp. an optimal) solution. Here ‘best’ means not worse than the solution found by the other
algorithm.

We note that Algorithm A3 produces the worst results. Also, Algorithm A2 outperforms Algorithm A1 for small length
(under 128) sequences. For larger sequences, in both experiments, Algorithm A1 is the best. This is more evident in the
graphics shown in Figs. 1 and 2. We also point out the different behaviors of the algorithms when n grows. In Fig. 2, we can
see that the solutions found by Algorithm A1 do not diverge much from the optimum, when n grows, while Algorithms A2
and A3 found solutions that diverge more and more from the optimum.
It is interesting to note in Figs. 3 and 4 the performance of Algorithms A1, A2 for alphabet sizes 3n/4 and 3n/8. For

sequences of length n < 128, Algorithm A2 finds better solutions than Algorithm A1. But for n ≥ 128, Algorithm A1
outperforms Algorithm A2. In these figures, we also note that as n gets larger,Max finds fewer optimal solutions.

6. Final remarks

Despite of the not so good theoretical worst case ratio, the experimental results indicate that the performance of the
approximation algorithms is quite satisfactory for the instances tested. However, it would be nice to test their performance
on larger and different types of instances. For them, especially when the sequences have many repetitions (small alphabet)

1324 S.S. Adi et al. / Discrete Applied Mathematics 158 (2010) 1315–1324

we can obtain the solution of the approximation algorithms very fast, but we are not always able to find the optimal value.
We are working on the branch-and-cut algorithm to solve larger instances and hope to confirm the good performance of
the approximation algorithms. In any case, it would be interesting to find out whether there is a constant approximation
algorithm for rflcs.

Acknowledgements

The authors thank an anonymous referee for the valuable comments and suggestions. They also thank the
financial support received from FAPESP (Proc. 2003/09925-5, 2004/14335-5), CNPq (Proc. 490333/2004-4, 478329/2004-0,
305702/2007-6), Fundect (Proc. 41/100.149/2006), and Alßan (Proc. E05D053131BR).

References

[1] S.S. Adi,M.D.V. Braga, C.G. Fernandes, C.E. Ferreira, F.V.Martinez,M.-F. Sagot,M.A. Stefanes, C. Tjandraatmadja, Y.Wakabayashi, Repetition-free longest
common subsequence, in: Proceedings of the IV Latin-American Algorithms, Graphs, and Optimization Symposium, in: Electron. Notes DiscreteMath.,
vol. 30, 2008, pp. 243–248 (electronic).

[2] N. Alon, J. Spencer, The Probabilistic Method, John Wiley, 1992.
[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, Springer, 1999.

[4] G. Blin, G. Fertin, C. Chauve, The breakpoint distance for signed sequences, in: Proceedings of CompBioNets - Text in Algorithms, vol. 3, 2004, pp. 3–16.
[5] P. Bonizzoni, G. Della Vedova, R. Dondi, G. Fertin, S. Vialette, Exemplar longest common subsequence, in: Proceedings of IWBRA, in: Lecture Notes in
Computer Science, vol. 3992, Springer, Berlin, 2006, pp. 622–629.

[6] D. Bryant, The complexity of calculating exemplar distances, in: D. Sankoff, J.H. Nadeau (Eds.), Comparative Genomics, Kluwer, 2001, pp. 207–212.
[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.
[8] C.G. Fernandes, C.E. Ferreira, C. Tjandraatmadja, Y.Wakabayashi, A polyhedral investigation of the LCS problem and a repetition-free variant, in: LATIN
2008: Theoretical Informatics, in: Lecture Notes in Computer Science, vol. 4957, Springer, Berlin, 2008, pp. 329–338.

[9] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[10] C.H. Papadimitriou,M. Yannakakis, Optimization, approximation and complexity classes, Journal of Computer and SystemSciences 43 (1991) 425–440.
[11] D. Sankoff, Genome rearrangement with gene families, Bioinformatics 15 (11) (1999) 909–917.

	Repetition-free longest common subsequence
	Introduction
	Algorithmic results
	Analysis of the probabilistic algorithms
	Derandomization

	Hardness result
	An IP based exact algorithm for the problem
	Computational experiments
	Final remarks
	Acknowledgements
	References

