
Efficient Searches for Similar Subsequences of Different Lengths
in Sequence Databases *

Sanghyun Park and Wesley W. Chu Jeehee Yoon Chihcheng Hsu
University of California, Los Angeles Hallym University, Korea Santa Teresa Lab., IBM

shpark@cs. ucla.edu, wwc@cs.ucla.edu jhyoon@sun.hallym.ac.kr ccheng @ us. ibm. corn

Abstract
We propose an indexing technique for fast retrieval of
similar subsequences using time warping distances. A
time warping distance is a more suitable similarity
measure than the Eucl idean d is tance in many
applications, where sequences may be of different lengths
or different sampling rates. Our indexing technique uses a
disk-based suffix tree as an index structure and employs
lower-bound distance functions to filter out dissimilar
subsequences without false dismissals. To make the index
structure compact and thus accelerate the query
processing, we convert sequences of continuous values to
sequences of discrete values via a categorization method
and store only a subset of suffixes w h o s e first values are
different from their preceding values. The experimental
results reveal that our proposed technique can be a few
orders of magnitude faster than sequential scanning.

1. Introduction

Similarity searches in sequence databases are important
in many application domains, such as information
retrieval, data mining, and clustering. Detecting stocks
that have similar growth patterns and finding patients
whose lung lesions have similar evolution characteristics
are a few examples of similarity queries. Although
sequential scanning can be used to answer these queries, it
may require an enormous processing time over large
sequence databases. Recently, several indexing techniques
[1,5,10,22] have been proposed to speed up the
processing of similarity queries.

Most of the previous techniques [1,10,22] for similarity
searches use the Euclidean distance metric as a similarity
measure. However, in many applications, the sampling
rates and the lengths of sequences may be different,
making it difficult or impossible to use the Euclidean
distance as a similarity measure. In the area of speech

* This work is supported in part by grants from the NSF (IRI-
-9619345) and the NIH (CA5 1198-07)

recognition [1.5], this problem has been approached using
a similarity measure, called a time warping distance
13,151, which allows sequences to be stretched or
compressed along the time axis. Under time warping, any
element of a sequence can be matched to one or more
neighboring elements of another sequence. As an example
[1613 let us consider two sequences, S, =
<20,20,21,21,20,20,23,23> a n d S2 = <20,21,20,23>
where the sequence S, is the closing price of a stock taken
every day and S2 is the closing price of another stock
taken every other day. S, and Sz cannot be compared
directly because the sequence S, is longer than Sz. The
Euclidean distance between Sz and any subsequence of
length four of Si is greater than 1.41. However, if we
duplicate every element of Sz using time warping, we find
that the two sequences are identical.

In the matching of similar sequences, it is important to
prevent the occurrence of false dismissals [I]. A false
dismissal occurs when a sequence similar to a query
sequence is not included in the answer set. Indexing
techniques that assume the triangular inequality m a y
produce false dismissals when the distance function not
satisfying the triangular inequality is used as a similarity
measure [22]. Unfortunately, a time warping distance
does not satisfy the triangular inequality, which can be
simply proved by a counter example [22]. This property
makes spatial access methods based on the triangular
inequality unsuitable for similarity searches with a time
warping distance.

In the area of string matching, a suffix tree [171 has
been extensively used as an index structure to find the
substrings that are exactly matched to the given query
string. A suffix tree may be a good candidate for an index
structure with a time warping distance because it does not
assume any geometry or any underlying distance
functions. However, for a suffix tree to be used as an
index structure for similarity searches, the following
problems have to be addressed: 1) A suffix tree is
designed to find the exactly matched substrings. Its exact
search algorithm needs to be extended to lind similarly
matched subsequences. 2) In general, a suffix tree is built

from sequences whose elements take the values from
finite alphabets. However, sequences we consider in this
paper are comprised of elements of continuous real
values. A systematic method to convert continuous
element values to discrete values is required.

In this paper we propose a new indexing technique for
the fast retrieval of similar subsequences of different
lengths or different sampling rates. Our technique uses a
time warping distance as a similarity measure and a disk-
based suffix tree as an index structure. To make the index
structure compact, we convert sequences of continuous
values to sequences of discrete values via a categorization
method and store only a subset of suffixes whose first
values are different from their immediately preceding
values. When the query sequence, Q, is given, a suffix tree
is traversed and time warping distances between Q and
subsequences contained in a suffix tree are computed.
Because subsequences contained in a suffix tree are of
discrete values, their exact distances from Q cannot be
obtained. Instead, lower-bound distance functions are
employed to estimate the exact distance; so our proposed
technique guarantees no false dismissals.

This paper is organized as follows. In Section 2 we
provide a brief overview of the related work on sequence
matching problems. In Section 3, we give the definition
and the property of a time warping distance. Section 4
introduces the construction method and the similarity
search algorithm of a disk-based suffix tree. We apply the
ideas of a categorization and a sparse suffix tree in
Section 5 and Section 6, respectively. Experimental
results are given in Section 7.

2. Related work

Several approaches for fast retrieval of similar
sequences have recently been proposed. In [I], sequences
are converted into the frequency domain by a Discrete
Fourier Transform and are subsequently mapped into
multi-dimensional points that are managed by an R*-tree;
this technique was extended to locate similar
subsequences [lo]. Since the approaches of [1, IO] use the
Euclidean distance metric as a similarity measure,
sequences of different lengths or different sampling rates
cannot be matched.

Sequence matching that allows transformations is
proposed in [11,16]. In [ll], sequences are grouped into
equivalent classes according to their normal forms.
Though normal forms are invariant to shape-based
transformations such as scaling and shifting, they do not
handle the compressions or the stretches of element values
along the time axis. The authors of [161 propose a class of
transformations that can be used in a query language to
express similarity with an R-tree index. They handle
moving average and global time scaling, but not time

warping.
The access methods of [5,14,21,22] permit the

matching of sequences of different lengths. [5] presents a
modified version of an edit distance, considering two
sequences matching if a majority of elements match. This
technique is extended to the matching of multi-
dimensional sequences in [21]. In [22], a time warping
distance is used as a similarity measure with a two-step
filtering process: a FastMap index filter proceeded by a
lower-bound distance filter. The underlying index
structures of [5,21,22] are based on the triangular
inequality. The authors of [14] introduce an aligned
subsequence matching with a time warping distance.
Whereas their approaches are useful for long data
sequences, subsequences not starting or ending at segment
boundaries cannot be found.

Similarity matching based on shapes of sequences is
proposed in [2,19]. [2] demonstrates a shape definition
language (SDL) and provides an index structure for
speeding up the execution of SDL queries. In [19], the
authors introduce the notion of generalized approximate
queries that specify the general shapes of data histories.
Whereas both approaches may handle the variations of
element values on the time axis, they cannot be used for
applications that care about specific element values.

There are also several approaches for matching of
biological sequences. [4] proposes to use a disk-based
suffix tree for solving the sequence alignment problem,
and [20] addresses the problem of discovering patterns in
protein databases with the similarity measure of a string
edit distance. While we focus on the sequences of
continuous numeric values, the approaches of [4,20]
center on the sequences of characters. Furthermore, the
algorithm of [20] uses a main-memory based suffix tree,
making it infeasible for a large sequence set.

3. Time warping distance

In general, finding a similarity measure for sequences
is not easy because sequences that are qualitatively the
same may be quantitatively different. First, the sequences
may be of different lengths, making it difficult or
impossible to embed the sequences in a metric space and
use the Euclidean distance to determine similarity.
Second, the sampling rates of sequences may be different:
one sequence may be sampled every minute while another
sequence is sampled every other minute. Such differences
in rates make similarity measures such as cross-correlation
unusable.

In this paper, we use a time warping (TW) similarity
measure [3,15] that allows sequences to be stretched or
compressed along the time axis. TW is a generalization of
classical algorithms for comparing discrete sequences to
sequences of continuous values, and is used extensively in

matching of voice, audio and medical signals
(electrocardiograms). To find the minimum difference
between two sequences, TW maps each element of a
sequence to one or more neighboring elements of another
sequence. Let us now give the formal definition [15] of
the time warping distance.

Definition 1. Given any two non-null sequences, Si and Sj,
the time warping distance, D,,(), is defined as follows :

D t w (S i , Sj[2:-1)
D d S , , S i) = Jhasc(S~[ll~ SiLlI) + m i n DdSi[2:-1~ S J

D,,(Si[2:-1, Si[2:-1)
Dbasc(ar b) = I a - b I n

In above definition, Si[p] represents the plh element of
Si and S,[p:q] denotes the subsequence of S, including
elements in positions p through q. We use the notation
Si[p:-] for the suffix of Si starting from the pfh element.
That is, S,[p:-] is identical to S,[p:IS,I] where lSil is the
length of S,. Dbasc() on two numeric values can be any
distance function, but we assume that it is defined as the
city-block distance. D,,(S,,S,) can be calculated efficiently
using a dynamic programming technique [3] based on the
recurrence relation y,,(x, y).

Definition 2. Given any two non-null sequences, S, and S,,
the recurrence relation y&x, y) (x=1,2,.. .,IS,I, y=l,2 ,...,
IS,l) that builds the cumulative time warping distance table
for S, and S, is defined as follows:

Y,,(X> Y-l)
X,(X, Y) = Dhahc(Si]xl> SJYI) + min X+(x-1, Y)

‘IXv(x-1, Y-l)
n

row6
row5
rob’4
row3
row2
row1

co11 co12 co13

S,=< 4, 5, 6, 7, 6, 6 >

~~
s3=< 3, 4, 3 >

(a) Cumulative distance table (b) Mapping of elements

Figure 1. Time warping distance for S, = <3,4,3>
and S, = <4,5,6,7,6,6>

The dynamic programming algorithm [3] Ells in the
table of cumulative distances as the computation proceeds.
This computation has complexity O(IS,IIS,I). The final
cumulative distance, y,,(IS,I,IS,I), is the minimum distance

between S, and Sj, and the matching of elements can be
traced backward in the table by choosing the previous
cells with the lowest cumulative distance. Figure 1 shows
the cumulative distance table for two sequences, S3 =
<3,4,3> and Sq = <4,.5,6,7,6,6> and the mapping of
elements that generates the minimum distance.

By reading the last column of each row of the
cumulative distance table, we get the distance between S,
and any prefix of Si. That is, the distance between Si and
SJl:q] (q=l,2,...,ISil) is obtained from the last column of
the qlh row. In the above example, D&i,, $[1:4]) is 8, as
seen in the last column of the row 4. Thus, determination
as to whether the time warping distance of two sequences
is greater than a distance-threshold E does not require
building the entire cumulative distance table, as proven by
the following theorem.

Theorem 1. If all columns of the last row of the
cumulative distance table have values greater than a
distance-threshold E, adding more rows on this table does
not yield the new values less than or equal to E.

Proof. The proof is given in [131. n

Let us look at the table shown in Figure 1. If E is 3,
after inspecting the row 3, we can determine that the
distance between S3 and S4 is greater than E because all
columns of the row 3 have values greater than 3.
Therefore, we do not have to fill the remaining three rows.
In subsequent sections, we use Theorem 1 to reduce the
search space of an index structure.

4. Similarity search using a suffix tree

In this section, we propose to use a suffix tree (ST) as
an index structure for similarity searches with a time
warping distance. Before describing the methods for
constructing and searching a suffix tree, we present the
definition and the internal structure of a suffix tree.

A trie is an indexing structure used for indexing sets of
keywords of varying sizes. A suffix trie [17] is a trie
whose set of keywords comprises the suffixes of a single
sequence. Nodes with a single outgoing edge can be
collapsed, yielding the structure known as the suffix tree
[17]. A suffix tree is generalized [4,20] to allow multiple
sequences to be stored in the same tree. Each suffix of a
sequence is represented by a leaf node. Precisely, the
suffix S,[p:-] is expressed by a leaf node labeled with (t,p).
The edges are labeled with subsequences such that the
concatenation of the edge labels on the path from the root
to the leaf (t,p) becomes S,[p:-1. The concatenation of the
edge labels on the path from the root to the internal node,
Ni, represents the longest common prefix of the suffixes
represented by the leaf nodes under N,. We use the

notation labeI(Ni,N,) for the concatenated labels on the
path from Ni to Ni. Figure 2 shows the suffix tree
constructed from two sequences, S5 = <4,5,6,7,6,6> and
S6 = <4,6,7,8>, where 3 is used as an end marker of a
suffix.

$

(5 3) (6 2)

i ib
(6 x 4)

Figure 2. Suffix tree from S,=<4,5,6,7,6,6> and
S,=<4,6,7,8>

4.1. Index construction

A suffix tree for multiple sequences can be constructed
by adding a special sequence separator symbol to the
alphabet. The sequences to be included in the tree are
concatenated, separated from each other by this separator
symbol. Then, the ordinary suffix tree algorithm is applied
to the concatenated sequence. The suffix tree created
using this process has to be kept in main memory during
construction. Therefore, this approach is not realistic to a
large sequence set.

To remedy the problem, we use an incremental disk-
based suffix tree construction method proposed in [4].
Two suffix trees, representing two disjoint sets of
sequences, are merged to produce a single suffix tree by
pre-order traversal of both suffix trees and combining the
paths corresponding to common subsequences. A suffix
tree for a large set of sequences can be constructed by
performing a series of binary merges of suffix trees of
increasing size. The merge operation of two suffix trees
can support disk-based representations in limited main
memory.

Two suffix trees for S, and S, are merged with
complexity O(IS,I+IS,I), hence the suffix tree for M
sequences is constructed with complexity O(ML) where
L is the average length of M sequences. The total number
of nodes in a suffix tree is constrained due to two factors:
1) there are O(ML) leaf nodes and 2) the degree of any
internal node is at least 2. Therefore, the maximum

number of nodes and overall space requirement of the
suffix tree is linear in ME [17].

4.2. Search algorithm: SimSearch-ST

A suffix tree (ST) is a useful index structure to locate
subsequences that are exactly matched to a query
sequence Q. To find exactly matched subsequences, Q is
traversed from the root of the tree and traversal is
terminated when the end of Q is reached or a node is
reached beyond which further traversal is not possible.
Exact searches are performed in O(lQI). Even though the
exact matching algorithm of a suffix tree is simple and
fast, it cannot be directly applied to the problem we are
going to solve in this paper.

Problem Definition: Given M sequences S,&,...,S~ of
arbitrary lengths, a query sequence Q and a user-given
distance-threshold E, find the subsequences S,[p:q] (i =
1,2,. . ,M) whose time warping distances from Q are less
than or equal to E. n

Our proposed similarity search algorithm SimSearch-
ST is given in Algorithm 1. The search starts from the
root of a suffix tree and continues the depth-first traversal
until all subsequences whose time warping distances are
less than or equal to E are found.

Input : Root Node R, Q, E
Output : answerSet

cumDistTable t NULL;
answerset t Filter-ST (R, Q, E, CumDistTable);

return answerset;

Algorithm 1. SimSearch-ST

The actual filtering process is executed in Filter-ST
shown in Algorithm 2. When Filter-ST visits a node N, it
inspects each child node CN, to find a new answer and to
determine whether further depth traversal is needed or not.
For simpler explanation, we assume that the edge between
two nodes, N and CN,, is labeled with a single value.

To find a new answer, Filter-ST builds a cumulative
distance table for Q and label(N, CN,). If N is a root node,
the table is built from the bottom. Otherwise, the table is
constructed by augmenting a new row on the table T that
has been accumulated from the root to N. The function
AddRow(T, Q, label(N, CN,), D,,()) builds a new
cumulative distance table, using the distance function
D,,(), by augmenting a new row corresponding to label(N,
CN,) on T. Suppose that the rth row is the newly added
row. If the last column of the rth row has the value less

than or equal to E, label(GetRoot(CNi), CN,)) is inserted
into the answer set.

To determine if further depth traversal is needed,
Filter-ST uses Theorem 1. If at least one column of the rth
row has a value not greater than E, the search continues
down the tree to find more answers. Otherwise, the search
moves to the next child of N.

Input : Node N, Q, E, Cumulative Distance Table T
Output : answerSet

answerset t ();
C N t G e t C h i l d r e n

for i t 1 to ICNI do (
CT, t AddRow(T, Q, label(N,CNi), D,,());
Let disc be the last column value of the new row;
Let mDist be the minimum column value of the new row;
if disc 5 E, insert label(GetRoot(CNJ,N,) into answerset;
if mDist 2 E,

answerset t answerSet u Filter-ST(CN,, Q, E, CT,);

return answerset:

Algorithm 2. Filter-ST

4.3. Algorithm analysis

Before analyzing the complexity of SimSearch-ST,
let us examine the complexity of sequential scanning.
Sequential scanning reads each sequence and builds as
many cumulative distance tables as the number of suffixes
contained in the sequence. The complexity of building a
cumulative distance table for the query sequence Q and
the suffix of length L is O(LIQI). For M sequences whose
average length is L, there are ML suffixes and their
average length is (<+1)/2. Therefore, the complexity of
sequential scanning is O(M? IQI).

SimSearch-ST is computationally less expensive than
sequential scanning due to branch-pruning (based on
Theorem 1) and sharing cumulative distance tables for all
suffixes that have common prefixes. Thus, the complexity

of SimSearch-ST is 0(M L2 lo’), where Rd (21) is the
Rdi=ip

reduction factor due to sharing the cumulative distance
tables, and R, (21) is the reduction factor gained from the
branch-pruning. Rd grows as the length and the number of
common prefixes of the suffixes contained in a suffix tree
increase. Given k suffixes, a,,clz,.. .,c(~, whose first t
elements are the same, the construction of k cumulative
distance tables requires the computation of IQllcc,l + IQllcc21
+ . ..+IQlla.l cells. However, it is reduced to tlQl +
IQl(lcql-t) + IQl(la,l-t) + . ..+IQl(lcx&-t) if the cumulative

distance table for Q and the common prefix of length t is
shared by k suffixes. In this case, Rd can be expressed as
Rd = (la,l+lcr21+...+lcr,I) / ((lcr,l+la21+...+lc,J) - t(k-1)).

While Rd is determined by the distribution of element
values, R, is decided by the number of answers required
by a user. That is, R, increases as the distance-threshold E
decreases. If E is so small that just one or two
subsequences may be answers, only the topmost part of a
suffix tree may be visited during the query processing. In
another extreme case where E is large enough for all
subsequences to be answers, all nodes of a suffix tree need
to be visited, thus making R, = 1. In the worst case where
there is no common subsequence and the branch-pruning
cannot help, both values of & and R, are 1, and therefore
the complexity of SimSearch-ST becomes the same as
that of sequential scanning.

5. Similarity search using categorization

In this section we introduce the concept of
categorization to decrease the number of values that
elements can take and thus increase the length and the
number of common subsequences. As explained in the
previous section, if the length and the number of common
subsequences increase, the index size and the query
processing time are reduced. To get the categorized
representations of element values, we first generate the set
of categories and determine their ranges. Then, we convert
every element value to the symbol of the corresponding
category. For example, given two categories C, = [0.1,3.9]
and C2 = [4.0,10.0], S7 = ~5.27, 2 . 5 6 , 3.85> i s
transformed to CS-/ = <C2, C,, C,> where CS, denotes the
converted sequence of S,. Thus, sequences of continuous
values are converted to sequences of discrete symbols.

5.1. Categorization method

In this work, the following two categorization methods
have been chosen and experimented for their simple
implementations, albeit other categorization approaches
like the type abstraction hierarchy (TAH) [6] and the k-
means algorithm may also be used to categorize element
values.

The first method is an equal-length categorization. As
the name implies, all the categories have equal interval
length (MAX-MIN) / c. Here, MIN is the smallest element
value found in the set of sequences, MAX is the largest
element value found in the set of sequences, and c is the
number of categories given as the input parameter to the
categorization algorithm. This categorization approach is
simple and fast, but loses information about value and
frequency distributions of the sequences.

The second method is a maximum-entropy
categorization. The entropy [18] of a categorization is

defined as H(C)= --x=, P(G) IocJP(CI) where P(Ci) is

the probability that an element is included in the ith
category. To minimize the loss of information about the
sequences, this categorization method decides the
category boundaries that generate the maximum entropy
value. The boundaries can be determined easily by making
all categories include the same number of elements (P(C,)
= P(C,) = . . . = P(C,)).

It is not easy to determine the number of categories:
too many categories do not help much to increase the
number of common subsequences, but likewise, too few
categories do not help much to reduce the query
processing time because of the decreased filtering rate of
the index. A simple strategy is to do many experiments on
the set of sequences and determine the best number of
categories using the cost function W,C, + W,C,. Here, C,
and C, are costs for processing the query and storing the
index, respectively, and W, and W, are their relative
weights. The determination of these weights is
application-dependent.

5.2. Index construction

After converting element values into discrete symbols,
we build a suffix tree from the set of converted sequences.
We denote the resultant tree STc. STc is constructed using
the same construction algorithm used for an ordinary
suffix tree.

5.3. A modified distance function: D+,,,()

Whereas the edges of a suffix tree are labeled with
numeric values, the edges of STc are labeled with discrete
symbols. As a result, the exact time warping distance
between a query sequence of numeric values and any
subsequence contained in STc cannot be computed.
Therefore, we introduce the new distance function D,&).

Definition 3. Given two non-null sequences, S, and S,, the
distance function D,,&S,, CS,) that returns the lower-
bound distance of D,,(S,, S,) is defined as follows:

D,w(WS,[2:-I)
D,w-lb(SI,CSi) = Dhase-lb(S,[ll.CS,[ll) + min

{
RJW:-ICSJ
D,,(S,[2:-l,CS,[2:-1)

l&s-,h(a> B) =
1

0 (if B.lb I a I B.ub)
a - B.ub (if a > B.ub)
B.lb - a (if a < B.lb)

where ‘a’ is the numeric value corresponding to S,[l] and

‘B’ is the category symbol corresponding to CS,[11. n

In the definition of Dhase_,,,(), B.lb and B.ub are the
minimum and the maximum element values, respectively,
found in the category B. As shown in Figure 3, Dbas&a,
B) returns the possible minimum distance between a and
B.

B.ub
l a possible minimum distance

B.lb = o

+a
B.ub

possible minimum distance

B.lb = a - B.ub

B.ub
possible minimum distance

B.lb = B.lb - a
a

Figure 3. Minimum distance between a and B

To prevent false dismissals, the distance returned from
D,w_lh(S,, CS,) should always be less than or equal to the
distance computed by D,,(Si, Sj). Theorem 2 states this
fact.

Theorem 2. For any two non-null sequences, S, and S,,
the following inequality holds.

Dtw-lh(Slr CS,) 5 Dt,(Si, S,)
Proof. The proof is given in [131. n

5.4. Search algorithm: SimSearch-ST,

Input : Root Node R, Q, E
Output : answerset

cumDistTable t NULL;
candidateset t answerset t {);

candidateset t Filter-STc (R, Q, E, cumDistTable);
answerset t PostProcess(candidateSet, Q, E)

return answerset;

Algorithm 3. SimSearch-ST,

The algorithm SimSearch-ST needs to be modified to
reflect the categorized representation of element values.
Our proposed search algorithm SimSearch-ST, is shown
in Algorithm 3. Note that element values of a query
sequence are not converted to discrete symbols.

To find the candidate subsequences whose lower-

bound distances to the query sequence Q are within E,
Filter-ST, is called recursively. Filter-ST, is the same as
Filter-ST except that the former uses Dtw_ib() to build the
cumulative distance table while the latter uses D,w(). Since
the lower-bound distance is used for filtering, the
subsequences whose exact time warping distances are
larger than E may be included in the candidate answer set.
These subsequences are called false alarms. For each
answer contained in the candidate answer set, the
algorithm PostProcess retrieves the actual subsequences
and computes their exact time warping distances. Finally,
the subsequences whose actual time warping distances are
not larger than E are returned as answers. Algorithms
Filter-ST, and PostProcess are omitted due to space
limitations.

5.5. Algorithm analysis

The complexity of SimSearch-ST, is represented as

OCM L2 IQI +nc I Q I) where n is the number of- -

subsequences requiring the post-processing. Hence, the
left expression represents the time for filtering and the
right expression represents the time for post-processing.
Compared to SimSearch-ST, SimSearch-ST, has
performance improvements due to a larger value of &,
despite the extra time for post-processing

6. Similarity search using a sparse suffix tree

A suffix tree that stores only a subset of suffixes is
called a sparse suffix tree [12]. Since the size of a suffix
tree is linear in the number of leaves, a sparse suffix tree
is smaller than an original suflix tree. Suffixes inserted
into a tree are called stored sujixes, and suffixes not
inserted into a tree are called non-stored sufJires. The
reduction of the index size by storing only a subset of
suffixes is measured by the compaction ratio r (0 2 r < 1)
that is defined as r = (the number of non-stored suffixes) /
(the number of suffixes). In this section, we propose to use
a sparse suffix tree to further reduce the index size and
accelerate the query processing.

6.1. Index construction

Similar to STc, a sparse suffix tree is built from the set
of categorized sequences. However, unlike STc, only
suffixes whose first values are different from their
immediately preceding values are stored in a sparse suffix
tree. That is, the suffix CS,[p:-] is stored only if CS,[p] #
CS,[p-I]. For example, for CS,, = <C,,C,,C,,C3,C2,CZ>,
only the three suffixes (CS,[l:-1, CS,[4:-1, and CS,[5:-1)

are stored in a sparse suffix tree. We denote the resultant
tree SSTc.

6.2. A modified distance function: Dtw_&)

Suppose that we have the cumulative distance table for
S, and CS, where S, and CSi are located along the x-axis
and the y-axis, respectively. While we can get the distance
between S, and any prefix of CSj by reading the last
column of each row, there is no direct way to compute the
distance between Si and any suj% of CSj except by
building a new table. However, if the first N elements of
CS, have the same value, we can obtain the lower-bound
distance of D,,&S,, CSi[p:-1) (p=2,3,...,N) using a new
distance function, D,,&S,, CSi[p:-I).

Definition 4. For any two non-null sequences, S, and CS,,
if the first N elements of CS, have the same value, then the
distance function Dtw.ibZ(Si, CSi[p:-1) (p=2,3,. . .,N) that
returns the lower-bound distance of Dtw_ib(Si, CSj[p:-1) is
defined as follows:

Li&&CS,llJ:-I) = Dlw-lb(Si,CSi) - (p-1) * J&.._lb(Si[I],CSi[I])
n

If we know the value of Dlw_lh(SI,CS,), then D,,.,h2(S,,
CS,[p:-1) can be computed with complexity O(1). The
distance returned from D,,.&S,,CS,[p:-]) is always less
than or equal to D,w_lh(S1, CS,[p:-I). The following theorem
states this fact.

Theorem 3. For any two non-null sequences, S, and S,, if
the first N elements of CS, have the same value, then the
following inequality holds for p = 2,3,...N:

Dtw-ltQ.(SI~CSI[P:-I) s Dtw-dSi,CSj[p:-I) 2 DJS,,Sr[p:-1)

Proof. The proof is given in [131. n

6.3. Search algorithm: SimSearch-SST,

The algorithm SimSearch-ST, needs to be modified
to reflect the fact that there are some suffixes not stored in
the index. If SimSearch-ST, is applied to a SSTc
without modification, the subsequences contained in the
non-stored suffixes may not be included in the answer set
even if similar to a target query sequence. Therefore, the
steps of finding and processing the subsequences
contained in the non-stored suffixes need to be added to
the SimSearch-ST,.

The proposed algorithm SimSearch-SST, includes
the filtering step and the post-processing step. During the
filtering step, D,w_lh() is used to calculate distances

between Q and the subsequences contained in the stored
suffixes, and D,,,_&) is used to compute distances
between Q and the subsequences contained in the non-
stored suffixes. During the post-processing, D,,,() is
applied to the subsequences included in the candidate
answer set. A detail description of the SimSearch-SST,
algorithm is in [131.

6.4. Algorithm analysis

The complexity of SimSearch-SST, is represented as

.((I-r)M L2 IQI
Rd&

+rMC+nE]Q]) where n is the number

of subsequences requiring the post-processing, and r is the
compaction ratio of a SSTc. Thus, (l-r)ML is the number
of the stored suffixes, and rML is the number of the non-
stored suffixes. Compared with SimSearch-ST,,
SimSearch-SST, reduces the query processing time by
decreasing the number of cumulative distance tables
generated during the tree traversal, at the cost of larger n.

7. Experimental results

To study the performance of our similarity search
algorithms, we conducted several experiments on stock
data sequences extracted from S&P 500
(http://biz.swcp.com/stocks/) and on the artificial data
sequences. The stock data were based on their daily
closing prices. A total of 545 stock sequences was used
with an average length of 232. The expression for
generating the artificial sequences was defined as S,[p] =
Si[p-1] + Z,, where Z, (p=1,2,...) are independent,
identically distributed random variables. Twenty percent
of the query sequences were extracted from the stocks
whose average prices were below $30, 50% from the
stocks whose average prices were between $30 and $60,
and 30% from the remaining stocks. The query sequences
for the artificial sequences were obtained in a similar
manner. The average length of the query sequences was
set to 20. All experiments except for the scalability test in
Section 7.3 were performed on both the stock and the
artificial sequences.

7.1. Index size and query processing time with
increasing number of categories

Table 1 shows the sizes of the proposed indices built
from the stock sequences, where EL is the equal-length
categorization and ME is the maximum-entropy
categorization. While the size of ST is not affected by the
number of categories, STc and SSTc become larger as the
number of categories increases. STc and SSTc are smaller

than ST due to the increased number of common
subsequences, and SSTc is smaller than STc due to the
decreased number of suffixes stored in the index.

Table 1. Index sizes with selected number of
categories

10
20
40
80
120
160
200
250
300

r

ST

158,512

i

t

Index Size (Kbytes) 1
STc

EL ME EL ME
5,360 10,534
7,982 15,879

12,362 26,069
18,817 41,288
26,888 5 1,942
32,860 59,927
37,837 66,357
43,413 72,937
48 087---Z--- 78 297h

262
850

2,685
3,985
7,657

11,620
15,416
20,326
24 905&

914
2,355
7,108

18,317
28,842
37,922
45,449
53,535
60,345

T SSTc

Table 2 shows the average query processing times of
the three proposed similarity search algorithms with the
average distance-tolerance of 30. On the whole, as the
number of categories increases, the executions of
SimSearch-ST, and SimSearch-SST, become faster.
However, their executions slow down when the number of
categories exceeds a certain threshold. This threshold
value may be used as the optimal number of categories.
For example, 200 is the optimal number of categories for
SimSearch-SST, with EL and 120 is for SimSearch-
ST, with ME. Using similar-sized indices, SimSearch-
SST, is faster than SimSearch-ST,, and SimSearch-
SST, based on ME yields better performance than
SimSearch-SST, based on EL. We obtained similar
conclusions from experiments on the artificial sequences.

Table 2. Average query processing times with

10
20
40
80
120
160
200
250
300

T
selected number of categories

Average Query Processing Time (set)

Sim
Search-

ST

55.30

T SimSearch-ST,

EL
241.94
122.63
54.89
30.57
26.03
23.08
21.42
21.19
20.65 ! ME

84.09
35.57
25.88
21.05
20.93
21.60
22.41
23.67
25.04

T

I
SimSearch-SST,

EL ME
215.73 75.53
122.75 30.90
49.61 20.65
25.90 18.40
21.30 20.80
19.13 23.49
18.63 26.53
19.08 30.49
19.55 34.15

1

7.2. Comparison with sequential scanning

Based on the results from Section 7.1, we chose ME-
based SSTc as our index structure and compared its
similarity search algorithm with sequential scanning.
Table 3 shows their average query processing times with
increasing distance-threshold (E) from 5 to 50. About 50
answers were returned when E = 5 and about 350,000
answers were reported when E = 50. Here, SeqScan is
sequential scanning and SimSearch-SST, (k) represents
the proposed algorithm with k categories. From Table 1,
we know that SSTc with 10, 20, and 80 categories require
about 50%, lOO%, and l,OOO% spaces of databas.e size
(1,896 Kbytes), respectively. Our proposed technique is
up to 4.2 times faster with 10 categories, 11.1 times faster
with 20 categories, and 34.7 times faster with 80
categories than the sequential scanning.

Table 3. Comparison of sequential scanning and
our algorithm with selected distance-threshold

s1 a Query Processing Time (set)

Sim Sim
Search- Search-
SST(l0) SST(20)

48.96 18.61
54.63 21.24
71.31 27.18
75.62 30.98
79.85 34.89
81.94 38.29

7.3. Scalability study

To study the scalability of our approach, we compared
the execution times of ME-based SimSearch-SST, with
that of sequential scanning by increasing the average
length and the number of the artificial sequences. First, we
increased the average length of the sequences from 200 to
1,000 while keeping the number of the sequences equal to
200. And we changed the number of sequences from 1000
to 10,000 while maintaining the average length of
sequences equal to 200. For both experiments, the
numbers of categories were chosen to make the index size
smaller than the database size. As shown in Figure 4 and
Figure 5, the performance improvements of SimSearch-
SST, is maintained for both long sequences and large
number of sequences. Note that the query processing
times for both sequential scanning and SimSearch-SST,
increase quadratically with respect to the average
sequence length and linearly with respect to the number of
sequences.

ISim
Search-
SSTc

0

200 400 6no X00 loo0

average length of sequences

Figure 4. Comparison of sequential scanning and
our algorithm with selected length of sequences

1000 3000 6000

number of sequences
IO000

Figure 5. Comparison of sequential scanning and
our algorithm with selected number of sequences

8. Conclusion

In this paper we have proposed an indexing method
based on a disk-based suffix tree, for fast retrieval of
similar subsequences without false dismissals. Because
the sampling rates and the lengths of sequences may be
different, the proposed method uses a time warping
distance as a similarity measure that allows stretching or
compressing of sequences along the time axis.
Experiments on the stock and the artificial sequences have
shown that our proposed technique can be a few orders of
magnitude faster than sequential scanning. The
contributions of our work are: 1) extending the exact
matching algorithm of a suffix tree to similarity searches
with a time warping similarity measure, 2) applying the
ideas of categorization and sparse suffix tree to make an
index structure more compact, and 3) introducing two
lower-bound time warping distance functions, D,,,_,,,() and
Dlw_&), to filter out dissimilar subsequences without false
dismissals.

The index space can be reduced further if we know the
minimum and maximum lengths of the queries. Using a
warping window constraint [3], we can calculate the
minimum and maximum lengths of the answers. The
suffixes whose lengths are shorter than the minimum
answer length need not be inserted into the index. For the
suffixes whose lengths are longer than the maximum, only
the prefixes whose lengths are equal to the maximum
length need to be stored in the index.

The subsequences found by similarity searches can be
used for predictions, hypothesis testing, clustering and
rule discovery. For example, in the medical domain,
retrieved subsequences can be used for predicting the
disease evolution patterns of a patient; in the web
environment, they can be used to discover user web-site
visiting patterns.

Our approach can be extended to the sequences of
multivariate numeric values. Multivariate values are
converted into multi-dimensional cells using multi-
dimensional categorization methods such as multiple-
attribute type abstraction hierarchy (MTAH) [6]. Then,
the same index construction and query processing
techniques are applied to the set of converted sequences.
We are currently working in this direction for retrieving
similar medical image subsequences [7,8].

9. References

[l] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient
Similar i ty Search in Sequence Databases”, Proc. FODO,
Evanston, IL, USA, 1993.

[2] R. Agrawal, G. Psaila, E. L. Wimmers and M. Zalt,
“Querying Shapes of Histories”, Proc. VLDB, Z u r i c h ,
Switzerland, 1995.

[3] D. J. Bemdt and J. Clifford, “Finding Patterns in Time
Series: A Dynamic Programming Approach”, Advances in
knowledge discovery and data mining, AAAI/MlT Press, 1996.

[4] P. Bieganski, J. Riedl and J. V. Carlis, “Generalized Suffix
Trees for Biological Sequence Data: Applicat ions and
Implementation”, Proc. Hawaii International Conference on
System Sciences, 1994.

[5] T. Bozkaya, N. Yazdani, and M. &soyo&~, “Matching
and Indexing Sequences of Different Lengths”, Proc. CIKM,
Las Vegas, NV, USA, 1997.

[6] W. W. Chu and K. Chiang, “Abstraction of High Level
Concepts from Numerical Values in Databases”, Proc. AAAI
Workshop on Knowledge Discovery in Databases, Seattle, WA,
USA, 1994.

[7] W. W. Chu, A. F. Cgrdenas, and R. K. Taira. “KMeD: a
Knowledge-based Multimedia Medical Distributed Database

System”, Information Systems 20(2), Premagon-Press/Elsevier
Science. 1995.

[8] W. W. Chu, C. Hsu, A. F. CBrdenas, and R. K. Taira,
“Knowledge-based Image Retrieval with Spatial and Temporal
Constructs”, IEEE TKDE 10(6), 1998.

[9] C. Faloutsos and K. Lin, “Fastmap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and
Multimedia Datasets”, Proc. ACM SIGMOD, San Jose, CA,
USA, 1995.

[IO] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos,
“Fast Subsequence Matching in Time-Series Databases”, Proc.
ACM SIGMOD, 1994.

[I l] D. Q. Goldin and P. C. Kanellakis, “On Similarity Queries
for Time-Series Data: Constraint Specification and
Implementation”, Proc. Constraint Programming, Marseilles,
1995.

[12] J. KPrkkGnen and E. Ukkonen, “Sparse Suffix Trees”,
Proc. COCOON, HongKong, 1996.

[131 S. Park, W. W. Chu, J. Yoon, C. Hsu, “A Suffix Tree for
Fast Similarity Searches of Time-warped Subsequences in
Sequence Databases”, UCo1-CS-TR-99000.5, 1999.

[14]S. Park, D. Lee, W. W. Chu, “Fast Retrieval of Similar
Subsequences in Long Sequence Databases”, Proc. IEEE KDEX
workshop, Evanston, IL, 1999

[15] L. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition, Prentice Hall, 1993.

[16] D. Rafiei and A. Mendelzon, “Similarity-based Queries for
Time Series Data”, Proc. ACMSIGMOD, Tucson, AZ, 1997.

[17] G. A. Stephen, String Searching Algorithms, W o r l d
Scientific Publishing Co., 1994.

[181 C. E. Shannon and W. Weaver, The Mathematical Theory
of Communication. University of Illinois Press, 1964.

[19] H. Shatkay and S. B. Zdonik, “Approximate Queries and
Representations for Large Data Sequences”, Proc. IEEE ICDE,
1994.

[20] J. T.-L. Wang, G.-W. Chim, T. G. Marr, B. Shapiro, D.
Shasha, and K. Zhang, ‘Combinatorial Pattern Discovery for
Scientific Data: Some Preliminary Results”, Proc. ACM
SIGMOD, Minneapolis, MN, 1994.

[21] N. Yzsdani , M. Ozsoyoglu, “Sequence Matching of
Images”, Proc. SSDBM, Los Alamitos, CA, 1996.

[22]B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient
Retrieval of Similar Time Sequences under Time Warping”,
Proc. IEEE ICDE. 1998.

