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One of the most studied problems in the financial investment expert system is the intractability of port-
folios. The non-linear constrained portfolio optimization problem with multi-objective functions cannot
be efficiently solved using traditionally approaches. This paper presents a meta-heuristic approach to
portfolio optimization problem using Particle Swarm Optimization (PSO) technique. The model is tested
on various restricted and unrestricted risky investment portfolios and a comparative study with Genetic
Algorithms is implemented. The PSO model demonstrates high computational efficiency in constructing

optimal risky portfolios. Preliminary results show that the approach is very promising and achieves
results comparable or superior with the state of the art solvers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Portfolio management is one of the most studied topics in
finance. The problem is concerned with managing the portfolio of
assets that minimizes the risk objectives subjected to the constraint
for guaranteeing a given level of returns. This paper deals with the
mean-variance portfolio selection, which is formulated in a similar
way as Markowitz did (Elton, Gruber, & Padberg 1976; Markowitz,
1952; Steinbach, 2001). Markowitz introduced the concepts of
Modern Portfolio Theory (MPT). His theory has revolutionized the
way people think about portfolio of assets, and has gained wide-
spread acceptance as a practical tool for portfolio optimization.
But in some cases, the characteristics of the problem, such as its
size, real-world requirements (Campbell, Huisman, & Koedijk
2001; Gennotte, 1986; Louis, Jason, & Josef, 1999; Perold, 1984;
Zhou & Li, 2000), very limited computation time, and limited preci-
sion in estimating instance parameters, may make analytical meth-
ods not particularly suitable for tackling large instances of the
constrained mean-variance model. Therefore researchers and prac-
titioners have to resort to heuristic techniques that are able to find
high-quality solutions in a reasonable amount of time.

Due to the complexity and the instantaneity of the portfolio
optimization model, applying meta-heuristic algorithms to portfo-
lio selection and optimization is a good alternative to meet the
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challenge. Some remarkable studies have been presented to solve
asset selection problem. Many meta-heuristic techniques (Chang,
Meade, Beasley, & Sharaiha, 2000) have been applied in portfolio
selection such as Genetic Algorithms, tabu search and simulated
annealing for finding the cardinality constrained efficient frontier.
Some hybrid techniques (Gaspero, Tollo, Roli, & Schaerf, 2007) have
been applied in portfolio management such as local search and
quadratic programming procedure. Preliminary results show that
the approach is very promising and achieves results comparable
or superior to the traditional solvers. Pareto Ant Colony Optimiza-
tion (Doerner, Gutjahr, Hartl, Strauss, & Stummer, 2004) has been
introduced as an especially effective meta-heuristic for solving
the portfolio selection problem and compares its performance to
other heuristic approaches (i.e., Pareto Simulated Annealing and
the Non-Dominated Sorting Genetic Algorithm) by means of com-
putational experiments with random instances. An artificial neural
network model with the Particle Swarm Optimization algorithm
(Giovanis, 2009) has been applied to portfolio management and
shows the flexibility of hybrid models, such as the superiority in
forecasting performance, in relation to the traditional econometric
methodology, like Ordinary least square and ARCH-GARCH estima-
tions. Fuzzy Analytic Hierarchy Process (AHP) (Tiryaki & Ahlatcio-
glu, 2009) has been combined with the portfolio selection problem
to model the uncertain environments. A hybrid Genetic Algorithm
approach (Jeurissen & van den Berg, 2005) has been investigated
for tracking the Dutch AEX-indey, it focused on building a tracking
portfolio with minimal tracking error.

However, these approaches have some shortcomings in solving
the portfolio selection problem. For example, fuzzy approach usu-
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ally lacks learning ability (Chan, Wong, Tse, Cheung, & Tang, 2002);
Artificial neural network approach has over-fitting problem and is
often easy to trap into local minima (Casas, 2001); while as Genetic
Algorithms (Alba & Troya, 1999) are applied to harder and bigger
problems there is an increase in the time required to converge
for finding adequate solutions.

In order to overcome these drawbacks, PSO model is introduced
to solve the portfolio selection and optimization problem. PSO is a
population based stochastic optimization technique developed in
1995 (Kennedy & Eberhart, 1995). The underlying biological meta-
phor for developing PSO algorithm is inspired by social behavior of
bird flocking or fish schooling. PSO has become a popular optimiza-
tion method as they often succeed in finding the best optimum by
global search in contrast with most common optimization algo-
rithms. In comparison with the dynamic programming, PSO allows
the users to get the sub-optimal solution while dynamic program-
ming cannot. It is very important for the portfolio selection and
optimization problem.

There are very few studies on PSO, especially all most none of
them deal with the performance comparison with other ap-
proaches for solving portfolio optimization problems. The main
contribution of this study is to employ a PSO algorithm for portfo-
lio selection and optimization in investment management.
Asset allocation in the selected assets is optimized using a PSO
based on Markowitz’s theory. Using the PSO, an optimal portfolio
can be determined. The rest of the paper is organized as follows.
Section 2 describes models for portfolio optimization. In Section
3, the background of PSO and previous work are summarized.
The PSO model for optimal portfolio is also discussed. In order to
test the efficiency of the proposed PSO solver, a simulation and
comparative study is performed in Section 4. Final conclusions
and future research are drawn in Section 5.

2. Models for portfolio optimization (PO)

One of the fundamental principles of financial investment is
diversification where investors diversify their investments into dif-
ferent types of assets. Portfolio diversification minimizes investors’
exposure to risks, and maximizes returns on portfolios. It can be re-
ferred to as a multi-objective optimization problem.

There are many methods to solve the multi-objectives optimi-
zation problems. One basic method is to transfer the multi-objec-
tive optimization problems into a single-objective optimization
problem. We can divide these methods into two different types.
The first alternative is to select one important objective function
as the objective function to optimize while the rest of objective
functions are defined as constrained conditions. The second alter-
native is to construct only one evaluation function for optimization
by weighting the multiple objective functions. The first method is
defined by Markowitz mean-variance model (Markowitz, 1952).

2.1. Type 1: Markowitz mean-variance model

The first method is defined by Markowitz mean-variance mod-
el. In Markowitz mean-variance model, the security selection of
risky portfolio construction is considered as one objective function

and the mean return is defined as one of the constraints. This mod-
el is described as:

. N N
Min) > . wiwoy (1)
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i=1,...,N, (4)

where N is the number of different assets, g;; is the covariance be-
tween returns of assets i and j, w; is the weight of each stock in
the portfolio, r; is the mean return of stock i and R* is the desired
mean return of the portfolio.

2.2. Type 2: single objective function model

The second method is to construct only one evaluation function
for modeling a portfolio optimization problem. Efficient Frontier
and Sharpe Ratio models are described as the following:

2.2.1. Efficient Frontier

We can find the different objective function values by varying
desired mean return R*. The standard practice introduces a new
risk aversion parameter Z € [0, 1]. With this new parameter 2, the
model can be described as one objective function:

Mini [ZZIZJI’V:IW’.WJGV] — (1 — A) [Z?]:lwir'} (5)
Subject tOZLW" =1, (6)

o<w;<1li=1,...,N. (7)

When 1 is zero, the model maximizes the mean return of the port-
folio, regardless of the variance (risk). In contrast, when /. equals
unity, the model minimizes the risk of the portfolio regardless of
the mean return. So the sensitivity of the investor to the risk in-
creases as / increasing from zero to unity, while it decreases as A
approaches zero.

Each case with different 4 value would have a different objec-
tive function value, which is composed of mean value and variance
(risk). Tracing the mean return and variance intersections with dif-
ferent parameter /, we can draw a continuous curve that is called
an efficient frontier in the Markowitz theory (Markowitz, 1952).
Since each point on an efficient frontier curve indicates an opti-
mum, and this indicates the portfolio optimization problem is a
multi-objective optimization problem. The introducing parameter
/. makes the problem to be transfer into a single-objective function
problem.

2.2.2. Sharpe Ratio model

Instead of focusing on the mean variance efficient frontier, we
seek to optimize the portfolio Sharpe Ratio (SR) (Sharpe, 1966).
The Sharpe Ratio combines the information from mean and vari-
ance of an asset. It is quite simple and it is a risk-adjusted measure
of mean return, which is often used to evaluate the performance of
a portfolio. It is described with the following equation:

_ R R
~ StdDev(p)’ (8)

where p is the portfolio, R, is the mean return of the portfolio p, Rris
the test available rate of return of a risk-free security (i.e. the inter-
est rate on a three-month U.S. Treasury bill). StdDev(p) is the stan-
dard deviation of Rp, in other words, it is a measure of risk of the
portfolio. Adjusting the portfolio weights w;, we can maximize the
portfolio Sharpe Ratio in effect balancing the trade-off between
maximizing the expected return and at the same time minimizing
the risk. In this study, Sharpe Ratio is used in the PSO in order to
find the most valuable portfolio with good stock combinations.
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3. PSO for portfolio optimization
3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based sto-
chastic optimization technique inspired by social behavior of bird
flocking. It belongs to Swarm Intelligence (SI), which originates
from the study of natural creatures living in a group. Each individ-
ual possess little or no wisdom, but by interacting with each other
or the surrounding environment, they can perform very complex
tasks as a group.

PSO could be explained well in an imagined scenario: a group
of birds are flying in an area to look for food, and there’s only
one piece of food in this area. Each bird in the group doesn’t
know the exact location of the food, but they are aware of the
distance between the food and themselves. In this way, the
easiest way to find the food is to follow the one who is closest
to the food.

When it comes to the algorithm of PSO, it starts with the initial-
ization of a population of random particles, each of which is asso-
ciated with a position and a velocity. The velocities are adjusted
according to the historical behavior of each particle and its neigh-
bors while they fly through the search space. The positions are up-
dated according the current position and the velocities at the next
step. Therefore, the particles have a tendency to fly towards the
better and better search area over the search process course.

In other words, a brief description of how the algorithm works
is as follow: Initially, some particle is identified as the best particle
in a neighborhood of particles, based on its fitness. All the particles
are then accelerated in the direction of this particle, but also in
direction of their own best solutions that they have discovered
previously.

Occasionally the articles will overshoot their target, exploring
the search space beyond the current best particles. All particles
have the opportunity to discover better particles in route, in which
case the other particles will change direction and head towards the
new best particle. Since most functions have some continuity,
chances are that a good solution will be surrounded by equally
good, or better, solutions. By approaching the current best solution
from different direction in search space, the chances are good that
these neighboring solutions will be discovered by some of the
particles.

The basic concept of PSO lies in accelerating each particle to-
ward its pbest which was achieved so far by that particle, and the
gbest which is the best value obtained so far by any particle in
the neighborhood of that particle, with a random weighted accel-
eration at each time step.

Each particle tries to modify its position using the following
information:

o The current positions (X(t)),

o The current velocities (V(t)),

-Tbe Qistance between the pbest and the current position
(Pi — X(t)),

. Tpe djstance between the gbest and the current position
(P — X(t)).

3.2. Fitness function

Fitness function is a critical factor in the PSO method. Every par-
ticle in the PSO’s population has a fitness value. A particle moves in
solution space with respect to its previous position where it has
met the best fitness value pbest, and the neighbor’s previous posi-
tion where neighbor has met the best fitness value gbest. In this pa-
per, considering whether the portfolio is restricted or not, the
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Sharpe Ratio is used as a single objective function. This is defined
as:

N
i wiri — R
fo=SR= —%1—1 N 9)
>ic1 i WiW; 03

where f; is the fitness value of particle p.

At every step, a particle’s personal best position and the best
neighbor in the swarm are updated if an improvement in any of
the best fitness values is observed.

3.3. Particles movement

In the algorithm of PSO, each solution is represented by a parti-
cle in the search space. Each particle has its position, velocity, and
fitness value. At each iteration, every particle moves towards its
personal best position and towards the best particle of the swarm
found so far. The particle movement is dependent on its current
velocity and the velocity change is defined as:

i(t + 1) = woy(t) + 111 [Py () — Xy (£)] + car2[Pei(t) — X(6)]  (10)

where index j is the dimension number of particle i, t is the iteration
sequence, and c¢; and c, are positive constant parameters called
acceleration coefficients. They are responsible for controlling the
maximum step size, r; and r, are random numbers between (0, 1).
w is a constant, and 7;(t + 1) is particle i’s velocity on the jth
dimension at iteration t + 1. 7;(t) is particle i's velocity on the
jth dimension at iteration k. X;(t) is particle i's position on the jth
dimension at iteration k.. p;(t) is the historical individual best
position of the swarm. Finally, the new position of particle i,
X;j(t + 1), is calculated by Eq. (11).

Xi(t+1) =X(t) + 05(t + 1) (11)

Fig. 1 illustrates the updating process and the movement of a parti-
cle graphically while the flow chart of PSO algorithm is depicted in
Fig. 2. The detailed algorithm can be found in the paper written by
Bratton & Kennedy, 2007.

To improve the performance of PSO, the parameter can be ad-
justed. For example, the constant w can be replaced by Eq. (12),
and also the constant ¢; and ¢, by Egs. (13) and (14). However,
in the experiment for a large scale portfolio (i.e. 49 stocks), the re-
sult didn’t significantly be improved.

Wmax — Win

W= Wiay — —=
max itermax

x iter (12)

X

Fig. 1. Particle’s updating process of PSO in 2D space.
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C1 = Clpay iter.— x iter (13)
_ _ Comax — C2i ;
C2 = Copux tero x iter (14)

3.4. Constraint satisfaction

There are two types of risky portfolios (Benninga, 2000): unre-
stricted and restricted. Unrestricted risky portfolios do not have
constraints on the short selling of stocks. Investors can choose to
sell a stock that the investor does not own based on the condition
that the investor must buy it back after a period of time at a lower
price hopefully. In other words, for unrestricted risky portfolios as-
sets could have negative weights. As for restricted risky portfolios,
they place constraints on the short selling of portfolios’ underlying
equities, and require that all underlying assets must have positive
weights. Both unrestricted and restricted optimal risky portfolios
must also satisfy another constraint, namely, the total weights of
all assets must sum up to 1. The goal of an optimal risky portfolio

H. Zhu et al./ Expert Systems with Applications 38 (2011) 10161-10169

is to find the optimal combination of all assets in order to achieve
the maximum Sharpe Ratio.

(1) The restricted portfolio optimization problem for a risky
portfolio with N assets is defined as:

N -1, —
MaxSR = Max—2==1"1 Ry (15)
Zi:l Zj:] WiW;Gij
Subject tolewi =1, (16)
o<w, <li=1,....N. 17)

(2) The unrestricted portfolio optimization problem is defined

as:
N -1, —
MaxSR = Max—%:izlvx’r’ Ry (18)
Zi:l Zj:] WiW; T
Subject to N w;=1, 19
i=1
i=1,...,N. (20)

As the number of assets in the risky portfolio increases, construc-
tion of an optimal risky portfolio becomes an increasingly high-
dimensional optimization problem with a variety of constrains.

If the risky portfolio is restricted, then the pbest and gbest are
evaluated by Eqs. (15)-(17). On the other hand, the pbest and gbest
are evaluated using Egs. (18)-(20). Whenever a particle flies to a
new position in the search space, all the constraints on the portfo-
lio must be satisfied in order to ensure a valid movement within
the search space. When the terminating condition has been ful-
filled, a particle with global optimum or near the optimum portfo-
lio may be found.

4. Experiments and discussion

The PSO experiments for the portfolio optimization has been
performed on three unrestricted risky portfolio cases, such as 8
stocks, 15 stocks and 49 stocks, and on three restricted risky port-
folio cases with the same numbers of stocks. Table 1 shows the re-
sults of these 6 portfolios using three different approaches: PSO
model, GA and VBA solver respectively. All stocks are selected from
the Shanghai Stock Exchange 50 Index (the SSE 50 Index). Individ-
ual stock’s historical daily returns are selected from 1 may 2009 to
3 April 2009. Unrestricted portfolios do not have constraints on
short selling. In other words, the proportion of an asset in the port-
folio could be negative or greater than 1.

Table 1
Six portfolios’ results of PSO solver, GA solver and Excel solver.
Approach Item Portfolio
8 Stocks 15 Stocks 49 Stocks
Unrestricted (%) Restricted (%) Unrestricted (%) Restricted (%) Unrestricted (%) Restricted (%)
PSO solver: ER 1.14 0.72 1543 0.84 152.19 0.95
SD 4.22 2.90 30.91 2.76 111.04 430
Sharpe Ratio 19.84 17.83 48.96 26.73 136.78 15.06
GA solver: ER 0.60 0.53 0.53 0.57 1.86 0.22
SD 417 2.63 6.71 247 11.53 2.73
Sharpe Ratio 7.24 12.42 3.48 18.96 13.56 -2.99
VBA solver: ER 1.03 0.76 1.81 0.87 3.02 0.91
SD 3.78 3.17 4,24 2.94 2.89 3.92
Sharpe Ratio 19.31 17.55 35.70 26.31 94.02 12.90
Risk free 0.03 0.02 0.03 0.01 0.03 0.04
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Fig. 3. PSO particle’s updating process.
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A GA is a stochastic optimization method based on the mecha-
nisms of natural selection and evolution. In GAs, searches are per-
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solution to replace a bad one and by combining or mutating exist-

and then evolves through succeeding generations. During each
ing solutions to construct new solutions. GAs have been theoreti-

generation a new population is generated by propagating a good
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cally and empirically proven robust for identifying solutions to
combinatorial optimization problems. GAs conduct an efficient

parallel exploration of the search space, while only requiring min-
imum information on the objective function to be optimized. GAs
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also can be an alternative approach for portfolio optimization. In
order to evaluate the performance of PSO model, we need to com-
pare PSO with Genetic Algorithm solver.

In the experiments, the PSO Solver has been developed using
Matlab as software development tool. The GA solver has been
developed using the software development tool GeneHunter
(Wang, 2005). Meanwhile, we also compare the result of them with
the result of a traditional method using VBA (Visual Basic Applica-
tion) solver.

The compositions of the optimal risky portfolios developed by
PSO, GA and VBA for the 6 portfolios are shown in the Table 1.
We can find that the values of Sharpe Ratio obtained by PSO are
19.84% (8 stocks with unrestricted), 17.83% (8 stocks with re-
stricted), 48.96% (15 stocks with unrestricted), 26.73% (15 stocks
with restricted), 136.78% (49 stocks with unrestricted), and
15.06% (49 stocks with restricted) respectively. These values are
all better than the values obtained from the GA and VBA solver.

The updating process of the PSO solver for optimizing the 6 port-
folios and with the termination condition 100 steps is showed in
Fig. 3, where 100 particles are used and Sharpe Ration is selected
as a fitness function. Comparing Fig. 3 (a) with (b), most of particles
in unrestricted portfolio of 8 stocks converge to the best fitness va-
lue within 100 steps. But it does not happen in the restricted port-
folio’s PSO searching process. In the case of unrestricted and
restricted portfolio of 15 stocks, seeing Fig. 3 (¢) and (d), we can find
that most of particles can convergence to the fitness value. How-
ever, when the number of the stocks get larger, for example, more
than 49 stocks, Fig. (f) shows almost all particles in restricted port-
folio could convergence to the fitness value, It is also not happen for
unrestricted portfolio in Fig. (e). Regarding to the strategy to select
number of stocks for optimization, it is suggested that for both re-
stricted and unrestricted portfolio, we need to select 15 stocks in
order to get the stability and efficiency of the PSO searching process.

In GA solver, the following parameters are set up for these 6
portfolios: Population size =100; chromosome length = 32-bit;
crossover rate = 0.9; mutation rate = 0.01; generation gap = 0.98;
and termination condition = 100 generations. The GA evolutionary
process is shown in Fig. 4. From these figures, we can indicate two
factors as the following: (1). the convergence of the unrestricted
portfolios’ evolutionary process seems to be better than the re-
stricted portfolios because portfolios’ fitness function of unre-
stricted portfolio has fewer constraints; (2) the tendency of
convergence will be slower when the numbers of assets increase.
Therefore the suggested numbers of assets could be around 15,
which is also corresponding to the suggestion from PSO solver
mentioned above.

The termination condition is very important for the finding the
optimal risky portfolio, because we have to make balance between
efficiency and precision. According to many testing, in the PSO
solution, the termination condition is 100 steps for the portfolios
of 8 stocks, 200 steps for the portfolios of 15 stocks, and 1000 steps
for the portfolios of 49 stocks. In the GA solution, the termination
condition is 100 generations for the portfolios of 8 stocks, 300 gen-
erations for the portfolios of 15 stocks, and 2000 generations for
the portfolios of 49 stocks.

Taking the set of 6 optimal portfolios obtained by PSO, GA and
VBA solvers, their efficient frontier are traced out in Fig. 5. These
curves show that the efficient frontiers obtained by PSO solver
are almost above the others comparing with GA and VBA. It means
that we can get higher mean return under the same or lower risk
using the POS solver. However, there is an exception case in the
Fig. 5(d) and we can see when the variance is greater than 0.05,
the efficient frontier obtained by GA is better than PSO and VBA
solvers. Comparing GA with VBA, we also note that when the num-
ber of stocks is 8, the VBA solver is better than GA. But for 49
stocks, the GA is significantly better than VBA solver.
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Based on the experimental results on unrestricted and re-
stricted portfolios, we could draw a conclusion that the perfor-
mance of PSO approach is better than both the GA and the
traditional VBA solver generally. PSO solver clearly shows the good
efficiency and effectiveness of solving high-dimensional con-
strained optimization problems.

The experimental data is from “http://finance.yahoo.com/9/
hp?s=000016.ss”. The data has been selected from SSE 50 index,
and the time period is from 1 May 2009 to 3 April 2009. The Risk
Free has been selected subjectively. ER is “Expected Return”, and
SD is “Standard Deviation”.

5. Conclusion

A fundamental principle of financial investments is diversifica-
tion where investors diversify their investments into different
types of assets. Portfolio diversification minimizes investors’ expo-
sure to risks, and maximizes returns on portfolios. The paper fo-
cuses on solving the portfolio optimization problem in finance
investment management. A meta-heuristic Particle Swarm Optimi-
zation method has been developed to optimize investment portfo-
lios, where the objective functions and constraints are based on
both the Markowitz model and the Sharp Ratio model.

The PSO algorithm bears similarity to other biologically inspired
optimizing algorithms. Like the GA, it is population-based, it is typ-
ically initialized with a population (swarm) of random encodings of
solutions, and search proceeds by updating these encodings over a
series of generations (iterations). Unlike the GA, PSO has no explicit
selection process as all particles persist over time. Instead a mem-
ory in the form of gbest/pbest is substituted for selection.

In order to make a valid comparison with other methods, differ-
ent test problems were solved and the results obtained when com-
pared with the results of Genetic Algorithms (GA), Visual Basic for
Applications (VBA) demonstrated the superiority of the PSO
algorithm.

The key learning mechanisms in the PSO algorithm are driven
by a metaphor of social behavior that good solutions uncovered
by one member of a population are observed and copied by other
members of the population. Of course, these learning mechanisms
abound in business and other social settings. Good business strat-
egies, good product designs, and good theories stimulate imitation
and subsequent adaptation. Particle swarm algorithms will be a
successful optimization tool in a variety of applications, and has
clear potential for application to financial modeling.

Future research may be conducted to further investigate the
application of some derived models or hybrid models of PSO to
other investment strategy problems, for example tracking the in-
dex and so on. Another further investigation may be put on meth-
ods for improving the efficiency of the PSO solver for large
portfolios in investment management.
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