
Iterative Dictionary Construction for
Compression of Large DNA Data Sets

Shanika Kuruppu, Bryan Beresford-Smith, Thomas Conway, and Justin Zobel

Abstract—Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and

near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes of

data involved, mean that these long-range repetitions are not detected. An order-insensitive, disk-based dictionary construction

method can detect this repeated content and use it to compress collections of sequences. We explore a dictionary construction method

that improves repeat identification in large DNA data sets. Our adaptation, COMRAD, of an existing disk-based method identifies exact

repeated content in collections of sequences with similarities within and across the set of input sequences. COMRAD compresses the

data over multiple passes, which is an expensive process, but allows COMRAD to compress large data sets within reasonable time and

space. COMRAD allows for random access to individual sequences and subsequences without decompressing the whole data set.

COMRAD has no competitor in terms of the size of data sets that it can compress (extending to many hundreds of gigabytes) and, even

for smaller data sets, the results are competitive compared to alternatives; as an example, 39 S. cerevisiae genomes compressed to

0.25 bits per base.

Index Terms—Dictionary construction, compression, DNA, large data sets.

Ç

1 INTRODUCTION

THE increasing utilization of new sequencing technologies
is leading to changes in the kinds of genetic data that are

being gathered and stored. The Human Genome Project
(HGP) produced a consensus sequence for much of the
human genome, while similar work produced reference
DNA data for other organisms. Recently, there has been a
shift toward producing data that represent the sequences of
individuals. In addition to the original HGP genome, there
are now sequences for James Watson [1], two men of
Nigerian [2] and Chinese [3] descent, and five southern
African genomes [4], among many others. The falling cost of
high-throughput sequencing is enabling more ambitious
activities such as the 1000 Genomes Project,1 which aims to
determine the variations in the human population by
analyzing the genomes of at least 1,000 individuals; and the
Personal Genomes Project,2 which aims to improve the
understanding of how genetics and the environment affect
human traits, beginning a gradual shift toward personalizing
medical treatment.3 Similar projects are proposed for other
human variations, such as cancer genomes, while for other

organisms, such as bacteria, the fall in the cost of sequencing
is making feasible the production of thousands of genomes
within the scope of a single research project.

These activities are leading to massive growth in the size
of DNA data sets, and are providing opportunities for novel
compression techniques that take advantage of the char-
acteristics of these new data. In particular, the high level of
similarity between individuals, which is much greater than
the similarities between species, presents new opportunities
for compression. Our aim is to identify mechanisms for
detecting this redundancy and use it in compression of
corpora, while preserving the attractive property that
individual items can be fetched in any order.

There are, broadly, three kinds of repetition in DNA.
First, there are simple repeats found in long sequences of
noncoding regions, such as dinucleotide repeats or long
sequences of poly-A. Second, there is repetition of material
within a genome introduced by copy number variation
and mechanisms such as the existence of reverse comple-
ments. Third, there are some strings conserved between
individuals and between species. These repeats are not
necessarily exact, due to biological effects (that is, muta-
tions), and their representation in a corpus may vary due
to sequencing artifacts. Our focus in this paper is on the
third kind of repetition.

There is a lack of efficient algorithms for detecting the
third kind of repetition across large data sets spanning
hundreds to thousands of sequences; hence, our aim is to
explore a modeling technique for this task. We show that
grammar-based techniques are suitable for exploiting long-
range repetitions, with the added advantage of allowing for
random access into the data. For the task of storage of DNA
corpora, compression based on long-range redundancy can
be more effective than methods based on local redundancy.
We anticipate that such redundancy will increasingly be

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012 137

. S. Kuruppu and J. Zobel are with the Department of Computer Science and
Software Engineering, The University of Melbourne, 111 Barry Street,
Parkville, VIC 3010, Australia.
E-mail: {kuruppu, jz}@csse.unimelb.edu.au.

. B. Beresford-Smith and T. Conway are with the National ICT Australia,
The University of Melbourne, Engineering (Building 193), Parkville, VIC
3010, Australia.
E-mail: {bryan.beresford-smith, tom.conway}@nicta.com.au.

Manuscript received 29 Nov. 2010; revised 18 Mar. 2011; accepted 12 Apr.
2011; published online 27 Apr. 2011.
For information on obtaining reprints of this article, please send E-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2010-11-0262.
Digital Object Identifier no. 10.1109/TCBB.2011.82.

1. http://www.1000genomes.org.
2. http://www.personalgenomes.org/.
3. http://www.everygenome.com.

1545-5963/12/$31.00 � 2012 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

prevalent in genomic repositories, as they are used to store
sequences from individuals as well as references for species.

To demonstrate the strength of this approach, we present
an algorithm, COMpression using RedundAncy of Dna
(COMRAD), for compressing highly redundant large DNA
databases. Our starting point was an existing general-
purpose compression algorithm, RAY [5], which we adapted
to DNA using knowledge about alphabet size and the ways
in which strings diverge from each other during evolution.
COMRAD hierarchically identifies repeated substrings by
repeatedly scanning the collection, which allows construc-
tion of a corpus-wide dictionary that represents repetitions
of up to hundreds to thousands of bases. Such an approach
is not expected to be particularly effective on single
sequences or small data sets but should excel on larger
data volumes. COMRAD makes no assumptions about the
species or degree of similarity, or about the source of the
data. Like RAY, COMRAD permits random access and
independent decompression of individual sequences.

Our experiments demonstrate that COMRAD efficiently
produces excellent compression results over large data
sets, just by using exact repeats and reverse complements
(unlike existing algorithms that use approximate matching
[6], [7], [8], [9], [10], [11]). COMRAD was able to compress
the (relatively nonredundant) human genome faster than
previous methods, while nearly maintaining compression
effectiveness; to compress 39 yeast genomes to 0.23 bits
per base (bpb); and to compress a highly redundant data
set of approximately 64 GB (consisting of 1,023 artificial
variants of human chromosome 20) to about 0.04 bpb. In
our initial implementation, as reported here, this last data
set took around two days on a single-processor machine.
Note that this is by far the largest genomic data set
compressed in the literature to date. Although COMRAD

currently does not provide the best compression results on
low-redundancy data, it is still competitive; on high-
redundancy data or large volumes of data, COMRAD is the
only approach that is practical.

We next discuss COMRAD in the context of existing
research in the area of DNA compression algorithms and
some general-purpose compression algorithms. The de-
scription of our approach (Section 3), the COMRAD

algorithm (Section 4), and experimental results (Section 5)
are followed by a discussion of the parameters and their
effect on compression in Appendix D, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2011.82.

2 BACKGROUND

All compression algorithms exploit redundancy to achieve
space savings, but vary greatly in how they do so. LZ77 [12]
and PPM [13] are two of the best known families of lossless
compression methods. These approaches code strings
sequentially, at each step checking to see if the current
substring has been seen previously and, if so, encode it by
reference to the previous occurrence. A sliding window is
maintained over recently observed text; once text has left
this window, it cannot be used in encoding.

LZ77 has formed the basis for several of the best
known compression utilities, such as gzip [14]. These

implementations take advantage of localized repetition of
data, and produce representations that require the data to
be sequentially decompressed. They are highly effective in
the presence of proximate repetitions but do not detect the
repetitions that occur between instances in a corpus of
multiple similar genomes, and thus do not exploit the
most significant form of redundancy occurring in genome
data. Alternative implementations could detect repeats
that are further apart, as is achieved by 7-zip, but it is
impractical to have an unlimited window size and the
data must be memory resident. Also, the method does not
allow for access to individual sequences in the com-
pressed data.

Since the first and often second kinds of repetition in
DNA can be compressed in this manner, variations of the
LZ algorithm have been used in DNA compression
algorithms. There are two broad kinds of repetition
detection for DNA. Exact-repeat-finding algorithms use
precisely duplicated regions, as they are relatively easy to
detect and code. Approximate-repeat-finding algorithms
forgo this efficiency in order to find longer near-duplicated
sequences that lead to better compression results.

DNA compression based on exact repeats was intro-
duced by Grumbach and Tahi [15] with the Biocompress
algorithm, which showed the possibility of compressing
DNA better than the existing general-purpose compression
algorithms. The algorithm is LZ-like, where the section of
the input data set that was already encountered is stored in
a 4-ary tree of height h, with the leaves containing the
position of the substring from the root to the leaf. When
encoding, the tree is checked to see if the current substring
was seen before. Due to the storage of the tree structure in
main memory, the algorithm is not suitable for large data
sets. However, this research led the way to many other
DNA compression algorithms, such as Cfact [16] and
Off-line [17].

Cfact operates in two phases where in the “parsing
phase,” a suffix tree is used to identify the longest repeated
substrings. In the “encoding phase,” the nonrepetitive and the
first occurrence of repetitive substrings are encoded with
two bits per base. The remaining repeated substrings are
encoded as pointers in the form of (pos, len) tuples. While a
suffix tree is an elegant method of identifying longest
repeats, it won’t be possible to store a large data set in a
suffix tree format in memory. We could not locate a table of
results for the algorithm.

Off-line follows a similar approach to Cfact, with a
suffix tree used to identify exact repeated substrings but
unlike Cfact, it encodes most frequent nonoverlapping
substrings and uses an augmented suffix tree (reducing the
asymptotic cost to Oðn log2 nÞ from Oðn2Þ). Off-line

results are not better than the naı̈ve encoding (1.97 bits
per nucleotide) and are worse than algorithms such as
Biocompress. However, it is a general-purpose compres-
sor and can be applied to many other types of data sets.

Approximate repeat detection algorithms, beginning
with GenCompress [8], followed by DNACompress [9],
DNAPack [6], and GeNML [18], showed that even better
results can be achieved by exploiting the approximate
nature of the repeated regions in DNA sequences.

138 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

GenCompress encodes approximately repeated sub-
strings in an LZ manner using a “relatedness” measure
invented by the authors. Using a single pass, if a substring is
found that matches an already seen substring, the new
substring is encoded with the position and length for the
exact repeated regions and edit information for the approx-
imate parts. The results were compared to Biocompress-2
and Cfact, which showed a significant improvement in
compression and confirmed the intuition that considering
approximate repeats gives better compression results. On
the other hand, approximate repeat detection is time
consuming and our experiments confirm that the algorithm
is infeasible for compressing large data sets (Section 5).

DNACompress finds all approximate repeats in the first
pass through the data (using the homology search tool
PatternHunter) and, in the second pass, the repeats and
nonrepeats are encoded. DNACompress was compared to
GenCompress and CTWþ LZ and it was able to compress
much larger data sets in a faster time without any
detriment to the compression rates. Unfortunately, our
analysis of the algorithm did not produce such results, as
discussed in Section 5.

DNAPack uses a dynamic programming algorithm to
find approximately repeated substrings, but with several
optimizations so that the runtime is reasonable for long
sequences. Compared to Biocompress, GenCompress,
CTWþ LZ, and DNACompress, the compression performance
of DNAPack is better or comparable. Given that dynamic
programming can be Oðn2Þ time, this algorithm has the
potential to be very expensive for large data sets, but a
nongreedy approach of this kind could lead to better
compression rates. However, no runtime results are given
in the paper and an implementation could not be found for
further analysis.

The GeNML algorithm introduced an alternative ap-
proach to compression by encoding blocks of DNA
sequences using a maximum likelihood model. The algorithm
produced better compression results than most of the
existing algorithms. It was also the first to compress a large
genome such as the H. sapiens genome but it is very slow
(taking 3.5 hours on a cluster of 12 workstations [18]).

PPM [13], the other major family of lossless sequential
compression methods, forms the basis of the DNA
compression algorithms CDNA [10], CTWþ LZ [11], and XM

[7]. The PPM algorithm determines the probability distribu-
tion of the next input symbol adaptively, based on all
previous symbols observed, potentially considering the
context in which those symbols were found.

CDNA is one of the first algorithms to use statistical
compression and approximate repeat detection for DNA
sequences. The probability distribution of each nucleotide is
predicted by approximate partial matching of the current
context to previously seen substrings using a Hamming
distance to measure the similarity. The results compare well
to Biocompress-2.

CTWþ LZ uses two methods to compress the input
sequences. For long repeats, an LZ77-type encoding is
used. For shorter repeats and nonrepeats, a CTW encoding
(an algorithm similar to PPM that uses a weighting of
multiple models to predict the next symbol probabilities)
is used. The algorithm also uses a dynamic programming

calculation to search for approximate repeats and approx-
imate reverse complements. This is one of the first
algorithms to combine substitutional and statistical
compression. However, it is too computationally expen-
sive, as was shown in a later analysis by the authors of
DNACompress [9].

XM is based on PPM but with multiple “experts” making
recommendations on the symbol probabilities. An example
of an expert is an order-k Markov model that gives a
probability of a symbol based on the k preceding symbols;
another is a copy expert that gives a probability based on
whether the next symbol is part of a copied region.XMyielded
the best compression results compared to other algorithms
and was able to compress a human genome and achieve very
good compression results. However, the algorithm is slow
for compressing large data sets—in our experience about
four days to compress the human genome. A further analysis
of XM in comparison to COMRAD is in Section 5.

Given the small size of data sets used for experiments,
the papers discussed above have largely neglected memory
usage: the largest prior to GeNML is a 4 MB E. coli data set
used by DNACompress. As the size of available data sets
gets large, it is no longer possible to neglect memory usage.
Moreover, these previous algorithms do not have promising
runtimes; GenCompress required almost half an hour to
compress a 4 MB file.

Recent algorithms have been designed for compressing
larger data sets of sequences from the same species, where
there is a high level of similarity between the sequences.
One such algorithm compresses a single genome to the
size of an “e-mail attachment” relative to the reference
sequence by efficiently representing the differences in each
genome compared to the reference, which are in the form of
SNPs, insertions and deletions (indels)4 [19], and is intended
for compressing genomes from the 1000 Genomes project.

The “attachment” algorithm compresses a human gen-
ome expressed in terms of SNP and indel information, with
regard to the reference sequence and a database of known
SNPs. The SNPs in the genome that are annotated in the
database are encoded using a bit array. Each novel SNP is
represented as a position and nucleotide. Each insertion
is represented as a pair comprising of a position and a
sequence of nucleotides; a deletion as a position and length.
Simple encodings (delta codes, Huffman codes) are used for
the numbers and nucleotides. The variation data provided
by the software for the James Watson genome are 1.97 GB
uncompressed and, after compression, the variation data
can be represented in 4.2 MB. The method required 4.47 GB
of data to be available, comprised of the reference genome
and a database based on dbSNP build 129.

The “attachment” method can be effective for compres-
sing variation data for intact human genomes, but is
limited to sequences where the dissimilarities are predict-
able and limited. It would not be effective, for example, for
deranged genomes such as those found in cancer, which
can contain hundreds of megabases of arbitrarily repeated

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 139

4. Single Nucleotide Polymorphisms (SNPs) are single nucleotide
changes observed in individual genomes within the same species, which
can contribute to the distinguishing features of individuals. Insertions and
deletions are substrings of DNA that are present or absent in one genome
when compared to another genome, respectively.

or rearranged material. That is, its effectiveness is due to
use of a highly specific model of the data that is
anticipated, and, in contrast to a typical pattern-based
compressor, it is limited to data that fit a predefined
template. It also will be ineffective for arbitrary data sets
consisting of sequences from multiple species, which may
not necessarily be complete genomes, or may even be
unassembled contigs, or for single-species data sets where
SNP and indel information or a reference sequence is not
available. Finally, compressing the variations for a given
genome is not the same as compressing the full assembled
genome, since mapping the variations to the reference often
does not provide the full assembled sequence. While
efficient storage of variation data is important, and in the
case of human genomes is addressed by Christley et al., our
aim in this paper is to compress arbitrary DNA sequences,
an entirely different task.

Another method by Brandon et al. [20] uses a similar
technique but is general enough to add further data sets and
to select a reference sequence (or a set of references) that is
suitable for the data set. The results for this method are also
promising. However, it is necessary to obtain a list of
variations for any arbitrary sequence with respect to a
reference, which requires full alignment of the sequence to
the reference sequence.

Another recent class of algorithms uses Burrows-
Wheeler self-indexing to store and retrieve sequences
from repetitive sequence data sets [21], [22], [23]. The
method is one of the most general solutions for managing
large repetitive sequence data sets, and allows efficient
random access and search on the compressed data.
However, there are still drawbacks: in particular, the need
to store the whole compressed data set and the additional
indexing information in memory, which is not scalable to
large data sets. It is also not a good representation for data
sets containing arbitrary sequences with a significant
amount of repetition, as we show later in our comparison
of COMRAD to RLCSA (one of the implementations
described in [21]) in Section 5.

More recently, two grammar-based compression algo-
rithms were proposed by Claude et al. [24] that efficiently
return all the positions in the data set containing a given q-
gram (q up to 6). The first algorithm uses an LZ77 method to
encode a posting list of q-gram positions and uses RE-PAIR

[25] to compress the text, while the second algorithm uses a
context-free grammar created by RE-PAIR and represents it
as a Straight Line Program [26]. While neither achieved the
best compression results, the first was competitive for
values of q up to 6 and the second works well for highly
repetitive data sets.

LZ77-based indexing techniques were explored by Kreft
and Navarro [27] in the LZ-End algorithm and by Kuruppu
et al. [28], [29] in the RLZ algorithm. The LZ-End algorithm
conducts a traditional LZ parsing on the input text but with
one exception. Assuming that the input T0;i�1 is encoded so
far as a series of phrases Z½0�Z½1� . . .Z½p� 1� ¼ T0;i�1, where
each Z½i� for 0 � i � p� 1 is a substring represented by a
phrase i, then the next phrase in the encoding is Z½p�, which
is the longest prefix in Ti;n�1 that is also a suffix of one of the
existing phrases Z½i�, for 0 � i � p� 1. This restriction
ensures that all references to earlier occurrences of a

substring end at only certain positions in the text, making
random access to substrings in the compressed text
efficient. The algorithm is a self-index that supports efficient
querying on the compressed text. RLZ is also an
LZ77 technique but is less general than LZ-end in the
sense that it is specific for DNA data and the sequences in
the data set must have highly similar subsequences (that is,
from the same species). RLZ compresses each sequence in
the data set against a chosen reference sequence using an
LZ77 parsing. Efficient random access into the compressed
data set is also supported. The algorithm provides good
compression and access results while compression and
decompression are very fast and memory efficient. COM-

RAD is compared to RLZ in Section 5.
There are two important features that are not observed

in most existing DNA compression algorithms. First is the
ability to detect repetition over a long range to compress
large data sets in the gigabyte to terabyte scale. Another
is to allow random access into the compressed data set.
This would improve decompression times since it elim-
inates the need to decompress the whole data set in order
to access the sequences.

In the following sections, we review RAY, on which
COMRAD is based, and our modifications that reduce costs
for DNA compression; and then give our algorithm in detail
and show experimental results. Detailed exploration of
other algorithms is also reported in the results.

3 APPROACH

COMRAD is based on an existing algorithm, RAY [5], a
general-purpose compression algorithm for arbitrary byte
sequences. The RAY algorithm [5] allows random access so
that specific sections of the compressed data can be
individually accessed.

RAY makes multiple passes over the input data. These
passes incrementally construct a dictionary of symbol
sequences that are repeated in the text, with each pass
discovering longer sequences. In the first pass (step 1 in
Fig. 1), the dictionary records the frequency counts of all
adjacent pairs of symbols. The counts are used to identify
which pairs of symbols have frequency exceeding the
threshold f ; these are the only ones eligible to be replaced.
During the second pass (step 2 in Fig. 1), symbol pairs that
could be replaced are identified and a count of all the
replacements that could be made is recorded. This step is
necessary to distinguish between the number of occur-
rences of a substring from the number of times it could be
replaced. Then (step 3 in Fig. 1), the symbol pairs with
counts of at least two from step 2 are selected to be replaced
so they are added to the dictionary in the form of
“A bc,” where the symbol pair is now represented by a
nonterminal symbol. Then, all occurrences of the selected
symbol pairs are replaced with the nonterminals that
represent them in another pass through the data. In
the final step (step 4 in Fig. 1), the dictionary is updated
to be consistent with the compressed string. Steps 2-4 are
repeated until a terminating condition is satisfied, which
could either be that a predetermined number of passes has
been exceeded or that the dictionary no longer contains any

140 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

symbol pairs with a frequency above the threshold f . An

example of the algorithm is in Fig. 1.
Once the dictionary has been built, the data and

dictionary can be coded using mechanisms such as Huff-

man coding, which in this application are reasonably

efficient due to the fact that most of the occurrences of the

most common symbols have typically been removed,

reducing their frequency and thus reducing the difference

between the 0-order entropy and whole-bit coding that can

result from a Huffman process.
SEQUITUR [30] and RE-PAIR [25] are two other algo-

rithms that are similar in nature to RAY, where the focus is

on efficiently determining a good dictionary that captures

the repetition in the data set to be compressed. SEQUITUR

parses the input into a context-free grammar and encodes

the top-level rule and hierarchy of rules efficiently. RE-PAIR

at each iteration counts the frequency of pairs of symbols,

but, unlike RAY, which can replace multiple frequent

symbol pairs during an iteration, RE-PAIR only replaces

the most frequent symbol pair. The algorithm can compress

in OðnÞ time.

Given that RAY is a general-purpose compression
algorithm, it is possible to use RAY for compressing DNA
data sets; indeed, the authors of RAY tested their algorithm
on an E. coli DNA data set. The 4.53 MB data set was
“compressed” to 2.12 bpb, not a significant achievement.
Due to the unavailability of a RAY implementation, we were
unable to test its performance, but it is realistic to assume
that it would achieve compression similar to COMRAD,
though at significantly greater computational cost.

We modify RAY such that it is efficient for DNA
compression. First, we define a symbol to be a substring
of, say, 16 consecutive symbols in the first iteration (first
execution of steps 1-4 in RAY). The motivation here is that
almost all substrings of length 16 or 16-mers occur with
reasonable frequency in large DNA collections, and thus
naı̈ve RAY would in four iterations discover the vast
majority of these 16-mers as dictionary entries. By starting
at this length, we save numerous passes through the data.
The impact on compression for varying this starting
length is explored in Appendix D, which can be found
on the Computer Society Digital Library.

Second, in the later iterations, RAY seeks only patterns of
the form “ab,” where “a” and “b” are any symbols, terminal
or nonterminal. Here, again to reduce the number of passes,
we recognize patterns such as “AB,” “Ax1B,” and
“Ax1x2B,” where A and B are nonterminals, and xi is a
terminal symbol. This allows the algorithm to combine
already encoded symbol pairs as well as to capture patterns
in the neighborhood of existing encoded regions. Note that,
in the second and subsequent iterations, it is only necessary
to consider sequences that contain a nonterminal; all other
repetitions are captured in the first iteration.

Third, we should allow for reverse complements, a
property that is specific to DNA. Consideration of reverse
complements was first proposed by Grumbach and Tahi
[15], and most subsequent DNA compressors also imple-
ment reverse complement detection, since it is a common
form of repetition found in DNA data sets. We consider
reverse complements when populating the frequency
dictionaries and when replacing repeated segments of
nucleotides with a nonterminal. This gives COMRAD great-
er compressive power than RAY for DNA.

The above changes and a slight modification to the
identification of candidates form the basis for our imple-
mentation of COMRAD. We use our implementation to
show that this algorithm can provide a good modeling
technique to achieve good compression results for DNA
sequences, and regard it as not a final result, but a test of
whether a RAY-like approach is effective in this context. We
now explain COMRAD in detail.

4 METHODS

The series of nucleotides making up a DNA sequence can
be represented as a string of symbols over the alphabet
� ¼ fA; C; G; Tg, which is the standard DNA alphabet.
Sometimes, there are ambiguities in identifying the nucleo-
tides at certain positions, and therefore a nucleotide could
either be a A or a C, or a A or a G and so on. To identify all
these possible combinations, the extended DNA alphabet is
used where all the 15 possible combinations of the standard

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 141

Fig. 1. Compression of the string aabcbcaabcabc using RAY. The
frequency threshold f ¼ 2. Step 1 Create frequency dictionary of
symbol pairs. Step 2 Determine the symbol pairs that could be replaced
(candidates) by scanning through triplets and if the leftmost pair has a
higher frequency than the rightmost pair, and the count of the leftmost
pair is at least f, then increment candidate count of the leftmost pair by
1. This is to calculate the actual number of replacements that can be
made for a pair of symbols with a count of at least f. Increment
candidate count of bc by 1. Continue comparison of symbol pairs till the
end of the string. Step 3 bc has the only candidate count above 1 so
create a new symbol A to represent it. Replace all occurrences of bc in
the input by A to obtain aaAAaaAaA. Step 4 Update the frequency
dictionary to be consistent with the new string. Keep bc since it occurs in
the rule bc! A. Continue the algorithm to produce the final compressed
string CACB.

four nucleotides are given unique symbols. We identify the
extended DNA alphabet as � ¼ fA; C; G; T; M; R; W; S; Y; K;
V; H; D; B; Ng.

COMRAD is an iterative algorithm for compressing a set
of M DNA sequences, S0 ¼ fS1

0 ; S
2
0 ; . . . ; SM0 g, where each Si0

is a sequence over the extended DNA alphabet �. Let ni0 be
the length of the sequence Si0, and Si0 ¼ s1s2 . . . sj . . . sni

0

where 1 � j � ni0 and sj 2 �. Also, let N ¼
PM

i¼1 n
i
0 be the

total length of the original data set S0. The algorithm
requires two parameters: the length L of substrings for the
first iteration and the minimum frequency threshold F that
each substring needs to satisfy in order to be identified as
an efficient replacement. Further discussion of choosing the
length and frequency parameters is in Appendix D, which
can be found on the Computer Society Digital Library.

Each iteration has two main phases: frequency dictionary
creation and substitution. The output of the kth iteration is a
frequency dictionary Dk, an alphabet �k, and a set Sk of M
compressed sequences over the alphabet �k, where k ¼
1; 2; . . . ; K and K is the number of iterations taken to
compress the data set. At each iteration, two passes through
the input to that iteration are required, one for frequency
dictionary creation and the other to do the substitutions.
The number of iterations K can be set to a fixed value but
by default, the algorithm terminates when no further
compression is observed.

The frequency dictionary at each iteration records the
frequency counts of selected distinct substrings present in
the input and is used to determine which substrings are to
be replaced with nonterminal symbols. The algorithm
distinguishes between the first iteration, for which the
inputs are the original sequences of nucleotides, and
subsequent iterations, for which the inputs are sequences
containing nucleotides as well as substituted symbols from
previous iterations. An outline is shown in Fig. 2.

4.1 First Iteration

4.1.1 Frequency Dictionary Creation

Let D1 be the frequency dictionary for the substrings of
lengthL that occur in all the sequences Si0 in S0. Let sj;jþL be a
substring from sequence Si0 with a length of L, starting at
position j and ending at position jþ L� 1. Also, let s0j;jþL be
the reverse complement of the substring sj;jþL. The frequency
dictionary is constructed as follows: for every substring of
length L in each sequence, if the substring or its reverse
complement is present in the dictionary, then increment
the frequency count. Otherwise, add the new substring to the
dictionary with a frequency of 1. Subsequently, all entries in
D1 with a frequency less than F are removed.

4.1.2 Substitution

For each sequence Si0 in S0, repeated substrings are
substituted with symbols, using the frequency dictionary
D1, independently of the other sequences in S0, to avoid
storing all the sequences in memory simultaneously.
Therefore, care must be taken to select a set of replacements
for each sequence where the same replacements are likely to
be made in the rest of the sequences, preventing the final
dictionary from being too large. For this reason, we use the
global frequency counts that were determined during
dictionary construction.

Beginning from the most frequent substring, if the
substring does not overlap with an existing replacement, it
is replaced by a unique nonterminal � that represents the
substring. If the substring is a reverse complement, an extra
symbol r is attached to the end of the unique identifier.
Replacements are made until no further substrings with a
frequency of F or more remain in the compressed sequences.
At the end of the substitution phase, the output is the set of
sequences S1 ¼ fS1

1 ; S
2
1 ; . . . ; SM1 gwhere each Si1 is a modified

DNA sequence that contains a mixture of nucleotides and
symbols that identify frequent substrings (nonterminals).

4.2 Second and Subsequent Iterations

From the second iteration and beyond, the algorithm must
recognize repeated regions composed of nucleotides and
nonterminals. To reduce the number of passes, we have
defined the following set of arbitrary patterns P to
recognize: AB, Ax1B, Ax1x2B, Ax1x2x3B, Ax1x2x3x4B,
Ax1x2x3x4x5, and x1x2x3x4x5B. In these patterns, A and B
are nonterminals that represent repeated substrings, and
the xi represent any nucleotide in the extended DNA
alphabet. The first pattern allows for pairs of repeated
nonterminals to be replaced with a new nonterminal
symbol. The next four patterns allow repeated regions that
contain short segments of specific nucleotides between
nonterminals to be represented. The last two patterns
capture any short repeats of length l, where 5 � l < L, that
are left over at the right and left ends of the repeat region,
since no other patterns can capture these. It is possible to
have a customized set of patterns for each iteration, but we
use the same set from the second iteration and beyond,
since they capture most combinations of terminals and
nonterminals. A more detailed discussion of the pattern set
is in Appendix D, which can be found on the Computer
Society Digital Library.

4.2.1 Frequency Dictionary Creation

The frequency dictionary is created in a similar manner to
the first iteration. However, the substrings added to the

142 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

Fig. 2. Outline of the COMRAD algorithm.

dictionary follow the patterns defined above. Each sub-
stituted input sequence is parsed to detect the above
patterns and, if a substring satisfies a pattern, it is stored
in the frequency dictionary Dk. Reverse complements are
also taken into account as before. Infrequent substrings with
a frequency less than F are also removed from Dk.

4.2.2 Substitution

This is similar to the substitution step for the first iteration.
Only nonterminals created in the previous iteration are
considered in pattern identification.

The algorithm can either be repeated for a predeter-
mined number of iterations or until the frequency dic-
tionary no longer has any patterns with a frequency of at
least F . We choose the latter option. The output is a set of
compressed DNA sequences SK ¼ fS1

K; S
2
K; . . . ; SMK g and a

set of codebooks D ¼ fD1; D2; . . . ; DKg that maps nonterm-
inals to substrings.

We have observed that the number of iterations required
to construct the dictionary grows slowly with corpus size,
with an extra iteration or two for each decimal order of
magnitude, but this growth is also determined by the level
of redundancy. Coding and decoding costs are linear in
collection size.

4.3 Cleanup

Given the interaction between the frequency dictionary
creation and the substitution phase, it is possible that some
nonterminals with a frequency of less than F remain. As in
SEQUITUR [30], any such nonterminals are replaced by
their original substrings in both the codebook and the
sequences, and the entry for that nonterminal is removed
from the codebook.

During this process, some unique IDs may no longer
be used leaving gaps in the set of numbers used to
identify nonterminals. This means that we would need to
store the nonterminal number as well as the substring
(right-hand side) of each codebook entry. It would be
more space efficient if we could infer the nonterminal
identifier from the order in which the substrings are read.
For this to be possible, we ensure that all unique IDs are
consecutive. A final pass through the codebook and the
compressed sequences is undertaken to remap all non-
terminal identifiers to be consecutive. An example run of
the algorithm is shown in Fig. 1 of Appendix A, which
can be found on the Computer Society Digital Library.

4.4 Final Encoding

The COMRAD-compressed sequences and the codebook are
canonical Huffman encoded [32] for storage. The sequences
and codebook entries consist of nucleotides and nonterm-
inals. A separate tiny dictionary of substrings of length n or
n-mers, with n from 1 to 6, was used to aggregate
nucleotide sequences into symbol probabilities closer to
the probabilities of the nonterminals. This makes the
probabilities smaller and hence the Huffman encoding
more efficient. The frequencies of the n-mers and the
nonterminals are used to determine the code lengths for
each symbol (n-mer or nonterminal) to be encoded. The
canonical Huffman coding algorithm is used to assign bit
representations for each symbol and then the sequences and

the codebook are encoded using these bit representations.
Further details are explained in Appendix A, which can be
found on the Computer Society Digital Library.

The total size of the compressed data set is the size (in
bytes) of the encoded codebook, encoded sequence files and
the file containing the n-mers, nonterminals, and their
codeword lengths.

Huffman encoding was chosen in this initial representa-
tion for its speed and simplicity. Experimentally, Huffman
encoding is able to give a compressed size that is within
5 percent of the 0-order entropy of the compressed data, due
to the fact that most of the symbols have low probability;
this result shows that potential further gain is small.

4.5 Compression Cost

The asymptotic cost of the algorithm can be examined by
considering the cost at each step of each iteration. In the first
iteration, frequency dictionary creation is linear in the
length of the original data set since each L-mer needs to be
examined to count frequencies. Therefore, the asymptotic
cost is OðNÞ. In the substitution step of the first iteration, the
asymptotic cost is Oðni0 logni0 þ 2ni0Þ ¼ Oðni0 logni0Þ for each
sequence Si0 of length ni0, since two passes through each
sequence are required (one to determine the substrings that
could be replaced and the other to do the replacements) as
well as a sort on the candidate substrings to be replaced.

The analysis is not straightforward for subsequent
iterations. The frequency dictionary creation is still linear
in the length of the compressed sequences into the iteration
and the length is dependent on the number of substitutions
made in the previous iterations. Therefore, for each iteration
t after the first iteration, the frequency dictionary creation
has complexity OðNt�1Þ, where Nt�1 ¼

PM
i¼1 jSit�1j. The

substitution step is similarly dependent on the number of
substitutions made in the previous iterations, hence has the
asymptotic cost Oðnit�1 lognit�1Þ per sequence.

It is difficult to predict the number of substitutions
made at each iteration, since this depends on the repeat
properties of the data set to be compressed. Therefore, the
space consumption at each step of each iteration is also
hard to predict since it is directly proportional to the
number of distinct L-mers or pattern substrings in the
input to the iteration. These quantities can be predicted by
modeling the level of repetition using an appropriate
probability distribution but it is unlikely that these
assumptions will hold for most real-world data sets.
Therefore, we don’t explore this path in this paper and
simply state that the compression effectiveness and the
space consumption of COMRAD depend on the level of
repetition and the average length of repeats.

Cost of grammar-based compression algorithms. The substitu-
tion algorithm used in COMRAD is a greedy algorithm. Given
that COMRAD is a grammar-based compression algorithm,
the aim is to generate the smallest grammar that can
represent the input sequences. Finding the smallest grammar
for a given sequence is an NP-hard problem and Charikar
et al. [33] found upper and lower bounds for approximation
ratios for algorithms that are very similar to COMRAD such as
SEQUITUR and RE-PAIR. We do not know the approximation
ratios for COMRAD and acknowledge that the current
substitution algorithm may not be the best we can achieve.

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 143

4.6 Decompression

Decompression follows two steps. The first step is to
Huffman decode the compressed sequences. The second
step is to decode the COMRAD-compressed sequences. The
COMRAD-compressed sequences are stored in memory for
decompressing the whole data set or for random access.
There are two methods of decompressing COMRAD-
compressed sequences, very similar to decompression of
RE-PAIR [25].

The first method begins by loading the codebook into
memory, reading each compressed sequence at a time into
memory, and while conducting a linear pass through the
sequence, recursively decode each nonterminal encoun-
tered. The recursive nature of this method stems from the
fact that COMRAD nonterminals have a hierarchical
structure so, for a given nonterminal, the codebook can be
recursively accessed until the base sequence consisting only
of nucleotides is reached.

However, many of the nonterminals represent very short
sequences of further nonterminals, and so this recursive
process is not efficient, though it does result in the
codebook being reasonably compact. In this initial imple-
mentation, we chose to expand the codebook at loading
time, so that each codebook entry consists only of
nucleotides. While this consumes more space, the overhead
is not excessive, and decompression is faster.

4.7 Random Access

COMRAD supports random access to the compressed data
using the codebook and the compressed sequences with
additional space proportional to the length of each
sequence. Random access is described in terms of
display(i,s,e), the substring starting at position s and
ending at position e� 1 is retrieved from sequence i.

Let the compressed set of sequences be Sc ¼ S1
c ; . . . ; SMc

and the dictionary of symbols be D. For details of how D
and Sc are stored, refer to “Random Access” in Appendix A,
which can be found on the Computer Society Digital
Library. D requires dLL log j�j þ dP� bits of storage where
dL is the number of L-mers in D and dP is the number of
pattern dictionary entries each with an average length of �
symbols (while most patterns are in the form of patterns in
set P , some will be longer due to the replacements made in
the Cleanup stage). The compressed sequences require
OðNcÞ space where Nc ¼

PM
i¼1 jSicj.

Along with Sc and D, the expanded lengths of the
pattern substrings also need to be stored, requiring dp logm
bits where m is the length of the longest expanded
dictionary entry (the lengths of L-mer substrings can be
inferred). The lengths are calculated recursively in a similar
manner to a dynamic programming calculation, so not all
nonterminals need to be expanded fully each time a length
needs to be calculated.

For each sequence Sic, two bit arrays are also stored: bit
array Bi

seq is a map of the expanded sequence and contains a
1 at any position where the substring starting at that
position is the start of a nonterminal, and bit array Bi

cseq is a
map of the compressed sequence and contains a 1 at any
position where there is a nonterminal. Bi

seq enables us to
obtain the nonterminal that occurred just before the starting
position of the query and Bi

cseq enables us to obtain the said
nonterminal. The bit arrays are stored in a compact data
structure that supports the following operations:

. rankðA; jÞ returns the number of 1 bits in bit array A
until position j; and

. selectðA; jÞ returns the position of the jth 1 bit in bit
array A.

The bit arrays are stored in the “sdarray” format of
Okanohara and Sadakane [34].Bi

seq can be stored in ti logN
ti þ

OðtiÞ bits and Bi
cseq in ti logNc

ti þOðtiÞ bits, where ti is the
number of nonterminals in sequenceSic. rank() takesOðlog

jSi0j
ti Þ

time forBi
seq andOðlog

jSicj
ti Þ forBi

cseq, where jSi0j is the length of
the original ith sequence and jSicj is the length of the
compressed ith sequence. select() takes Oð1Þ time.

The overall space usage is dL log j�j þ dP ðlog�þ logmÞ þ
T logN

T þ T logNc

T þOðT Þ þOðNcÞ bits where T ¼
PM

i¼1 t
i.

Then, for a given query in the form of (i, s, e), where i is
the sequence number (1 � i �M), s is the start position,
and e� 1 is the end position, random access is as follows:
the nonterminal that occurred before or at s is found. If
a nonterminal did not occur before s, or the previous
nonterminal does not include position s, then the next
nonterminal is fetched. Then, while there are more
nucleotides to be extracted, follow two steps. First, if there
are nucleotides before the next nonterminal, then extract
those. Second, extract the necessary nucleotides from the
nonterminal itself by recursively expanding the dictionary
entry for the nonterminal for as many nucleotides as
necessary. Increment to the next nonterminal and continue
the two steps until all the nucleotides from position s to
e� 1 are extracted. This algorithm is presented in Appen-
dix B, which can be found on the Computer Society Digital
Library. The comparison of our display() results to that of
RLCSA is in Table 5.

For a given query, the rank() operation is only required
once to determine the first nonterminal in Oðlog

jSi0j
ti Þ time.

Subsequent nonterminals are accessed by incrementing the
rank for each new nonterminal. On average, t0 nonterm-
inals need to be accessed and expanded per query, where t0

is a function of the query length (the higher the query
length, the number of nonterminals that cover the sub-
string Si0½s::e� is expected to be higher). For each non-
terminal, two select() queries are required in Oð1Þ time to
obtain the position of the nonterminal in the original
sequence and the compressed sequence, respectively.
Finally, e� s nucleotides need to be extracted per query,
some from Sic and the remainder from expanding t0

nonterminals, with Oð1Þ complexity per nucleotide. There-
fore, the asymptotic cost for a random access query is
Oðe� sþ t0 þ log

jSi0j
ti Þ.

5 RESULTS

Our implementation is in C. To reduce memory for the
dictionary, the initial substring length L was restricted to
16 for most of the data sets except for the Bacteria and H.
sapiens data sets, where due to excessive memory
requirements, L was restricted to 15. The details are
explained in Appendix A, which can be found on the
Computer Society Digital Library. For the F parameter, as
a default, we have chosen F ¼ 4 since, empirically, the
cost of introducing a new symbol to represent a substring
with a frequency less than 4 is higher than the cost if the
substring was not substituted. These parameters were

144 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

determined in preliminary experiments. The data sources
for the experiments reported here are available at
ww2.cs.mu.oz.au/~kuruppu/comrad/. A detailed analy-
sis of the L and F parameters is in Appendix D, which
can be found on the Computer Society Digital Library.

As a first step in determining whether COMRAD is
effective, we used an Influenza data set of 78,041 sequences
to evaluate COMRAD in the presence of high redundancy.
The data set was chosen for its small size (112,640,907
bases) and its high repeat content (78,041 sequences with
high commonality). As a preliminary analysis, we created a
frequency dictionary of all overlapping substrings of
length 20, finding that, out of 111,158,128 substrings, only
3,078,772 are unique, where each is repeated approxi-
mately 36 times on average.

With the L ¼ 16 and F ¼ 4 parameters, after 11 iterations,
beyond which there was no further compression, COMRAD

had compressed the data set to 0.43 bpb, which is the final
entropy calculated by dividing the total number of bits
required for the compressed sequences (excluding the
sequence names) and the codebook, by the total number of
bases in the data set. The original entropy of the data set,
which is the 0-order entropy of the data set calculated using
the probability distribution of the nucleotides in the data set,
was 1.97 bpb. The final file size was around 6 MB, which is
around 4 percent of the original file size of 113 MB. This result
was evidence that COMRAD was successful at detecting
redundancy and achieving reasonable compression, as well
as providing decompression speeds of around 6� 106 bases
per second. This result is reported in the first line in Table 1.

To assess the improvement in compression rates over
each additional iteration, the Influenza data set was
analyzed at each of its iterations to obtain the 0-order
entropy. Most of the gain is in the first five to six iterations,
with only small gains observed thereafter. The first
iteration is also the most computationally expensive, taking
around 135 seconds, compared to around 30 seconds for
the second iteration, 20 seconds for the third, and
continuing to markedly decrease thereafter. Note that the
number of iterations required to compress a data set is
higher for data sets containing long individual sequences
(human chromosomes require approximately 20 iterations)
compared to data sets containing shorter individual
sequences (Mitochondria and Bacteria sequences require
less than 10 iterations).

The next few lines in the upper block of Table 1 show the
effectiveness of COMRAD on a variety of freely available
genomic data sets. Our focus was to develop a method that
was suitable for corpora that contain many variants of the
same sequence, and thus we chose sets that were of this
form. One was 15,199 Hemoglobin sequences, occupying
7.38 MB, which compressed to 1.07 MB or 1.16 bpb.
Similarly, we tested sets of mitochondrial DNA sequences,
Yeast, and Bacteria. These yielded varying results, from
effectively no compression (Bacteria) to a very promising
0.25 bpb (S. cerevisiae). For the Bacteria and Mitochondria
data sets, the compression is ineffective due to the
disproportionately large codebook compared to the com-
pressed sequences. These data sets have many short
repeats, and, although COMRAD detects them, the large
number of small repeats in the codebook leads to the larger
final compressed data set size. Algorithms that don’t have
an external dictionary such as 7-zip will be able to
compress such data sets much more effectively, whereas
data sets such as yeast are better for COMRAD-type
algorithms since they contain longer repeats, resulting in a
smaller codebook overhead.

The final line of the upper block of Table 1 shows results
of compressing four human genomes, consisting of the
reference genome (NCBI build 37 release on March 2nd,
2009), Craig Venter genome [35], Chinese genome [3], and
the Korean genome [36] that add up to 12,066,063,708 bases.
The total compressed file size was 2,176 MB giving a
compression rate of 1.44 bpb. The total time taken to
compress the genomes was approximately 8 hours, and
decompression is around 7 megabases per second. This is
not much of an improvement for COMRAD compared to
compressing a single human genome (1.82 bpb), due to the
codebook being very large (1.69 GB). We believe that with
the addition of further human genomes to the data set,
longer repeats can be found and the cost of the dictionary
will be shared among a larger data set improving the results.

There are not yet many published variants of larger
genomes. Given that one of the main aims of COMRAD is to
compress data sets in the gigabyte scale, in order to explore
the potential performance of COMRAD, we artificially
generated variants using a model loosely based on observed
differences between human individuals. While such a
model does not capture true sequence-to-sequence varia-
tion, it does indicate whether our approach is capable of

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 145

TABLE 1
COMRAD Compression Results

The columns show the data set name, total number of sequences, original size and original entropy (bits per base), Huffman encoded size (and bits
per base), total number of iterations, total time taken to compress, time taken to decompress, and approximate maximum memory usage,
respectively. Above the line: real DNA data. Below the line: variants artificially generated from real data.

capturing overall sequence similarity and is able to
efficiently compress data sets of a size that has not been
attempted previously by a DNA compression algorithm.

The variant generation takes a genome as input and
creates genomic variations to create two child sequences.
Those two child sequences also undergo further variation
to create two children each and so forth. This method
was used to create several generations of sequences for
the H. sapiens chromosome 1 (127 variants), chromosome
20 (1,023 variants), and chromosome 22 (63 variants). The
model used for the experiments assumed a single point
mutation probability of 1 in 10,000 bases, to a randomly
chosen base, and an indel probability of 1 in 10,000,000
with an indel length of 10,000 bases.

For the H. sapiens chromosome 1 data set, the 31.41 GB of
data were compressed to 0.29 GB (0.07 bpb). Compression
took approximately 49 hours; decompression ran at about
94� 106 bases per second. Similar results were observed on
the other artificial data sets, with a trend of compression
converging to a limit of around a few bytes per mutation.
The larger data sets needed more iterations than did the
Influenza data set to yield stable compression, with
typically most of the gain in the first 9-10 iterations and
up to 20 or so iterations to achieve the final result.

In order to analyze the performance of COMRAD when
the level of difference between the sequences in the data
set changes, further experiments were performed using
the artificial variant-generation method. The H. sapiens
chromosome 22 sequence was taken and five data sets of
63 variants were generated as before but with each data
set containing a different mutation and indel rate. Unlike
before, only the 32 leaf sequences were kept in each of
the data sets to ensure that each sequence is distantly
related to most other sequence (sequences 1 and 2 have a
common parent, sequences 1 and 3 have a common
grandparent, sequences 1 and 5 have a common great
grandparent, and so on). The results are shown in Table 2.
As expected, the lower the mutation rate, the better the
compression results, with the results improving signifi-
cantly when the rates are reduced 10-fold from the
starting rates (from 1.25 bpb down to 0.42 bpb) and the
level of improvement diminishing for every subsequent
10-fold reduction in the rates. Even with a 1 in
100 mutation rate, COMRAD was able to almost halve
the data set size. (This is a very high mutation rate that
would not typically be detected in a data set containing
the same species. Even with a mutation rate of 1 in 1,000,
if a randomly selected pair of leaf sequences is taken
then, they would differ in approximately 1 in 80 bases.)

To better understand incremental compression, we first
compressed randomly chosen 22 sequences out of the
32 leaf sequences of the H. sapiens chr 22 data set. Then, we
continued to add one sequence at a time to the existing data
set, recording the compression performance at each addi-
tion. The first 22 sequences compressed to 27 MB, the
addition of one sequence led to a 285 KB increase, then the
addition of another sequence led to a 3.5 MB decrease. In a
similar way, addition of further sequences sometimes led to
an increase and other times to a decrease, and finally when
the 10th sequence was added, the overall size was 25 MB.
The addition of certain sequences made the overall
compressed size larger, since they contained substrings
that weren’t present in the original data set. However, most
of the time, adding more sequences led to some other
substrings getting a high enough frequency and being
added to the codebook, hence making the overall com-
pressed size smaller.

Next, we compared COMRAD with the two other
algorithms we are aware of that have similar design goals,
which is to compress large sets of similar sequences, while
supporting random access on the compressed data. RLCSA
is a self-index implementation described by Mäkinen et al.
[22] and is the only publicly available implementation that
we found. RLZ [28] is a DNA compression algorithm where
each sequence in the data set is compressed with respect to
a chosen reference sequence. We compare the compression
results of COMRAD, RLZ (standard algorithm described in
[28]), and RLCSA for our test data sets and later in the
section, we compare the random access performance of the
three algorithms. The compression and decompression
results are in Table 3.

For the data sets such as Hemoglobin, Mitochondria, and
Bacteria where the sequences in the data set have very little
similarity, RLCSA does not perform well, often resulting in
the compressed size being larger than the original data set.
In this case, COMRAD has an advantage since it makes no
assumptions about the data set and, if there are exact
repeats in the data, COMRAD will detect them. For the S.
cerevisiae and S. paradoxus data sets, where all the sequences
are from the same species, RLCSA performs well but still not
as well as COMRAD. COMRAD outperforms RLCSA in terms
of compression (except for the Influenza data set), and the
speed at which the data are compressed and decompressed,
but RLCSA is much more memory efficient than COMRAD.
On the other hand, COMRAD does not support count and
locate, and it is difficult to predict how much extra space
would be required to support this functionality. RLCSA

146 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

TABLE 2
Performance of COMRAD on Data Sets Containing Varying Mutation Rates

Each data set contains 32 leaf sequences of H. sapiens chromosome 22 generated from the evolution model described with the parameters
specified in the Mutation Rate and Indel Rate columns. The columns are the data set name, the single point mutation rate, the indel rate (an indel has
a length of 10,000), the 0-order entropy of the 32 sequences before and after compression (both expressed in terms of bits per base), respectively.
Note that the rates are a parameter to the model of evolution and the actual level of difference between each of the sequences in a data set is
dependent on the evolutionary relationship between a pair of sequences.

already supports these functions with a small amount of
additional space.

With RLZ, it was nontrivial to determine what a
reference sequence should be for the data sets containing
arbitrary sets of sequences like the Hemoglobin, Influenza,
Mitochondria, and Bacteria data sets. Therefore, a random
sequence was chosen from the data set to be the reference.
For the data sets S. cerevisiae, S. paradoxus, and H. sapiens, a
reference sequence was available in each data set. COMRAD

outperformed RLZ on all the data sets except for the human
genomes. RLZ performed particularly badly on the data sets
where an appropriate reference sequence was not available.
In terms of compression and decompression times, and
memory usage, RLZ was much more efficient than either
RLCSA or COMRAD. As shown by the results, for data sets
where the sequences have a large amount of similarity and
a reference sequence is readily available, RLZ is more
suitable than COMRAD. However, COMRAD is far more
suited for more general compression.

We also compare COMRAD with some publicly avail-
able existing DNA compression algorithms, dna-x [31],
GenCompress [8], DNACompress [9], CDNA [10], and XM

[7] (Version 2.1). The algorithms and the results are
further discussed in Appendix C, which can be found on
the Computer Society Digital Library. In summary, dna-x
and XM performed better than COMRAD for all data sets
except in terms of runtime where both dna-x and XM

were many orders of magnitude slower than COMRAD for
data sets in the megabase range. In our experiments,
DNACompress did not perform well.

Since XM consistently has the best compression results,
we also compressed the reference human genome (NCBI
Build 36) using XM as a comparison to COMRAD. For a
single sequence, COMRAD does not compress as well as XM
(with 500 experts, XM produces a result of 1.64 bpb on the
human genome, compared to 1.82 bpb with our method).
One reason is that COMRAD does not consider approximate
repeats. However, COMRAD was able to compress the
genome more than 10 times faster than XM (8 hours versus
94 hours). We also attempted to use XM to compress the
four human genomes by compressing each chromosome
against the respective reference chromosome. However, a
single chromosome 1 sequence took around 6 hours to
compress so we did not continue this experiment. In this
analysis, we note that the aims of XM are somewhat
different: to discover redundancy within a sequence, or by
comparison to another sequence, and then adaptively
compress. For this task, XM appears to be highly effective
(as was shown by the human genome compression), but,

due to its high memory consumption, it is less suited to the
task of corpus compression.

For comparison with a general-purpose compression
algorithm, we chose gzip since it is widely available and is
often used to compress downloadable biological data.
However, gzip also cannot be compared directly to
COMRAD since gzip only uses a limited amount of main
memory for compression, and provides adaptive compres-
sion. We did not restrict gzip to individual sequences, and
thus for the smallest data sets, multiple sequences might be
compressed with reference to each other. While gzip

provides an obvious point of reference, we note that the
purpose of the comparison is to set our work in a relevant
context rather than assert that one method or the other is
superior: the methods are designed for different tasks.

Results with gzip are shown in Table 4. For all but the
smallest data sets, gzip has, unsurprisingly, been entirely
ineffective. Models of a local region are unable to capture
much useful redundancy for typical stored sequences, and
little compression is achieved. This is a dramatic demon-
stration of the need for long-range or global models for
achievement of maximum compression [15], [16]. In terms of
compression time, gzip is faster than COMRAD. With
another variant of an LZ algorithm that is able to use more
main memory, 7-Zip, we observed better compression
results, in similar time. For small data sets, 7-Zip has better
compression results than COMRAD. However, as the data
sets become larger, 7-Zip is no longer able to compress the
data to the same level as COMRAD since even 7-zip has a
maximum dictionary size limit of 32 MB. This is clearly
evident for the H. sapiens data set where 7-zip was invoked
for each chromosome file where the respective chromo-
somes from each genome were concatenated into a single
file and given the proximity of similar sequences, 7-zip
was still unable to compress as well as COMRAD.

While many of the existing algorithms such as dna-2, XM,
and7-zip perform well, none of these algorithms are able to
provide random access into the compressed data. COMRAD

on the other hand has random access support and also has
the potential to support other database queries such as count,
and locate. The only other work that we know of that
provides this feature is the set of self-indexing algorithms by
Mäkinen et al. [22], which includes display as well as count
and locate operations. COMRAD does not implement count
and locate yet; hence, we compare the RLCSA algorithm to
COMRAD with the locate feature turned off.

We now compare the display results of RLCSA, RLZ, and
COMRAD in terms of the speed and memory usage for the

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 147

TABLE 3
Compression Results of RLCSA, RLZ, and COMRAD

Each algorithm shows the compressed size (in bits per base), time taken to compress and decompress (in seconds), and the approximate maximum
memory usage (in MB) during the experiments.

S. paradoxus data set. The results are in Table 5. For all data
sets, COMRAD was many magnitudes faster than RLCSA.
We assume this is due to the lack of memory locality of
the BWT representation of RLCSA. COMRAD also lacks
locality when accessing dictionary elements but only a few
nonterminals need to be accessed per query. However,
RLZ was also many magnitudes faster than COMRAD since
the number of memory accesses required is limited to the
number of factors that cover the region being extracted. In
terms of memory usage, RLCSA uses just over half as
much memory compared to COMRAD, since the COMRAD

dictionary is an overhead of the algorithm. However, it is
still cheaper than holding the uncompressed data in
memory and, for very large data sets, is potentially faster
than retrieving data from disk. RLZ uses just over a third
of the memory used by COMRAD. While RLZ has the best
random access performance overall, note that RLZ is only
applicable for data sets with highly similar sequences and
where there is an obvious choice of reference sequence,
whereas COMRAD has no such restrictions.

System specification. All algorithms (except DNACom-

press) were run on a machine with four 2.6 GHz Dual-
Core AMD Opteron processors and 32 GB of RAM running
Ubuntu 8.04.3. DNACompress experiments were run on a
machine with two 2.66 GHz Intel(R) Core(TM)2 Duo
processors and 4 GB of RAM, running Windows XP. Only
a single processor was used except for XM. All algorithms,
except gzip and 7-zip, were executed with default
parameter settings.

6 CONCLUSION

We have shown that a new method of dictionary construc-
tion for compression has been very effective in long-range

repetition detection making it ideal for compressing very
large DNA data sets. The results have shown that COMRAD

is able to compress much larger data sets than existing DNA
compression algorithms and able to detect repetition over a
much longer range than existing general-purpose diction-
ary-based compression algorithms. While the algorithm is
very memory intense and requires more theoretical ground-
ing, we have shown experimentally that the method is
effective and many improvements can be made to the
general idea to create a very powerful and extendible
compression algorithm for compressing and searching in
very large data sets.

ACKNOWLEDGMENTS

This work was supported by the Australian Research
Council, and by the NICTA Victorian Research Labora-
tory. NICTA is funded by the Australian Government as
represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian
Research Council through the ICT Center of Excellence
program. The authors thank Simon Puglisi for his
assistance with this work.

REFERENCES

[1] D. Wheeler et al., “The Complete Genome of an Individual by
Massively Parallel DNA Sequencing,” Nature, vol. 452, no. 7189,
pp. 872-876, 2008.

[2] D. Bentley et al., “Accurate Whole Human Genome Sequencing
Using Reversible Terminator Chemistry,” Nature, vol. 456,
no. 7218, pp. 53-59, 2008.

[3] J. Wang et al., “The Diploid Genome Sequence of an Asian
Individual,” Nature, vol. 456, no. 7218, pp. 60-65, 2008.

[4] S. Schuster et al., “Complete Khoisan and Bantu Genomes
from Southern Africa,” Nature, vol. 463, no. 7283, pp. 943-947,
2010.

[5] A. Cannane and H. Williams, “General-Purpose Compression for
Efficient Retrieval,” J. Am. Soc. for Information Science and
Technology, vol. 52, no. 5, pp. 430-437, 2001.

[6] B. Behzadi and F.L. Fessant, “DNA Compression Challenge
Revisited: A Dynamic Programming Approach,” CPM ’05:
Proc. 16th Ann. Symp. Combinatorial Pattern Matching, pp. 190-
200, 2005.

[7] M.D. Cao, T. Dix, L. Allison, and C. Mears, “A Simple Statistical
Algorithm for Biological Sequence Compression,” DCC ’07: Proc.
Data Compression Conf., pp. 43-52, 2007.

[8] X. Chen, S. Kwong, and M. Li, “A Compression Algorithm for
DNA Sequences and Its Applications in Genome Comparison,”
RECOMB ’00: Proc. Fourth Ann. Int’l Conf. Research in Computational
Molecular Biology, pp. 107-117, 2000.

148 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012

TABLE 4
Comparison of COMRAD to Existing General-Purpose Compression Algorithms

The columns show the data set name, the compressed size (in bits per base), and time to compress for gzip using the -9 option, 7-Zip using the
“ultra” options, and COMRAD, respectively.

TABLE 5
display() Times for COMRAD, RLZ, and RLCSA

for Varying Query Lengths on the
S. paradoxus Data Set

Data sets contain 1,000 randomly generated queries, each with the
same length. The times for each algorithm are in microseconds per
character extracted and are an average of five consecutive runs per data
set. COMRAD used 76.35 MB of memory, RLCSA used 47.35 MB, and
RLZ used 28.71 MB.

[9] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: Fast and
Effective DNA Sequence Compression,” Bioinformatics, vol. 18,
no. 12, pp. 1696-1698, 2002.

[10] D. Loewenstern and P. Yianilos, “Significantly Lower Entropy
Estimates for Natural DNA Sequences,” DCC ’97: Proc. Data
Compression Conf., p. 151, 1997.

[11] T. Matsumoto, K. Sadakane, and H. Imai, “Biological Sequence
Compression Algorithms,” Genome Informatics, vol. 11, pp. 43-52,
2000.

[12] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Trans. Information Theory, vol. IT-23, no. 3,
pp. 337-343, May 1977.

[13] J. Cleary and I. Witten, “Data Compression Using Adaptive
Coding and Partial String Matching,” IEEE Trans. Comm.,
vol. COM-32, no. 4, pp. 396-402, Apr. 1984.

[14] P. Deutsch, “Gzip File Format Specification Version 4.3,” 1996.
[15] S. Grumbach and F. Tahi, “Compression of DNA Sequences,”

DCC ’93: Proc. Data Compression Conf., pp. 340-350, 1993.
[16] E. Rivals, J. Delahaye, M. Dauchet, and O. Delgrange, “A

Guaranteed Compression Scheme for Repetitive DNA Se-
quences,” DCC ’96: Proc. Data Compression Conf., p. 453, 1996.

[17] A. Apostolico and S. Lonardi, “Compression of Biological
Sequences by Greedy Off-Line Textual Substitution,” DCC ’00:
Proc. Data Compression Conf., pp. 143-152, 2000.

[18] G. Korodi and I. Tabus, “An Efficient Normalized Maximum
Likelihood Algorithm for DNA Sequence Compression,” ACM
Trans. Information Systems, vol. 23, no. 1, pp. 3-34, 2005.

[19] S. Christley, Y. Lu, C. Li, and X. Xie, “Human Genomes as Email
Attachments,” Bioinformatics, vol. 25, no. 2, pp. 274-275, 2009.

[20] M. Brandon, D. Wallace, and P. Baldi, “Data Structures and
Compression Algorithms for Genomic Sequence Data,” Bioinfor-
matics, vol. 25, no. 14, pp. 1731-1738, 2009.

[21] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro, “Run-Length
Compressed Indexes Are Superior for Highly Repetitive Sequence
Collections,” SPIRE ’08: Proc. 15th Int’l Symp. String Processing and
Information Retrieval, pp. 164-175, 2009.

[22] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and
Retrieval of Individual Genomes,” RECOMB ’09: Proc. 13th Ann.
Int’l Conf. Research in Computational Molecular Biology, pp. 121-137,
2009.

[23] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki, “Storage and
Retrieval of Highly Repetitive Sequence Collections,” J. Computa-
tional Biology, vol. 17, no. 3, pp. 281-308, 2010.

[24] F. Claude, A. Fariña, M. Martı́nez-Prieto, and G. Navarro,
“Compressed q-Gram Indexing for Highly Repetitive Biological
Sequences,” Proc. 10th IEEE Conf. Bioinformatics and Bioeng., pp. 86-
91, 2010.

[25] N.J. Larsson and A. Moffat, “Offline Dictionary-Based Compres-
sion,” DCC ’99: Proc. Data Compression Conf., pp. 296-305, 1999.

[26] F. Claude and G. Navarro, “Self-Indexed Text Compression Using
Straight-Line Programs,” MFCS ’09: Proc. 34th Int’l Symp. Math.
Foundations of Computer Science, pp. 235-246, 2009.

[27] S. Kreft and G. Navarro, “LZ77-Like Compression with Fast
Random Access,” DCC ’10: Proc. 20th Data Compression Conf.,
pp. 239-248, 2010.

[28] S. Kuruppu, S.J. Puglisi, and J. Zobel, “Relative Lempel-Ziv
Compression of Genomes for Large-Scale Storage and Retrie-
val,” SPIRE ’10: Proc. 16th Int’l Symp. String Processing and
Information Retrieval, E. Chavez and S. Lonardi, eds., pp. 201-
206, 2010.

[29] S. Kuruppu, S.J. Puglisi, and J. Zobel, “Optimized Relative
Lempel-Ziv Compression of Genomes,” ACSC ’11: Proc. 34th
Australasian Computer Science Conf., M. Reynolds, ed., pp. 91-98,
2011.

[30] C. Neville-Manning and I. Witten, “Compression and Explanation
Using Hierarchical Grammars,” The Computer J., vol. 40, nos. 2/3,
pp. 103-116, 1997.

[31] G. Manzini and M. Rastero, “A Simple and Fast DNA Compres-
sor,” Software—Practice and Experience, vol. 34, pp. 1397-1411, 2004.

[32] S. Hirschberg and D. Lelewer, “Efficient Decoding of Prefix
Coding,” Comm. ACM, vol. 33, no. 4, pp. 449-459, 1990.

[33] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A.
Sahai, and A. Shelat, “The Smallest Grammar Problem,” IEEE
Trans. Information Theory, vol. 51, no. 7, pp. 2554-2576, July 2005.

[34] D. Okanohara and K. Sadakane, “Practical Entropy-Compressed
Rank/Select Dictionary,” ALENEX ’07: Proc. Workshop Algorithm
Eng. and Experiments, 2007.

[35] S. Levy et al., “The Diploid Genome Sequence of an Individual
Human,” PLoS Biology, vol. 5, no. 10, p. e254, 2007.

[36] S.-M. Ahn et al., “The First Korean Genome Sequence and
Analysis: Full Genome Sequencing for a Socio-Ethnic Group,”
Genome Research, vol. 19, no. 9, pp. 1622-1629, 2009.

Shanika Kuruppu is working toward the PhD
degree at the University of Melbourne under-
taking a research project titled “Efficient Algo-
rithms for Specialised Search in Biomedical
Data.” Her research interests include implement-
ing compression algorithms to store large DNA
data sets efficiently and using succinct data
structures to implement fast access and search
for compressed data sets.

Bryan Beresford-Smith received the PhD
degree in applied mathematics and worked as
a senior lecturer in computer science before
moving to private industry and then NICTA. He
is a senior researcher at NICTA. His research
interests include colloid science, parallel algo-
rithms and architectures, wireless networks, and
more recently bioinformatics and genomics.

Thomas Conway received the PhD degree in
2002 from the Department of Computer Science
and Software Engineering, University of Mel-
bourne, in the area of logic programming. He
then worked for several years in the commercial
sector on text search and information retrieval
problems. In 2007, he joined NICTA and got
involved in the bioinformatics activities there. His
research at NICTA has centered on ways to
apply insights from theoretical computer science

to help address practical problems in the processing and interpretation
of second generation sequencing data.

Justin Zobel is a professor at the University of
Melbourne. Since completion of the PhD
degree in 1991, he has been working at RMIT
and NICTA. He is best known for his contribu-
tions to indexing and query evaluation mechan-
isms for text search, and has also made
significant contributions in fundamental algo-
rithms, compression, bioinformatics, and re-
search methods, and for his text on writing
skills for computer scientists.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KURUPPU ET AL.: ITERATIVE DICTIONARY CONSTRUCTION FOR COMPRESSION OF LARGE DNA DATA SETS 149

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

