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The length a(n) of the longest common subsequence of the nth Thue-Morse word and its 
bitwise complement is studied. An open problem suggested by Jean Berstel in 2006 is to 
find a formula for a(n). In this paper we prove new lower bounds on a(n) by explicitly 
constructing a common subsequence between the Thue-Morse words and their bitwise 
complement. We obtain the lower bound a(n) = 2n(1 − o(1)), saying that when n grows 
large, the fraction of omitted symbols in the longest common subsequence of the nth Thue-
Morse word and its bitwise complement goes to 0. We further generalize to any prefix of 
the Thue-Morse sequence, where we prove similar lower bounds.
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1. Introduction

The Thue-Morse sequence is a well known sequence in 
mathematics and computer science, with many interesting 
properties. The sequence has a lot of self-symmetry in it, 
and is overlap-free and thus also cube-free. For a more in 
depth introduction to the Thue-Morse sequence, see, for 
instance, Allouche and Shallit [1].

In 2006, Jean Berstel [2] formulated the problem of 
finding the length a(n) of the longest common subse-
quence between the nth Thue-Morse word and its bitwise 
complement. By bitwise complement we mean replacing 
0 with 1 and 1 with 0. This paper primarily studies a(n)

(sequence A297618 on the Online Encyclopedia of Integer Se-
quences [3]). Since the Thue-Morse words are prefixes of 
length 2k for some k, of the Thue-Morse sequence, a natu-
ral generalization is to consider other length prefixes of the 
Thue-Morse sequence, or arbitrary factors. This paper also 
studies b(n), the longest common subsequence between 
the length n prefix of the Thue-Morse sequence and its 
bitwise complement (sequence A320847).

E-mail address: joblikst@uwaterloo.ca.
https://doi.org/10.1016/j.ipl.2020.106020
0020-0190/© 2020 Elsevier B.V. All rights reserved.
Example 1.1. The first few values of a(n) and b(n) are:

a(1) = 1 b(1) = 0

a(2) = 2 b(2) = 1

a(3) = 5 b(3) = 1

a(4) = 12 b(4) = 2

a(5) = 26 b(5) = 3

a(6) = 54 b(6) = 4

To show a lower bound for a(n), it suffices to con-
struct a common subsequence of the Thue-Morse words 
and their bitwise complements. This is what is done 
in this paper, using the symmetries of the sequence. 
In particular, we provide a recursive construction for 
such a common subsequence, which has length at least 
2n

(
1 −O(

√
n · 2−√

2(log2 3)n)
)

= 2n(1 − o(1)).

This new lower bound is interesting as it means that 
a(n)
2n goes to 1, that is when n grows large the longest 

common subsequence will only omit a vanishingly small 
fraction of symbols.

https://doi.org/10.1016/j.ipl.2020.106020
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2. Setup

There are many equivalent definitions of the Thue-
Morse sequence and Thue-Morse words. We will define 
them using morphisms.

Definition 2.1. A morphism over an alphabet � is a func-
tion m : �∗ → �∗ that satisfies m(xy) = m(x)m(y) (con-
catenation) for all x, y ∈ �∗ . Note that this means m is 
uniquely defined by its behaviour on �.

Definition 2.2. Let μ denote the morphism on {0, 1} de-
fined by μ(0) = 01 and μ(1) = 10.

There are some basic properties that follow directly 
from the definition.

Proposition 2.1. If n ≥ 0 then

(i) μn(1) = μn(0) where z denotes taking the bitwise com-
plement of z (i.e., swapping 0s and 1s).

(ii) μm+n(0) = μm(μn(0)).
(iii)

∣∣μn(0)
∣∣ = 2n.

(iv) μn+1(0) = μn(0)μn(1) and μn+1(1) = μn(1)μn(0).

Proof. The symmetry (between 0 and 1) in the definition 
of μ proves (i). All functions satisfy (ii). Since |μ(x)| = 2|x|
for any x, (iii) follows from an inductive argument. Finally, 
we see that μn+1(0) = μn(μ(0)) = μn(01) = μn(0)μn(1), 
and symmetrically μn+1(1) = μn(1)μn(0), which proves 
(iv). �
Definition 2.3. We call μn(0) the nth Thue-Morse word. 
We also say the Thue-Morse sequence, denoted by t, is the 
unique fixed point of μ (extended to the domain of infinite 
binary strings) beginning with a 0. See Allouche et al. [1]
for why such a fixed point exists and is unique.

Definition 2.4. Denote by a(n) the length of the longest 
common subsequence of μn(0) and μn(1). Similarly, de-
note by b(n) the length of the longest common subse-
quence of the prefix of length n of the Thue-Morse se-
quence and its bitwise complement.

Example 2.1. The first few Thue-Morse words are

μ0(0) = 0, μ1(0) = 01, μ2(0) = 0110,

μ3(0) = 01101001.

The Thue-Morse sequence starts as follows t = 011010011
0010110 . . .

Remark. The Thue-Morse words are sometimes defined by 
the recurrence relation in Proposition 2.1 part (iv), and 
then the Thue-Morse sequence as the infinite application 
of this rule. We see that nth Thue-Morse word is the prefix 
of length 2n of the Thue-Morse sequence. This also means 
that b(2n) = a(n).
We also need the following proposition, for which the 
proof can be found in [1].

Proposition 2.2. If t = t0t1t2 . . . are the symbols of the Thue-
Morse sequence we have t2n = tn and t2n+1 = tn for all n ≥ 0. 
Moreover, tn equals the parity of the number of “1” bits in the 
binary representation of n.

Corollary 2.3. The (2i)’th digit of μn(0) is the same as the (2i +
1)’th digit of μn(1) (where we use zero-indexing).

Proof. The (2i)’th digit of μn(0) is t2i = ti , and the (2i +
1)’th digit of μn(1) is t2i+1 = ti , by the above proposi-
tion. �
3. Construction of a common subsequence

We are now ready for a construction of a common 
subsequence between μn(0) and μn(1) when n = 2k is a 
power of 2. We call this common subsequence C S(k), and 
define it recursively.

• When k = 0, n = 20 = 1, and we define C S(0) = 0, a 
subsequence of μ(0) = 01 and μ(1) = 10.

• For k ≥ 1, C S(k) will be defined recursively as follows.
Let n = 2k and m = 2k−1. We are constructing C S(k)

as a common subsequence of μn(0) and μn(1). Write 
μn(0) and μn(1) as concatenations of 2m blocks of 
size 2m (which is possible since 2n = (2m)2), say

μn(0) = x0x1 · · · x2m−1

μn(1) = y0 y1 · · · y2m−1.

Since μ2k
(0) = μ2k−1

(μ2k−1
(0)), each xi is one of 

μm(0) or μm(1). Similarly each yi is one of μm(0)

or μm(1). It is also worth noting that xi = μm(d) if 
the i’th digit of μm(0) is d, and similarly yi = μm(d)

if the i’th digit of μm(1) is d.
Now we compare xi to yi+1 for 0 ≤ i < 2m − 1, and 
find a common subsequence csi between them.
– When i is even, xi = yi+1 by Corollary 2.3, so we 

take csi = xi .
– When i is odd, either xi and yi+1 are the same, or 

one is μm(0) and the other is μm(1). If they are the 
same we take csi = xi , otherwise csi = C S(k − 1).

We then let C S(k) be the concatenation of the csi ’s.

Example 3.1. The common subsequence C S(0), C S(1), and 
C S(2) are underlined below:

C S(0) : μ1(0) = 01

μ1(1) = 10

C S(1) : μ2(0) = 01 10

μ2(1) = 10 01

C S(2) : μ4(0) = 0110 1001 1001 0110

μ4(1) = 1001 0110 0110 1001
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Remark. C S(k) is not necessarily the longest common sub-
sequence. For example

μ4(0) = 0110 1001 1001 0110

μ4(1) = 1001 0110 0110 1001

is the longest common subsequence between μ4(0) and 
μ4(1), which has length 12, while |C S(2)| = 10.

4. Analysis of length

In this section we analyse the length of the common 
subsequence C S(k) constructed in the previous section.

Definition 4.1. For an integer k ≥ 0, let f (k) = |μ2k
(0)| −

|C S(k)| = 22k − |C S(k)| be the number of symbols omitted 
by the common subsequence C S(k).

Remark. f (0) = 1, as |C S(0)| = 1.

When constructing C S(k + 1), all the even indexed 
blocks (of size 22k

) in μ2k+1
(0) are chosen to be in C S(k +

1). So only the odd indexed blocks can contribute to 
f (k + 1). The last block will be completely omitted, and 
for the other blocks in odd positions we either miss f (k)

if matching μ2k
(0) with μ2k

(1) recursively, or miss noth-
ing if choosing to include the complete block. This leads us 
to the following lemma.

Lemma 4.1. For every integer k ≥ 0

f (k + 1) ≤ 22k +
(

22k−1 − 1
)

f (k).

Proof. The last block has size 22k
, and there are (22k−1 −1)

other odd indexed blocks, and in each we miss at most 
f (k). So the lemma follows from the above discussion. �

We are now ready to prove an upper bound on f (k).

Lemma 4.2. For every integer k ≥ 0, f (k) ≤ 22k−k+1 − 2.

Proof. We proceed by induction on k.
The inequality clearly holds for k = 0 since f (0) = 1 ≤

4 − 2 = 220−0+1 − 2
Now suppose the inductive assertion holds for k = s ≥

0, that is f (s) ≤ 22s−s+1 − 2. Using Lemma 4.1 and the in-
duction hypothesis we have

f (s + 1) ≤ 22s + (22s−1 − 1) f (s)

≤ 22s + (22s−1 − 1)(22s−s+1 − 2)

= 22s + 22s−1+2s−s+1 − 22s−1 · 2 − 22s−s+1 + 2

= 22s+1−(s+1)+1 − 22s−s+1 + 2.

Note that 22s−s+1 ≥ 4 for all integers s ≥ 0, since 2s − s ≥ 1
for all integers s ≥ 0. Thus
f (s + 1) ≤ 22s+1−(s+1)+1 − 22s−s+1 + 2

≤ 22s+1−(s+1)+1 − 2.

This concludes the induction proof. �
By Lemma 4.2 it follows that f (k) ≤ 22k−(k−1) for all 

k ≥ 0. This means that the length of our constructed com-
mon subsequence C S(k) of μn(0) and μn(1) where n = 2k

must be at least 2n − f (k) ≥ 22k − 22k−(k−1) = 22k
(1 −

2−(k−1)) = 2n(1 − 1
n/2 ). This proves the following theorem.

Theorem 4.3. For k ≥ 0 and n = 2k:

|C S(k)| ≥ 2n
(

1 − 1

n/2

)
= 22k

(
1 − 1

2k−1

)
.

5. Extension to all n

Up to this point we have only considered the common 
subsequence of μn(0) and μn(1) where n = 2k for some 
k ≥ 0. We wish to extend our construction to work for ar-
bitrary n.

If n ≥ 1 and n �= 2k , then say 2k < n < 2k+1 for some 
integer k ≥ 0. Write

μn(0) = μn−2k
(μ2k

(0))

μn(1) = μn−2k
(μ2k

(1)).

This is saying that μn(x) (x ∈ {0, 1}) can be written as 
2n−2k

blocks, where each block is either μ2k
(0) or μ2k

(1). 
We can concatenate 2n−2k

copies of the subsequence C S(k)

to obtain a common subsequence of μn(0) and μn(1), i.e., 
we use our previous construction for each of the blocks in-
dependently. Using Theorem 4.3 we see that the length of 
this common subsequence is at least 2n−2k

(22k
(1 − 1

2k−1 )) ≥
2n(1 − 1

n/4 ), since n
4 ≤ 2k−1 by choice of k. We thus get a 

similar result as Theorem 4.3 for arbitrary n.

Theorem 5.1. For every n ≥ 1, there exists a common subse-
quence between μn(0) and μn(1) with length at least

2n
(

1 − 1

n/4

)
.

Corollary 5.2. a(n) = 2n(1 − O(n−1)), or more generally 
a(n) = 2n(1 − o(1)).

We can generalize the result further to all prefixes of 
the Thue-Morse sequence. Let tn be the prefix of length 
n of the Thue-Morse sequence, and tn its bitwise comple-
ment. Based on the binary representation of the number 
n, tn and tn can be split up into at most 	log2(n)
 + 1
blocks, each with a size which is a power of 2. We will 
assume the blocks are in order of decreasing size, so that 
a block of size 2k is either μk(0) or μk(1). Then common 
subsequences satisfying the inequality in Theorem 5.1 for 
these blocks can be concatenated to form a common sub-
sequence between tn and tn . To bound the length of this 
common subsequence we use the following lemma:
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Lemma 5.3. 
∑s

k=1
2k

k ≤ 2s+2

s − 1 for all s ≥ 1.

Proof. We prove the inequality by induction on s.

For s = 1 we have 
∑s

k=1
2k

k = 2 ≤ 7 = 2s+2

s − 1, and for 
s = 2 we have 

∑s
k=1

2k

k = 4 ≤ 7 = 2s+2

s − 1.

Now suppose s ≥ 2 and 
∑s

k=1
2k

k ≤ 2s+2

s . This means 
that

s+1∑
k=1

2k

k
=

s∑
k=1

2k

k
+ 2s+1

s + 1
≤ 2s+2

s
− 1 + 2s+1

s + 1

= 2s+1(3s + 2)

s(s + 1)
− 1 ≤ 2s+1(4s)

s(s + 1)
− 1

= 2s+3

(s + 1)
− 1,

which concludes the induction proof. �
Now we continue to analyse the common subsequence 

between tn and tn . This subsequence omits at most 2k+2

k
symbols for the block of size 2k , by Theorem 5.1. There is 
at most one block of size 2k for each 1 ≤ k ≤ 	log2(n)
. 
The potential block of size 1 = 20 will miss at most one 
symbol. Hence at most

1 +
	log2(n)
∑

k=1

2k+2

k
= 1 + 4

	log2(n)
∑
k=1

2k

k

symbols are omitted, which by Lemma 5.3 is at most

1 + 4

(
2	log2(n)
+2

	log2(n)
 − 1

)
= 2	log2(n)
+4

	log2(n)
 − 3

≤ n

	log2(n)
/16
.

This proves the following theorem.

Theorem 5.4. For all n ≥ 1, there exists a common subsequence 
between tn and tn with length at least

n

(
1 − 1

	log2(n)
/16

)
.

Corollary 5.5. b(n) = n(1 − O( 1
log n )), or more generally 

b(n) = n(1 − o(1)).

Remark. A similar idea can be used to obtain same bound 
of n(1 − O( 1

log n )) for any length-n substring of the Thue-
Morse sequence.

6. Strengthening the analysis

The constructed common subsequence C S(k), and the 
generalizations in the previous section, does in fact have a 
slightly better asymptotic behaviour than what was proven 
in Section 4.

The previous length analysis was based on Lemma 4.1

which states that f (k + 1) ≤ 22k +
(

22k−1 − 1
)

f (k). This 
inequality is only tight when all xi �= yi+1 for odd 0 ≤ i <
2m − 1, using the same notation as in Section 3. However, 
we can get a better bound on f (k + 1) in terms of f (k) by 
calculating how many of the blocks xi and yi+1 are equal 
for odd i.

Lemma 6.1. If t = t0t1t2 . . . are the digits of the Thue-Morse 
sequence, then tn = tn+1 if and only if n written in binary ends 
with a block of 1’s with odd length.

Proof. We use Proposition 2.2. tn = tn+1 if and only if n
and n + 1 have the same number of “1” bits modulo 2, 
when written in binary. This condition is equivalent to n
ending with a block of 1’s of odd length when written in 
binary. �
Lemma 6.2. Let eq(n) = |{i : 0 ≤ i < 2n − 1 and ti = ti+1}|. 
Then

eq(n) =
{

1
3 (2n − 1) if n is even
1
3 (2n − 2) if n is odd

.

Proof. For a fixed n, we count how many n-bit numbers 
(except 2n − 1) end with a block of 1’s of odd length. We 
can fix the n-bit number to end with a “0” followed by 
2k − 1 “1”s, for different values of k, and then have 2n−2k

possibilities for the leading digits. This works as we do 
not wish to count 2n − 1, which is the unique n-bit binary 
number with all “1”s.

• If n = 2m is even eq(n) = ∑m
k=1 2n−2k = 1

3 (2n − 1).
• If n = 2m +1 is odd, then eq(n) = ∑m

k=1 2n−2k = 1
3 (2n −

2). �
By Proposition 2.2 we see that

x2i+1 = y2i+2 ⇐⇒ t2i+1 = t2i+2 ⇐⇒
ti = ti+1 ⇐⇒ ti = ti+1

By Lemma 6.2 we thus know that when constructing 
C S(k +1), exactly eq(2k −1) of the odd indexed blocks will 
already be equal. Hence exactly (22k−1 − 1) − eq(2k − 1)

of the (xi, yi+1) pairs will need to be recursively matched 
using C S(k). This leads to the following improved version 
of Lemma 4.1:

Lemma 6.3. For every integer k ≥ 1,

f (k + 1) = 22k +
(

22k−1 − 1 − eq(2k − 1)
)

f (k)

= 22k +
(

22k−1 − 1 − 1

3
(22k−1 − 2)

)
f (k).

Remark. From the above lemma, we can solve for f (k) ex-
actly. The first few values for k ≥ 0 are:

f (k) = 1,2,6,46,4166,91071806,130383480383828886, . . .

Corollary 6.4. Let w = log2(3) ≈ 1.58. For every integer k ≥ 1, 
f (k + 1) ≤ 22k + 22k−w f (k).



J. Blikstad / Information Processing Letters 164 (2020) 106020 5
Proof. If k ≥ 1, we have by Lemma 6.3

f (k + 1) = 22k +
(

22k−1 − 1 − 1

3
(22k−1 − 2)

)
f (k)

≤ 22k + 2

3
22k−1 f (k) = 22k + 22k−w f (k). �

By a similar induction proof as in Lemma 4.2 we get a 
new upper bound on f .

Theorem 6.5. Let w = log2(3) ≈ 1.58. For every integer k ≥ 0, 
f (k) ≤ 22k−wk+3 − 6.

Proof. We proceed by induction on k.
It is easy to verify that the inequality holds for k ≤ 2.
Now suppose the inductive assertion holds for k = s ≥

2, that is f (s) ≤ 22s−ws+3 − 6. Using Corollary 6.4 and the 
induction hypothesis we have

f (s + 1) ≤ 22s + 22s−w f (s)

≤ 22s + 22s−w(22s−ws+3 − 6)

= 22s + 22s−w+2s−ws+3 − 2 · 22s

= 22s+1−w(s+1)+3 − 22s

≤ 22s+1−w(s+1)+3 − 6

since 22s ≥ 6 when s ≥ 2. This concludes the induction 
proof. �

This means that the length of the common subsequence 
C S(k) is

22k − f (k) ≥ 22k − 22k−wk+3 = 22k
(

1 − 1

2wk/8

)

= 22k
(

1 − 1

3k/8

)
.

This asymptotic behaviour propagates through the other 
generalizations, and we obtain slightly better versions of 
Corollaries 5.2 and 5.5.

Theorem 6.6. a(n) = 2n(1 − O( 1
nw )) and b(n) = n

(
1 −

O
(

1
(logn)w

))
where w = log2(3) ≈ 1.58.

7. A better construction

The construction in Section 3 splits the Thue-Morse 
word of length 2n into 2n/2 blocks of size 2n/2. If one 
uses fewer, but larger, blocks instead, one obtains a bet-
ter bound, as in Corollary 7.5 below.

Analogous to f , we define g as follows:

Definition 7.1. For an integer n ≥ 0, let g(n) = 2n − a(n), 
the number of symbols omitted by the longest common 
subsequence of μn(0) and μn(1).

Lemma 7.1. Let w = log2(3) ≈ 1.58. Then g(n) ≤ 2n−α +
2α−w g(n − α) for any integer 1 ≤ α ≤ n.
Proof. Split μn(0) into 2α blocks of size 2n−α and use a 
recursive construction as in Section 3. Analogous to Corol-
lary 6.4, the number of symbols this construction omits is

2n−α + (2α−1 − 1 − eq(α − 1))g(n − α)

≤ 2n−α + 2α−w g(n − α). �
Theorem 7.2. g(n) = O(

√
n · 2n−β

√
n), where β = √

2w =√
2 log2(3) ≈ 1.78.

Proof. We need to show g(n) ≤ c
√

n · 2n−β
√

n , for some 
constant c to be determined. We prove this by induction 
on n. Choosing c sufficiently large, we can ignore small n. 
The idea is to invoke Lemma 7.1 with α ≈ β

√
n (we use 

‘≈’ since the right hand side is not an integer, but in the 
asymptotic case, this distinction does not matter). Together 
with the induction hypothesis we have:

g(n) ≤ 2n−β
√

n + 2β
√

n−w g(n − β
√

n)

≤ 2n−β
√

n + 2β
√

n−w · c
√

n − β
√

n

· 2n−β
√

n−β
√

n−β
√

n

= 2n−β
√

n
(

1 + c
√

n − β
√

n · 2β
√

n−β
√

n−β
√

n−w
)

.

Hence it suffices to show that

1 + c
√

n − β
√

n · 2β
√

n−β
√

n−β
√

n−w ≤ c
√

n. (1)

We simplify this with the following two lemmas.

Lemma 7.3. 
√

n −
√

n − β
√

n ≤ β
2 (1 + β

3
√

n
) for sufficiently 

large n.

Proof. When n ≥ (4
√

3+7)β2

3 :

(√
n − β

2 (1 + β

3
√

n
)
)2 = n − β

√
n − β2

3 + β2

4 (1 + β

3
√

n
)2

≤
(√

n − β
√

n

)2

. �

Lemma 7.4. 2
wβ

3
√

n
√

n − β
√

n ≤ √
n − 1

5 for sufficiently large n.

Proof. It is easy to see limn→∞
(√

n −
√

n − β
√

n
)

= β
2

and limn→∞(2
wβ

3
√

n − 1)
√

n = wb
3 ln 2. Hence

lim
n→∞

(√
n − 2

wβ

3
√

n

√
n − β

√
n

)

= lim
n→∞ 2

wβ

3
√

n

(√
n −

√
n − β

√
n

)
− lim

n→∞(2
wβ

3
√

n − 1)
√

n

= β − wβ
ln 2 ≈ 0.238 >

1
. �
2 3 5
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Using Lemma 7.3 and 7.4, we can prove Equation (1) as 
follows (as long as c ≥ 5 and n is sufficiently large):

1 + c
√

n − β
√

n · 2β
√

n−β
√

n−β
√

n−w

≤ 1 + c
√

n − β
√

n · 2
β2

2 (1+ β

3
√

n
)−w

= 1 + c
√

n − β
√

n · 2
wβ

3
√

n

≤ 1 + c

(√
n − 1

5

)
≤ c

√
n. �

Remark. The upper bound in Theorem 7.2 seems to be es-
sentially tight for the recursive construction strategy. This 
is not always optimal, for instance a(22) = 4116976 (omit-
ting 77328 symbols), while the recursive strategy (picking 
optimal block size) gives a common subsequence of length 
4091900 (omitting 102404 symbols).

Corollary 7.5. a(n) = 2n
(

1 −O(
√

n · 2−β
√

n)
)

and b(n) =
n 

(
1 −O(

√
log n · 2−β

√
log n)

)
where β = √

2 log2(3) ≈ 1.78.
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