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The length a(n) of the longest common subsequence of the nth Thue-Morse word and its
bitwise complement is studied. An open problem suggested by Jean Berstel in 2006 is to
find a formula for a(n). In this paper we prove new lower bounds on a(n) by explicitly
constructing a common subsequence between the Thue-Morse words and their bitwise
complement. We obtain the lower bound a(n) = 2"(1 — 0(1)), saying that when n grows

large, the fraction of omitted symbols in the longest common subsequence of the nth Thue-
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Morse word and its bitwise complement goes to 0. We further generalize to any prefix of
the Thue-Morse sequence, where we prove similar lower bounds.
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1. Introduction

The Thue-Morse sequence is a well known sequence in
mathematics and computer science, with many interesting
properties. The sequence has a lot of self-symmetry in it,
and is overlap-free and thus also cube-free. For a more in
depth introduction to the Thue-Morse sequence, see, for
instance, Allouche and Shallit [1].

In 2006, Jean Berstel [2] formulated the problem of
finding the length a(n) of the longest common subse-
quence between the nth Thue-Morse word and its bitwise
complement. By bitwise complement we mean replacing
0 with 1 and 1 with 0. This paper primarily studies a(n)
(sequence A297618 on the Online Encyclopedia of Integer Se-
quences [3]). Since the Thue-Morse words are prefixes of
length 2¥ for some k, of the Thue-Morse sequence, a natu-
ral generalization is to consider other length prefixes of the
Thue-Morse sequence, or arbitrary factors. This paper also
studies b(n), the longest common subsequence between
the length n prefix of the Thue-Morse sequence and its
bitwise complement (sequence A320847).
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Example 1.1. The first few values of a(n) and b(n) are:

a()=1 b(1)=0
a2) =2 b2)=1
a3)=5 b3) =1
a4) =12 b(4) =2
a5)=26  b(5)=3
a6)=54  b6)=4

To show a lower bound for a(n), it suffices to con-
struct a common subsequence of the Thue-Morse words
and their bitwise complements. This is what is done
in this paper, using the symmetries of the sequence.
In particular, we provide a recursive construction for
such a common subsequence, which has length at least
" (1 —OWmn- 2*¢2<1°gz3>")) —2"(1 = o(1)).

This new lower bound is interesting as it means that
“5’,? goes to 1, that is when n grows large the longest
common subsequence will only omit a vanishingly small
fraction of symbols.
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2. Setup

There are many equivalent definitions of the Thue-
Morse sequence and Thue-Morse words. We will define
them using morphisms.

Definition 2.1. A morphism over an alphabet ¥ is a func-
tion m: X* — ¥* that satisfies m(xy) = m(x)m(y) (con-
catenation) for all x, y € ¥*. Note that this means m is
uniquely defined by its behaviour on X.

Definition 2.2. Let i denote the morphism on {0, 1} de-
fined by ©(0) =01 and (1) =10.

There are some basic properties that follow directly
from the definition.

Proposition 2.1. If n > 0 then

(i) u™(1) = u"(0) where z denotes taking the bitwise com-
plement of z (i.e., swapping 0s and 1s).
(i) p™(0) = pu™ (1" (0)).
(iii) |u"(0)] = 2"
(iv) u™1(0) = u"()u™ (1) and ™1 (1) = " (1)1"(0).

Proof. The symmetry (between 0 and 1) in the definition
of o proves (i). All functions satisfy (ii). Since | (x)| = 2|x|
for any x, (iii) follows from an inductive argument. Finally,
we see that u"t1(0) = (1 (0)) = u"(01) = u"O)u" (1),
and symmetrically u"t1(1) = u"(1)u™(0), which proves
(iv). O

Definition 2.3. We call ©"(0) the nth Thue-Morse word.
We also say the Thue-Morse sequence, denoted by t, is the
unique fixed point of u (extended to the domain of infinite
binary strings) beginning with a 0. See Allouche et al. [1]
for why such a fixed point exists and is unique.

Definition 2.4. Denote by a(n) the length of the longest
common subsequence of ©™(0) and w™(1). Similarly, de-
note by b(n) the length of the longest common subse-
quence of the prefix of length n of the Thue-Morse se-
quence and its bitwise complement.

Example 2.1. The first few Thue-Morse words are

pl© =0, w'(0)=01, u?*0)=0110,

13(0) =01101001.

The Thue-Morse sequence starts as follows t=011010011
0010110...

Remark. The Thue-Morse words are sometimes defined by
the recurrence relation in Proposition 2.1 part (iv), and
then the Thue-Morse sequence as the infinite application
of this rule. We see that nth Thue-Morse word is the prefix
of length 2" of the Thue-Morse sequence. This also means
that b2") = a(n).

We also need the following proposition, for which the
proof can be found in [1].

Proposition 2.2. If t = totqt, ... are the symbols of the Thue-
Morse sequence we have ty, =ty and tyn 1 =ty for alln > 0.
Moreover, t, equals the parity of the number of “1” bits in the
binary representation of n.

Corollary 2.3. The (2i)'th digit of " (0) is the same as the (2i +
1)'th digit of " (1) (where we use zero-indexing).

Proof. The (2i)'th digit of u"(0) is ty; =t;, and the (2i +
1)’th digit of u™(1) is tzi11 = t;, by the above proposi-
tion. O

3. Construction of a common subsequence

We are now ready for a construction of a common
subsequence between p"(0) and p"(1) when n =2 is a
power of 2. We call this common subsequence CS(k), and
define it recursively.

e When k=0,n=2%=1, and we define CS(0) =0, a
subsequence of ©(0) =01 and w(1) =10.

e For k> 1, CS(k) will be defined recursively as follows.
Let n = 2% and m = 2¥~1. We are constructing CS(k)
as a common subsequence of ©™(0) and u"(1). Write
u™(0) and p™(1) as concatenations of 2™ blocks of
size 2™ (which is possible since 2" = (2™)2), say

1'(0) = xoX1 -+ - Xom_1

w'(1) = yoy1---yam-1.

Since u2(0) = u? ' (1 '(0)), each x; is one of

M©™(0) or u™(1). Similarly each y; is one of u™(0)

or u™(1). It is also worth noting that x; = u™(d) if

the i'th digit of w™(0) is d, and similarly y; = u™(d)

if the i'th digit of u™(1) is d.

Now we compare x; to y;j1q for 0 <i <2™ — 1, and

find a common subsequence cs; between them.

- When i is even, x; = y;4+1 by Corollary 2.3, so we
take cs;j = x;.

- When i is odd, either x; and y;;1 are the same, or
one is u™(0) and the other is u™(1). If they are the
same we take cs; = x;, otherwise cs; = CS(k — 1).

We then let CS(k) be the concatenation of the cs;’s.

Example 3.1. The common subsequence CS(0), CS(1), and
CS(2) are underlined below:

CS(0): wu'©0) =01

p'(1) =10
CS(1): wn?(0)=0110
©*(1)=1001

CS(2): w*©0)=011010011001 0110
w*(1) = 10010110 0110 1001
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Remark. CS(k) is not necessarily the longest common sub-
sequence. For example

1*(0)=01101001 1001 0110

1
w*(1) = 10010110 0110

1001

is the longest common subsequence between w*(0) and
1*(1), which has length 12, while |CS(2)| = 10.

4. Analysis of length

In this section we analyse the length of the common
subsequence CS(k) constructed in the previous section.

Definition 4.1. For an integer k > 0, let f(k) = |2 (0)| —
[CS(k)| = p L |CS(k)| be the number of symbols omitted
by the common subsequence CS(k).

Remark. f(0) =1, as |CS(0)| =1.

When constructing CS(k + 1), all the even indexed

blocks (of size 22) in u?*" (0) are chosen to be in CS(k +
1). So only the odd indexed blocks can contribute to
f(k + 1). The last block will be completely omitted, and
for the other blocks in odd positions we either miss f (k)
if matching w2 (0) with 2“(1) recursively, or miss noth-
ing if choosing to include the complete block. This leads us
to the following lemma.

Lemma 4.1. For every integer k > 0

flk+1) <22 + (22“1 - 1) Fk).

Proof. The last block has size 22, and there are (22~1—1)
other odd indexed blocks, and in each we miss at most
f (k). So the lemma follows from the above discussion. O

We are now ready to prove an upper bound on f (k).
Lemma 4.2. For every integer k > 0, f (k) < 22~k+1 _2,

Proof. We proceed by induction on k.

The inequality clearly holds for k =0 since f(0) =1 <
42— 22070+1 )

Now suppose the inductive assertion holds for k =s >
0, that is f(s) <22 ~S+! —2. Using Lemma 4.1 and the in-
duction hypothesis we have

fe+1 <22 + ¥ T-1Df(s)
< 22 4 (225—1 _ 1)(225—s+1 -2
_ 225 + 22571+2575+1 _ 22571 2 22575+1 +2
= 22D+ 5241 o

Note that 22°—5+1 > 4 for all integers s > 0, since 25 —s > 1
for all integers s > 0. Thus

fs+1) < 92T —(s+D+1 _ 52 —s+1 42
< 225+17(s+l)+1 _2

This concludes the induction proof. O

By Lemma 4.2 it follows that f(k) < 2%~&=1 for all
k > 0. This means that the length of our constructed com-
mon subsequence CS(k) of "(0) and u™(1) where n = 2k
must be at least 2" — f(k) > 22° — 22~k=1 — 22(1 _
2-k=Dy=on — ﬁ). This proves the following theorem.

Theorem 4.3. For k > 0 and n = 2k:

n 1 _ o2k _L
ICS(k)| > 2 (1—m>_2 (1 zk_1>.

5. Extension to all n

Up to this point we have only considered the common
subsequence of ©"(0) and p"(1) where n = 2* for some
k > 0. We wish to extend our construction to work for ar-
bitrary n.

If n>1 and n # 2¥, then say 2¥ <n < 21 for some
integer k > 0. Write

_ 9k k
1) = u"* (u* (0))

_9k k
ph () = " (p? (1)
This is saying that u"(x) (x € {0,1}) can be written as
22" blocks, where each block is either 2 (0) or u2“(1).
We can concatenate 2"~2" copies of the subsequence CS(k)
to obtain a common subsequence of ©™(0) and u™(1), i.e.,
we use our previous construction for each of the blocks in-
dependently. Using Theorem 4.3 we see that the length of
this common subsequence is at least 22 (22°(1 — 2,(1—_1)) >
2"(1 — nlﬁ), since I < 2¥=1 by choice of k. We thus get a
similar result as Theorem 4.3 for arbitrary n.

Theorem 5.1. For every n > 1, there exists a common subse-
quence between " (0) and u" (1) with length at least

1
21— —).
(17)

Corollary 5.2.a(n) = 2"(1 — O™ ")), or more generally
a(m) =2"(1-o(1)).

We can generalize the result further to all prefixes of
the Thue-Morse sequence. Let t, be the prefix of length
n of the Thue-Morse sequence, and t;, its bitwise comple-
ment. Based on the binary representation of the number
n, t, and t, can be split up into at most [log,(n)] + 1
blocks, each with a size which is a power of 2. We will
assume the blocks are in order of decreasing size, so that
a block of size 2¥ is either u¥(0) or ©*(1). Then common
subsequences satisfying the inequality in Theorem 5.1 for
these blocks can be concatenated to form a common sub-
sequence between t, and t,. To bound the length of this
common subsequence we use the following lemma:
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25+2
S

Lemma5.3.Y;_, 2,—: < —1foralls>1.

Proof. We prove the inequality by induction on s.

For s =1 we have Y ;_; % =2<7= 25:2 —1, and for
s=2 we have Y }_; 2k—k:4§7:ﬂ—1.
Now suppose s >2 and ) ;_; 2% < 25:2. This means
that
s+1 Zk S 2/( 25+1 23+2 25+1
- = -+ =< -1+
P k P k s+1 S s+1
25135 42) e 2t 4s)
s(s+1) T s(s+1)
2$+3
T+

which concludes the induction proof. O

Now we continue to analyse the common subsequence
between t, and t,. This subsequence omits at most szﬂ
symbols for the block of size 2, by Theorem 5.1. There is
at most one block of size 2% for each 1 <k < [log,(n)].
The potential block of size 1=2° will miss at most one

symbol. Hence at most

Lloga () k42 Llogy (m)]

1+ > - =1+4 3 %
k=1

k=1

symbols are omitted, which by Lemma 5.3 is at most
2 Llogy () |+4
Llogy (m) ]

2
T Tommy ')
n
S —
= Tlog, (/16

This proves the following theorem.

Theorem 5.4. For all n > 1, there exists a common subsequence
between t,, and t,, with length at least

n (1 - ;) |
[log,(m)]/16

Corollary 5.5.b(n) = n(1 — O(@)), or more generally
b(n) =n(1 —o(1)).

Remark. A similar idea can be used to obtain same bound
of n(1 — O(@)) for any length-n substring of the Thue-
Morse sequence.

6. Strengthening the analysis

The constructed common subsequence CS(k), and the
generalizations in the previous section, does in fact have a
slightly better asymptotic behaviour than what was proven
in Section 4.

The previous length analysis was based on Lemma 4.1

which states that f(k + 1) < 2% + (22k‘1 - 1) f (k). This

inequality is only tight when all x; # y;;1 for odd 0 <i <
2™ — 1, using the same notation as in Section 3. However,
we can get a better bound on f(k+ 1) in terms of f (k) by
calculating how many of the blocks x; and y;;q are equal
for odd i.

Lemma 6.1. If t = totqt; ... are the digits of the Thue-Morse
sequence, then t, = tp41 if and only if n written in binary ends
with a block of 1's with odd length.

Proof. We use Proposition 2.2. t, = t,41 if and only if n
and n + 1 have the same number of “1” bits modulo 2,
when written in binary. This condition is equivalent to n
ending with a block of 1's of odd length when written in
binary. O

Lemma 6.2. Let eq(n) = |{i : 0 <i < 2" — 1 and t; = ti;1}|.
Then

19n ifni

22" —1) ifniseven
eq(n) =13~ o :
3(2"=2) ifnisodd

Proof. For a fixed n, we count how many n-bit numbers
(except 2" — 1) end with a block of 1's of odd length. We
can fix the n-bit number to end with a “0” followed by
2k — 1 “17s, for different values of k, and then have 272
possibilities for the leading digits. This works as we do
not wish to count 2" — 1, which is the unique n-bit binary
number with all “1”s.

o Ifn=2mis even eq(n) = Y j_ 2"k = 12" - 1).
o Ifn=2m+1is odd, then eq(n) = Y ;2" % = 12" -
2). O

By Proposition 2.2 we see that

X2i+1 = Y2i+2 <= hiit1 =hit2
L=t < ti=tin

By Lemma 6.2 we thus know that when constructing
CS(k+1), exactly eq(2X —1) of the odd indexed blocks will
already be equal. Hence exactly (22~1 — 1) — eq(2k — 1)
of the (x;, yi+1) pairs will need to be recursively matched
using CS(k). This leads to the following improved version
of Lemma 4.1:

Lemma 6.3. For every integer k > 1,

Flk+1)=2%+ (22'(‘l —1—eq(2" - 1)) f

= 22,( + (22k_1 -1 %( > B 2)> f(k)

Remark. From the above lemma, we can solve for f(k) ex-
actly. The first few values for k > 0 are:

fk)y=1,2,6,46,4166,91071806, 130383480383828886, . ..

Corollary 6.4. Let w = log, (3) &~ 1.58. For every integer k > 1,
Flk+1) <22 427 (k).
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Proof. If k > 1, we have by Lemma 6.3
ok ok_q 1 k4
fk+1)=2 +<2 —1—§(2 —2)>f(k)
K 2 K
<2% 4 §22k—1f(k) =22 122 wriy. o

By a similar induction proof as in Lemma 4.2 we get a
new upper bound on f.

Theorem 6.5. Let w = log, (3) ~ 1.58. For every integer k > 0,
fk) < 22"7wk+3 —6.

Proof. We proceed by induction on k.
It is easy to verify that the inequality holds for k < 2.
Now suppose the inductive assertion holds for k =s >
2, that is f(s) <22 ~"s+3 _ 6. Using Corollary 6.4 and the
induction hypothesis we have
fls+1) <22 42277 f(s)
< 223 =+ 225—W(225—WS+3 _ 6)
— 225 + 2257W+237WS+3 —2. 225
— 2P —w(s+D+3 _ 528
< 223+1—w(s+1)+3 —_6

since 22’ > 6 when s > 2. This concludes the induction
proof. O

This means that the length of the common subsequence
CS(k) is

22k _ f(k) > 22k _ 22’<—Wk+3 — 22k (-l 1 )

_Zwk/g
(1 L),
3k/8

This asymptotic behaviour propagates through the other
generalizations, and we obtain slightly better versions of
Corollaries 5.2 and 5.5.

Theorem 6.6.a(1) = 2'(1 — O(zh) and b =n(1 -
O <W)) where w =log, (3) ~ 1.58.

7. A better construction

The construction in Section 3 splits the Thue-Morse
word of length 2" into 2"/2 blocks of size 2%/2. If one
uses fewer, but larger, blocks instead, one obtains a bet-
ter bound, as in Corollary 7.5 below.

Analogous to f, we define g as follows:

Definition 7.1. For an integer n > 0, let g(n) = 2" — a(n),
the number of symbols omitted by the longest common
subsequence of ©™(0) and u"(1).

Lemma 7.1.Let w = log,(3) ~ 1.58. Then g(n) < 2"% +
2% Wg(n — ) for any integer 1 <« <n.

Proof. Split 1™(0) into 2% blocks of size 2" and use a
recursive construction as in Section 3. Analogous to Corol-
lary 6.4, the number of symbols this construction omits is

29 L 2% 1 —eq(a — 1)g(n — a)
<2442 YWemn—a). O

Theorem 7.2. g(n) = O(J/7 - 2"AY1), where B = /2w =

V2log,(3) ~1.78.

Proof. We need to show g(n) <c/n - 21-AVi for some
constant ¢ to be determined. We prove this by induction
on n. Choosing c sufficiently large, we can ignore small n.
The idea is to invoke Lemma 7.1 with « ~ B./n (we use
‘a2’ since the right hand side is not an integer, but in the
asymptotic case, this distinction does not matter). Together
with the induction hypothesis we have:

g(n) < 2"V L 2PV gy _ g /)

< n=BV | pBVI-w o fn g/n

. gn=BvA—pvn—p/n
= 2n—ﬁﬁ (‘1 +cy/n— /3\/5 . 2,3\/7_1_!9\/ ”—ﬂx/ﬁ—W> .

Hence it suffices to show that

1+4cy/n— B/n-2BVi—BVn—pvn—w o /y (1)

We simplify this with the following two lemmas.

Lemma 7.3. /n — Vn—pgJ/n < 81 + 3%) for sufficiently

large n.
Proof. When n > M;

2 .
(Vi-ga+55) =n—pvi- 5+ a+ a7

5( n—ﬁﬁ)z. ]

wp
Lemma 7.4.23V" \/n — B/n < /n — %for sufficiently large n.

Proof. It is easy to see lim;_ o (\/——\/n—ﬂ\/ﬁ) = g

wh
and limy_ 00 (23v" — 1)/n = wa In2. Hence
_ wp
nllm (Jﬁ — 23, /n— ﬁﬁ)
—00

wB wh
= li v — — — i vn—
Jim 255 (Vi o= ) = fim @5 1)

1
_B WP a~o0238s L o
2 3 5
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Using Lemma 7.3 and 7.4, we can prove Equation (1) as
follows (as long as ¢ > 5 and n is sufficiently large):

14+c¢yn— ﬂﬁ . zﬂx/ﬁ—ﬁv n—pJ/n-w

2

N‘tm
~

B_y_
<1+cyn—pyn-27 @Y

B

=1+c¢cyn—pB+/n-23
Jn—
<cvn. O

i
S

<1l+4c

N
vl =
——

Remark. The upper bound in Theorem 7.2 seems to be es-
sentially tight for the recursive construction strategy. This
is not always optimal, for instance a(22) =4116976 (omit-
ting 77328 symbols), while the recursive strategy (picking
optimal block size) gives a common subsequence of length
4091900 (omitting 102404 symbols).

Corollary 7.5.a(n) = 2" (1 - O(ﬁ-Z‘ﬁﬁ)> and b(n) =
n (1 — O(/logn - 2*ﬁvl°g")) where § = \/210g,(3) ~ 1.78.
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