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a b s t r a c t

Given a string W , the longest previous factor (LPF) problem is to determine the maximum
length of a previously occurring factor for each suffix occurring in W . The LPF problem is
defined for traditional strings exclusively from the constant alphabet Σ . A parameterized
string (p-string) is a string composed of symbols from a constant alphabet Σ and a
parameter alphabet Π . We formulate the LPF problem in terms of p-strings by defining
the parameterized longest previous factor (pLPF) problem. Subsequently, we present an
expected linear time solution to construct the parameterized longest previous factor (pLPF )
array. Given our pLPF solution, we show how to construct the pLCP (parameterized longest
common prefix) array with the same general algorithm. We exploit the properties of the
pLPF data structure to also construct the standard LPF (longest previous factor) and LCP
(longest common prefix) arrays all in linear time. Further, we provide insight into the
practicality of our construction algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given an n-length traditional stringW from the alphabetΣ , the longest previous factor (LPF) problem is to determine the
maximum length of a previously occurring factor for each suffix occurring inW . More formally, for any suffix u beginning at
index i in the stringW , the LPF problem is to identify the length of the longest factor between u and another suffix v at some
position h before i in W , that is, 1 ≤ h < i. The LPF problem, introduced by Crochemore and Ilie [2], yields a data structure
convenient for fundamental applications such as string compression [3] and detecting runs [4] within a string. In order to
compute the LPF array, it is shown in [2] that the suffix array SA is useful to quickly identify themost lexicographically similar
suffixes that constitute as previous factors for the chosen suffix in question. The use of SA expedites the work required to
solve the LPF problem and likewise, is the cornerstone to solutions for many problems defined for traditional strings.

A generalization of traditional strings over an alphabet Σ is the parameterized string (p-string), introduced by Baker [5].
A p-string is a production of symbols from the alphabets Σ and Π , which represent the constant symbols and parameter
symbols, respectively. The parameterized pattern matching (p-match) problem is to identify an equivalence between a
pair of p-strings S and T when (1) the individual constant symbols match and (2) there exists a bijection between the
parameter symbols of S and T . For example, the following p-strings that represent program statements z = y ∗ f / + +y;
and a = b ∗ f / + +b; over the alphabet sets Σ = {∗, /,+, =, ; } and Π = {a, b, f , y, z} satisfy both conditions and
thus, the p-strings p-match. The motivation for addressing a problem in terms of p-strings is the range of problems that
a single solution can address, including (1) exact pattern matching when |Π | = 0, (2) mapped matching (m-matching)
when |Σ | = 0 [6], and clearly, (3) p-matching when |Σ | > 0 ∧ |Π | > 0. Prominent applications concerned with the
p-match problem include detecting plagiarism in academia and industry, reporting similarities in biological sequences [7],
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discovering cloned code segments in a program [8], and even answering critical legal questions regarding the unauthorized
use of intellectual property [9].

In this work, we introduce the parameterized longest previous factor (pLPF) for p-strings analogous to the LPF problem
for traditional strings, which can similarly be used to study compression and duplicationwithin p-strings. Given an n-length
p-string T , the pLPF problem is to determine the length of the longest factor, or more specifically, the length of the longest
parameterized suffix (p-suffix) v at some position h that matches with the p-suffix starting at i in T with 1 ≤ h < i. Our
approach uses a parameterized suffix array (pSA) [10–13] for p-strings analogous to the traditional suffix array [14]. The
major difficulty of the pLPF problem is that unlike traditional suffixes of a string, the p-suffixes are dynamic, varying with
the starting position of the p-suffix. Thus, traditional LPF solutions cannot be directly applied to the pLPF problem.

MainContributions:Wedefine the parameterized longest previous factor (pLPF) problem to observe the longest previous
factor (LPF) problem in terms of p-strings. Then, we present an expected linear time algorithm for constructing the pLPF
(parameterized longest previous factor) data structure. Traditionally, the LPF problem is solved by using the longest common
prefix (LCP) array. This was one approach used in [2]. In this work, we show how to go in the reverse direction: that is, given
the pLPF solution, we now construct the pLCP (parameterized longest common prefix) array. Further, we identify how to
exploit our algorithm for the pLPF problem to construct the LPF (longest previous factor) and LCP (longest common prefix)
arrays. Our main results are formalized in the following:

Theorem 16. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the compute_pLPF algorithm constructs the pLPF array in O(max{n,mγ }) time, where m is the length of the longest
p-match between a p-suffix at i and two defined p-suffixes in T and γ is dependent on the lexicographical orderings of specified
p-suffixes in T .

Corollary 17. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the pLPF array can be constructed in O(n) expected time.

Theorem 18. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the compute_pLPF algorithm can be used to construct the pLCP array in O(max{n,mφ}) time, where m is the length of
the longest p-match between a p-suffix at i and two defined p-suffixes in T and φ is dependent on the lexicographical orderings of
specified p-suffixes in T .

Corollary 19. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the pLCP array can be constructed in O(n) expected time.

Our algorithm compute_pLPF is the first solution that constructs the pLPF data structure.We further develop the algorithm
compute_pLCP to construct the pLCP array, improving the original O(n2) construction time given in [10].

2. Background/related work

Baker [8] identifies three types of pattern matching: (1) exact matching, (2) parameterized matching (p-match), and (3)
matching with modifications. The p-match generalizes exact matching with the parameterized string (p-string) composed
of symbols from a constant symbol alphabet Σ and a parameter alphabet Π . A p-match exists between a pair of p-strings
S and T of length n when (1) the constant symbols σ ∈ Σ match and (2) there exists a bijection of parameter symbols
π ∈ Π between the pair of p-strings. The first p-match breakthroughs, namely, the prev encoding and the parameterized
suffix tree (p-suffix tree) that demands the worst case construction time of O(n(|Π |+ log(|Π |+ |Σ |))), were introduced by
Baker [5]. Additional improvements to the p-suffix tree were given in [15–17]. Like the traditional suffix tree [18–20], the
p-suffix tree [5] implementation suffers from a large memory footprint. Other solutions that address the p-match problem
without the space limitations of the p-suffix tree include the parameterized-KMP [6] and parameterized-BM [21], variants of
traditional patternmatching approaches. Idury and Schäffer [22] studied themultiple p-match problemusing the traditional
Aho–Corasick [23] automata. The parameterized suffix array (p-suffix array) and the parameterized longest common prefix
(pLCP) array combination is analogous to the suffix array and LCP array for traditional strings [14,18–20], which is both time
and space efficient for pattern matching. Direct p-suffix array and pLCP construction was first introduced by Deguchi et al.
[11] for binary strings with |Π | = 2, which required O(n) work. Deguchi et al. [10] later proposed the first approach to
p-suffix sorting and pLCP construction with an arbitrary alphabet size requiring O(n2) time in the worst case. We introduce
new algorithms in [12,13] to p-suffix sort in linear time on average using coding methods from information theory.

In a novel application of the suffix array and the corresponding LCP array, Crochemore and Ilie [2] introduced the
longest previous factor (LPF) problem for traditional strings. Table 1 shows an example LPF calculation for a short sequence
W = AAABABAB$. For any suffix u beginning at index i in stringW , the LPF problem is to identify the exact matching longest
factor between u and another suffix v starting prior to index i in W . We note that this definition is similar to (though not
the same as) the Prior array used in [18]. Crochemore and Ilie [2] exploited the notion that the nearby elements within a
suffix array are closely related en route to proposing a linear time solution to the LPF problem. They also proposed another
linear time algorithm to compute the LPF array by using the LCP structure. The significance of an efficient solution to the LPF
is that the resulting data structure simplifies computations in various string analysis procedures. Typical examples include
computing the Lempel–Ziv factorization [3,24], which is fundamental in string compression algorithms such as the UNIX
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Table 1
LPF calculation for stringW = AAABABAB$.
i SA[i] W [SA[i] . . . n] LCP[i] W [i . . . n] LPF [i]

1 9 $ 0 AAABABAB$ 0
2 1 AAABABAB$ 0 AABABAB$ 2
3 2 AABABAB$ 2 ABABAB$ 1
4 7 AB$ 1 BABAB$ 0
5 5 ABAB$ 2 ABAB$ 4
6 3 ABABAB$ 4 BAB$ 3
7 8 B$ 0 AB$ 2
8 6 BAB$ 1 B$ 1
9 4 BABAB$ 3 $ 0

gzip utility [18,19] and in algorithms for detecting repeats in a string [4]. Other variants of the LPF problem were studied in
[25–27]. Alternative solutions to the LPF problem are proposed in [28]. Our motivation to study the LPF in terms of p-strings
is the power of parameterization with relevance to various important applications.

3. Preliminaries

A string on an alphabet Σ is a production T = T [1]T [2] . . . T [n] from Σn with n = |T | the length of T . We will use the
following string notations: T [i] refers to the ith symbol of string T , T [i . . . j] refers to the substring T [i]T [i + 1] . . . T [j], and
T [i . . . n] refers to the ith suffix of T : T [i]T [i + 1] . . . T [n]. Parameterized pattern matching requires the finite alphabets Σ

and Π . Alphabet Σ denotes the set of constant symbols while Π represents the set of parameter symbols. Alphabets are
defined such that Σ ∩ Π = ∅. Furthermore, we append the terminal symbol $ /∈ Σ ∪ Π to the end of all strings to clearly
distinguish between suffixes. For practical purposes, we can assume that |Σ | + |Π | ≤ n since otherwise a single mapping
can be used to enforce the condition.
Definition 1. Parameterized string (p-string): A p-string is a production T of length n from (Σ ∪ Π)∗$.
Consider the alphabet arrangements Σ = {A, B} and Π = {w, x, y, z}. Example p-strings include S = AxByABxy$, T =

AwBzABwz$, and U = AyByAByy$.
Definition 2. ([5,11]) Parameterized matching (p-match): A pair of p-strings S and T are p-matches with n = |S| if and
only if |S| = |T | and each 1 ≤ i ≤ n corresponds to one of the following:
1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]
2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */

(a) S[i] ≠ S[j], T [i] ≠ T [j] for any 1 ≤ j < i
(b) S[i] = S[i − q] iff T [i] = T [i − q] for any 1 ≤ q < i.

In our example, we have a p-match between the p-strings S and T since every constant/terminal symbol matches and there
exists a bijection of parameter symbols between S and T . U does not satisfy the parameter bijection to p-match with S or T .
The process of p-matching leads to defining the prev encoding.
Definition 3. ([5,11]) Previous (prev) encoding: Given Z as the set of non-negative integers, the function prev: (Σ ∪

Π)∗$ → (Σ ∪ Z)∗$ accepts a p-string T of length n and produces a string Q of length n that (1) encodes constant/terminal
symbols with the same symbol and (2) encodes parameters to point to previous like-parameters. More formally, Q is
constructed of individual Q [i] with 1 ≤ i ≤ nwhere:

Q [i] =

T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] ≠ T [j] for any 1 ≤ j < i
i − k, if T [i] ∈ Π ∧ k = max{j | T [i] = T [j], 1 ≤ j < i}.

For a p-string T of length n, the above O(n) space prev encoding requires O(n log(min{n, |Π |})) time for construction,
which follows from the discussions of Baker [5,21] and Amir et al. [6] on the dependency of alphabet Π in p-match
applications. Given an indexed alphabet and an auxiliary O(|Π |) mapping structure, we can construct prev in O(n)
time. Using Definition 3, our working examples evaluate to prev(S) = A0B0AB54$, prev(T ) = A0B0AB54$, prev(U) =

A0B2AB31$. The relationship between p-strings and the lexicographical ordering of the prev encoding is fundamental to
the p-match problem.
Definition 4. prev Lexicographical ordering: Given the p-strings S and T and two symbols s and t from the encodings
prev(S) and prev(T ) respectively, the relationships =, ≠, <, and > refer to lexicographical ordering between s and t . We
define the ordering of symbols from a prev encoding of the production (Σ ∪ Z)∗$ to be $ < ζ ∈ Z < σ ∈ Σ , where
each ζ and σ is lexicographically sorted in their respective alphabets. The relationships =, ≠, ≺, and ≻ refer to the
lexicographical ordering between strings. In the case of prev(S) and prev(T ), prev(S) ≺ prev(T ) when prev(S)[1] =

prev(T )[1], prev(S)[2] = prev(T )[2], . . . , prev(S)[j−1] = prev(T )[j−1], prev(S)[j] < prev(T )[j] for some j, j ≥ 1.
Similarly, we can define =k, ≠k, ≺k, ≼k, ≻k, and ≽k to refer to the lexicographical relationships between a pair of p-strings
considering only the first k ≥ 0 symbols.
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It is shown in [12,13] how to map a symbol in prev to an integer based on the ordering of Definition 4 and subsequently,
call the function in(x, X) to answer alphabet membership questions of the form x ∈ X in constant time. The following
proposition essential to the p-matching problem is directly related to the established symbol ordering.

Proposition 5. ([5]) Two p-strings S and T p-match when prev(S) = prev(T ). Also, S ≺ T when prev(S) ≺ prev(T ) and
S ≻ T when prev(S) ≻ prev(T ).

The example prev encodings show a p-match between S and T since prev(S) = A0B0AB54$ and prev(T ) = A0B0AB54$.
Also, U ≻ S and U ≻ T since prev(U) = A0B2AB31$ ≻ prev(S) = prev(T ) = A0B0AB54$. We use the ordering
established in Definition 4 to define the parameterized suffix array and the parameterized longest common prefix array.

Definition 6. Parameterized suffix array (pSA): The pSA for a p-string T of length n maintains a lexicographical ordering
of the indices i representing individual p-suffixes prev(T [i . . . n]) with 1 ≤ i ≤ n, such that prev(T [pSA[q] . . . n]) ≺

prev(T [pSA[q + 1] . . . n])∀q, 1 ≤ q < n.

The pSA is analogous to the suffix array SA defined for traditional strings. Let the rank array R rank each p-suffix index in
the p-string T to its position in the corresponding pSA or SA. The following pLCP array is used with the pSA for efficient
p-matching [10,11,13].

Definition 7. Parameterized longest common prefix (pLCP) array: The pLCP array for a p-string T of length n maintains
the length of the longest common prefix between neighboring p-suffixes. We define plcp(α, β) = max{k | prev(α) =k
prev(β)}. Then, pLCP[1] = 0 and pLCP[i] = plcp(T [pSA[i] . . . n], T [pSA[i − 1] . . . n]), 2 ≤ i ≤ n.

For the working example T = AwBzABwz$ with prev(T ) = A0B0AB54$, we have pSA = {9, 8, 7, 4, 2, 1, 5, 6, 3} and
pLCP = {0, 0, 1, 1, 1, 0, 1, 0, 2}. The encoding prev is supplemented by the encoding forw.

Definition 8. ([12,13]) Forward (forw) encoding: Let the function rev(T ) reverse the p-string T and let repl(T , x, y)
replace all occurrences in T of the symbol xwith y. We define the function forw for the p-string T of length n as forw(T ) =

rev(repl(prev(rev(T )), 0, n)).

For a p-string T of length n, the encodingforw (1) encodes constant/terminal symbolswith the same symbol and (2) encodes
each parameter pwith the forward distance to the next occurrence of p or an unreachable forward distance n. Our definition
of forw generates outputmirroring the fw encoding used byDeguchi et al. [10,11]. The forw encodings in our examplewith
n = 9 are forw(S) = A5B4AB99$, forw(T ) = A5B4AB99$, forw(U) = A2B3AB19$.

Definition 9. ([2]) Longest previous factor (LPF ): For an n-length traditional string W , the LPF is defined for each index
1 ≤ i ≤ n such that LPF [i] = max({0} ∪ {k | W [i . . . n] =k W [h . . . n], 1 ≤ h < i}).

The traditional stringW = AAABABAB$ yields LPF = {0, 2, 1, 0, 4, 3, 2, 1, 0}.

4. Parameterized LPF

We define the parameterized longest previous factor (pLPF) problem as follows to observe the traditional LPF problem
in terms of p-strings.

Definition 10. Parameterized longest previous factor (pLPF ): For a p-string T of length n, the pLPF array is defined for each
index 1 ≤ i ≤ n to maintain the length of the longest factor between a p-suffix and the longest factor previously occurring
in T. More formally, pLPF [i] = max({0} ∪ {k | prev(T [i . . . n]) =k prev(T [h . . . n]), 1 ≤ h < i}).

The pLPF problem requires that we deal with p-suffixes, which are suffixes encodedwith prev. This task ismore demanding
than the LPF for traditional strings because Lemma 11 indicates that we cannot guarantee the individual suffixes of a single
prev encoding to be p-suffixes. Thus, the changing nature of the prev encoding poses a major challenge to efficient and
correct construction of the pLPF array using current algorithms that construct the LPF array for traditional strings.

Lemma 11. Given a p-string T of length n, the suffixes of prev(T ) are not necessarily the p-suffixes of T. More formally, if π ∈ Π

occurs more than once in T , then ∃i, s.t. prev(T [i . . . n]) ≠ prev(T )[i . . . n], 1 ≤ i ≤ n.

Proof. Suppose the only parameter symbol to occur in the p-string T is π ∈ Π , which exists only at positions α and β
with α < β . Suppose that indeed prev(T [α . . . n]) = prev(T )[α . . . n] and prev(T [β . . . n]) = prev(T )[β . . . n]. By
Definition 3, the first occurrence of π at position α will be prev encoded by 0 and the π at position β will be prev encoded
by β − α. So, in the case of suffix α, prev(T [α . . . n]) = prev(T )[α . . . n]. At suffix β , the encoding of π at position β in T
will change to 0 in prev(T [β . . . n]) by Definition 3 whereas prev(T )[β . . . n] will retain the old encoding of β − α since π
still occurs in prev(T ) at position α. The π at position β forces prev(T [β . . . n]) ≠ prev(T )[β . . . n], a contradiction. �
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Table 2
pLPF calculation for p-string T = AAAwBxyyAAAzwwB$.
i pSA[i] pLCP[i] prev(T [pSA[i] . . . n]) before<[pSA[i]] before>[pSA[i]] pLPF [i]

1 16 0 $ −1 6 0
2 6 0 001AAA001B$ −1 4 2
3 12 3 001B$ 6 7 1
4 7 1 01AAA001B$ 6 4 0
5 13 2 01B$ 7 8 0
6 8 1 0AAA001B$ 7 4 1
7 14 1 0B$ 8 4 1
8 4 2 0B001AAA091B$ −1 3 1
9 11 0 A001B$ 4 3 4

10 3 2 A0B001AAA091B$ −1 2 3
11 10 1 AA001B$ 3 2 2
12 2 3 AA0B001AAA091B$ −1 1 3
13 9 2 AAA001B$ 2 1 2
14 1 4 AAA0B001AAA091B$ −1 −1 2
15 15 0 B$ 1 5 1
16 5 1 B001AAA001B$ 1 −1 0

Algorithm 1. pLPF computation.

1 int [ ] compute_pLPF ( int before< [ ] , int before> [ ] , int R [ ] ) {
2 int pLPF [n ] , pLPF< [n ] = { 0 , . . . , 0 } , pLPF> [n ] = { 0 , . . . , 0 } , i
3 for i = 1 to n {
4 ( j , k ) = Ω ( i , pLPF< , pLPF> , before< , before> ,R)
5 pLPF< [ i ] = Λ ( i , before< [ i ] , j )
6 i f ( before> ≠ null )
7 pLPF> [ i ] = Λ ( i , before> [ i ] , k )
8 pLPF [ i ] = max{pLPF< [ i ] , pLPF> [ i ] }
9 } return pLPF

10 }

Consider the p-string T = AAAwBxyyAAAzwwB$ using the previously defined alphabets. Table 2 shows the pLPF compu-
tation for the defined p-string T . We note the intricacies of Lemma 11 since simply using the traditional LPF algorithm (1)
with T yields LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0}, (2) with prev(T ) produces LPF = {0, 2, 1, 0, 0, 1, 1, 0, 4, 3,
2, 1, 0, 1, 1, 0}, and (3) with forw(T ) generates the array LPF = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 3, 2, 1, 1, 0}, neither of which
is the correct pLPF array.

Crochemore and Ilie [2] efficiently solve the LPF problem for a traditional string W by exploiting the properties of
the suffix array SA. They construct the arrays prev<[1 . . . n] and prev>[1 . . . n], which for each i in W maintain the suffix
h < i positioned respectively before and after suffix i in SA; when no such suffix exists, the element is denoted by −1.
The conceptual idea to compute the prev< and prev> arrays in linear time via deletions in a doubly linked list of the SA
was suggested in [2]. The algorithm is given in [13]. Furthermore, we will refer to prev< and prev> as before< and before>

respectively, in order to avoid confusion with the prev encoding for p-strings. Then, LPF [i] is the maximum q between
W [i . . . n] =q W [before<[i] . . . n] and W [i . . . n] =q W [before>[i] . . . n]. The magic of a linear time solution to constructing
the LPF array is achieved through the computation of an element by extending the previous element, more formally
LPF [i] ≥ LPF [i − 1] − 1, which is a variant of the extension property used in LCP construction proven by Kasai et al. [29].
We prove that this same property holds for the pLPF problem defined on p-strings.

Lemma 12. The pLPF for a p-string T of length n is such that pLPF [i] ≥ pLPF [i − 1] − 1 with 1 < i ≤ n.

Proof. Consider pLPF [i] at i = 1 by which Definition 10 requires that we find a previous factor at 1 ≤ h < 1 that does not
exist; i.e., pLPF [1] = 0. At i = 2, indeed pLPF [2] ≥ pLPF [1] − 1 = −1 is clearly true for all succeeding elements in which a
previous factor does not exist. For arbitrary i = j with 1 < j < n, suppose that the maximum length factor is at g < j and
without loss of generality, consider that the first q ≥ 2 symbols match so that prev(T [j . . . n]) =q prev(T [g . . . n]). Thus,
pLPF [j] = q. Shifting the computation to i = j + 1, we lose the symbols prev(T [j]) and prev(T [g]) in the p-suffixes at j
and g respectively. By Proposition 5, prev(T [j . . . j+ q− 1]) = prev(T [g . . . g + q− 1]) ⇒ prev(T [j]) = prev(T [g]) and
as a consequence of the prev encoding in Definition 3 we have prev(T [i . . . n]) =q−1 prev(T [g + 1 . . . n]). Since we can
guarantee that ∃ a factor with (q − 1) symbols for pLPF [i] or possibly find another factor at h with 1 ≤ h < i matching q or
more symbols, the lemma holds. �

For the traditional LPF problem, the property of LPF [i] ≥ LPF [i − 1] − 1 assists in extending each match between the suffix
at i and the suffixes at before<[i] and before>[i] by observing the respective matches at i − 1. In other words, traditional
strings have the property that always T [before<[i − 1] + 1 . . . n] ≼ T [before<[i] . . . n] ≺ T [i . . . n] ≺ T [before>[i] . . . n] ≼

T [before>[i−1]+1 . . . n] with i > 1 as long as the before< and before> elements exist. This lexicographical ordering allows
us to separately and individually extend the matches between the suffixes i and before<[i] and also, between the suffixes i
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Algorithm 2a. p-matcher function Λ.

1 int Λ ( int a , int b , int q) {
2 boolean c = true
3 int x , y
4 i f (b = −1) return 0
5 while ( c ∧ ( a+q) ≤ n ∧ (b+q) ≤ n) {
6 x = prevT [ a+q ] , y = prevT [b+q]
7 i f (in (x ,Σ ) ∧ in (y ,Σ ) ) {
8 i f (x = y ) q++
9 else c = fa lse

10 } else i f (in (x ,Z ) ∧ in (y ,Z ) ) {
11 i f (q < x ) x = 0
12 i f (q < y ) y = 0
13 i f (x = y ) q++
14 else c = fa lse
15 } else c = fa lse
16 } return q
17 }

Algorithm 2b. p-match manager function Ω .

1 ( int , int ) Ω ( int i , int pLPF< [ ] , int pLPF> [ ] , int before< [ ] , int before> [ ] , int R [ ] ) {
2 int j = 0 , k = 0 , a = 0 , b = 0 , c = 0 , d = 0
3 i f ( i > 1 ∧ before<≠null ) {
4 a = before< [ i −1]+1, c = pLPF< [ i−1]−1
5 i f ( before>≠null ) { b = before> [ i −1]+1, d = pLPF> [ i−1]−1 }
6 i f ( before>≠null ∧ before< [ i ]≠−1 ∧ before> [ i ]≠−1){
7 i f ( a=0 ∧ b=0){ j = pLPF> [ before< [ i ] ] , k = pLPF< [ before> [ i ] ] }
8 else i f ( a=0 ∧ R[b]<R[ i ] ) { j = d , k = pLPF< [ before> [ i ] ] }
9 else i f ( a=0 ∧ R[b]>R[ i ] ) { j = pLPF> [ before< [ i ] ] , k = d }

10 else i f (b=0 ∧ R[ a]<R[ i ] ) { j = c , k = pLPF< [ before> [ i ] ] }
11 else i f (b=0 ∧ R[ a]>R[ i ] ) { j = pLPF> [ before< [ i ] ] , k = c }
12 /∗ Fig. 1(a) ∗ / else i f (R[ a] <R[ i ] <R[b ] ) { j = c , k = d }
13 /∗ Fig. 1(b) ∗ / else i f (R[b]<R[ i ] <R[ a ] ) { j = d , k = c }
14 /∗ Fig. 1(c) ∗ / else i f (R[ a] <R[b]<R[ i ] ) { j = d , k = pLPF< [ before> [ i ] ] }
15 /∗ Fig. 1(d) ∗ / else i f (R[b]<R[ a]<R[ i ] ) { j = c , k = pLPF< [ before> [ i ] ] }
16 /∗ Fig. 1(e) ∗ / else i f (R[ i ] <R[ a]<R[b ] ) { j = pLPF> [ before< [ i ] ] , k = c }
17 /∗ Fig. 1(f) ∗ / else i f (R[ i ] <R[b]<R[ a ] ) { j = pLPF> [ before< [ i ] ] , k = d }
18 } else i f ( a>0 ∧ b>0 ∧ ( before< [ i ]=−1 ∨ before> [ i ]=−1)) {
19 i f (R[ a] <R[b]<R[ i ] ) j = d
20 else i f (R[b]<R[ a]<R[ i ] ) j = c
21 else i f (R[ i ] <R[ a]<R[b ] ) k = c
22 else i f (R[ i ] <R[b]<R[ a ] ) k = d
23 } else i f ( a>0 ∧ ( before> = null ∨ before< [ i ]=−1 ∨ before> [ i ]=−1)) {
24 i f (R[ a] <R[ i ] ) j = c
25 else k = c
26 } else i f (b>0 ∧ ( before< [ i ]=−1 ∨ before> [ i ]=−1)) {
27 i f (R[b]<R[ i ] ) j = d
28 else k = d
29 } j = max{0 , j } , k = max{0 , k}
30 } return ( j , k )
31 }

and before>[i] for the traditional LPF problem. Even though we similarly prove that pLPF [i] ≥ pLPF [i− 1] − 1 in Lemma 12,
the traditional lexicographical ordering of suffixes does not hold for p-suffixes.

Lemma 13. Given an n-length p-string T , let x = before<[i] exist (1 ≤ x < n) and y = before>[i] exist (1 ≤ y < n) with
1 ≤ i < n. Even though R[x] < R[i] < R[y], it is not guaranteed that R[x + 1] < R[i + 1] < R[y + 1].

Proof. By the definition of the before< and before> arrays, it is the case that x = before<[i] is chosen such that R[x] < R[i]
and y = before>[i] is chosen such that R[y] > R[i]. Thus, R[x] < R[i] < R[y] or more formally, prev(T [x . . . n]) ≺

prev(T [i . . . n]) ≺ prev(T [y . . . n]). Consider, for instance, that prev(T [x . . . n]) =q prev(T [i . . . n]) =q prev(T [y . . . n])
for some q > 3 with (max{i, x, y} + q) < n. Further consider that T [x + q], T [i + q], and T [y + q] are parameters
and prev(T [x . . . n])[q + 1] = 1, prev(T [i . . . n])[q + 1] = 2, and prev(T [y . . . n])[q + 1] = q. It follows that
prev(T [x + 1 . . . n])[q] = 1, prev(T [i + 1 . . . n])[q] = 2, and prev(T [y + 1 . . . n])[q] = 0. Since it is still the case that
prev(T [x + 1 . . . n]) =q−1 prev(T [i + 1 . . . n]) =q−1 prev(T [y + 1 . . . n]), the fact that (prev(T [y + 1 . . . n])[q] = 0) <
(prev(T [x+1 . . . n])[q] = 1) < (prev(T [i+1 . . . n])[q] = 2) yields the lexicographical relationshipprev(T [y+1 . . . n]) ≺

prev(T [x + 1 . . . n]) ≺ prev(T [i + 1 . . . n]) and R[y + 1] < R[x + 1] < R[i + 1], proves the lemma. �
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Fig. 1. Examples that correspond to core cases of theΩ function (note: ∗ and+ denote that the p-suffixmaypossibly be the p-suffixes at a and b respectively).

Lemmas 11 and 13 formally identify the significant differences between the LPF and pLPF problems. In this research,
we show that it is possible to solve the pLPF problem with an algorithm similar to the compute_LPF algorithm in [2] by
addressing the lemmas with two different functions. We introduce compute_pLPF in Algorithm 1 to construct the pLPF
array. (For future reasons in this work, the compute_pLPF algorithm permits before> = null.) This algorithm utilizes (1)
the special p-matcher functionΛ in Algorithm 2a to address Lemma 11 by properly handling thematching of p-suffixes and
(2) the p-match manager function Ω in Algorithm 2b to address Lemma 13 by identifying the lexicographical similarities
between p-suffixes and returning the appropriate match length, which in turn, is used to extend future matches. More
specifically, the role of Λ is to extend the matches between the p-suffixes at a and b beyond the initial q symbols by directly
comparing constant/terminal symbols and comparing the dynamically adjusted parameter encodings for each p-suffix.
Exactly where the Λ function begins p-matching is determined by the Ω function.

In more detail, the Ω function uses the previously matched p-suffixes to identify how the lexicographical ordering of
those p-suffixes can assist in futurematching between p-suffixes. The lexicographical orderings are displayed in Fig. 1. Using
what is known in previous matches and the identified lexicographical ordering, the Ω function returns a pair (j, k), which
indicates where to begin matching between the p-suffixes at i and before<[i] and between the p-suffixes at i and before>[i]
respectively. More formally, the (j, k) pair proves that the following matches already exist: prev(T [before<[i] . . . n]) =j
prev(T [i . . . n]) and prev(T [before>[i] . . . n]) =k prev(T [i . . . n]). Thematches may be extended beyond this (j, k) starting
point via the Λ function. The correctness of Ω is proven in the following lemma.

Lemma 14. For any i chosen sequentially i = 2, 3, . . . , n with n as the length of the p-string T , the function Ω correctly
returns the number of matching symbols j and k with respect to p-suffix i based on symbols previously matched such that
prev(T [before<[i] . . . n]) =j prev(T [i . . . n]) and prev(T [before>[i] . . . n]) =k prev(T [i . . . n]).

Proof. Let x = before<[i−1] and y = before>[i−1]. Without loss of generality, assume that x and y exist, namely 1 ≤ x < n
and 1 ≤ y < n. Further, let 1 ≤ m ≤ n, pLPF<[m] = max({0} ∪ {q | prev(T [before<[m] . . . n]) =q prev(T [m . . . n])})
and pLPF>[m]=max({0} ∪ {q | prev(T [before>[m] . . . n]) =q prev(T [m . . . n])}). Consider 2 ≤ i < n and assume that
the following are completed: prev(T [x . . . n]) =w prev(T [i − 1 . . . n]) and prev(T [y . . . n]) =z prev(T [i − 1 . . . n]) or
alternatively, w = pLPF<[i − 1] and z = pLPF>[i − 1]. Let c = w − 1 and d = z − 1. We now prove that Ω uses previous
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match lengths ofw and z at p-suffix (i−1) to correctly returnwhat is known about the currentmatcheswith the p-suffix at i.
Primarily, we need to identify the lexicographical ordering between the previously matched p-suffixes less the first symbol,
i.e. the p-suffixes at a = x + 1, i, and b = y + 1 or prev(T [a . . . n]), prev(T [i . . . n]), and prev(T [b . . . n]). As a basis of the
proof, it is known from the definition of the before< and before> arrays that R[x] < R[i − 1] < R[y] and for g = before<[i]
and h = before>[i], also R[g] < R[i] < R[h]. As a consequence of Lemma 13, the following non-trivial orderings (displayed
in Fig. 1) are possible: (a) R[a] < R[i] < R[b], (b) R[b] < R[i] < R[a], (c) R[a] < R[b] < R[i], (d) R[b] < R[a] < R[i], (e)
R[i] < R[a] < R[b], and (f) R[i] < R[b] < R[a].

• For case (a) R[a] < R[i] < R[b], since already prev(T [x . . . n]) =w prev(T [i − 1 . . . n]) and now R[a] ≤ R[g] <
R[i] ⇒ prev(T [g . . . n]) =max{0,c} prev(T [i . . . n]). Also, since already prev(T [y . . . n]) =z prev(T [i − 1 . . . n]) and
now R[i] < R[h] ≤ R[b] ⇒ prev(T [h . . . n]) =max{0,d} prev(T [i . . . n]). Function Ω correctly returns (j = max{0, c},
k = max{0, d}).

• For case (b) R[b] < R[i] < R[a], since already prev(T [y . . . n]) =z prev(T [i − 1 . . . n]) and now R[b] ≤ R[g] < R[i] ⇒

prev(T [g . . . n]) =max{0,d} prev(T [i . . . n]). Also, since already prev(T [x . . . n]) =w prev(T [i − 1 . . . n]) and now
R[i] < R[h] ≤ R[a] ⇒ prev(T [h . . . n]) =max{0,c} prev(T [i . . . n]). Function Ω correctly returns (j = max{0, d}, k =

max{0, c}).
• For case (c) R[a] < R[b] < R[i], since already prev(T [y . . . n]) =z prev(T [i − 1 . . . n]) and now R[a] < R[b] ≤ R[g] <

R[i] ⇒ prev(T [g . . . n]) =max{0,d} prev(T [i . . . n]). Due to the fact that the previously matched p-suffixes are both lexi-
cographically less than p-suffix i, the only matches conducted previously that can be used to connect the match between
prev(T [h . . . n]) and prev(T [i . . . n]) are from the matches between prev(T [h . . . n]) and prev(T [before<[h] . . . n]).
For the sake of discussion, assume that before<[h] exists. Then, we already know that prev(T [before<[h] . . . n]) =v

prev(T [h . . . n]) and now R[before<[h]] < R[i] < R[h] ⇒ prev(T [before<[h] . . . n]) =v prev(T [i . . . n]) =v prev
(T [h . . . n]) where v = pLPF<[h] ≥ 0. Function Ω correctly returns (j = max{0, d}, k = v).

• For case (d) R[b] < R[a] < R[i], the argument is similar to that of case (c) except that now R[b] < R[a] ≤ R[g] < R[i] and
because already prev(T [x . . . n]) =w prev(T [i − 1 . . . n]) ⇒ prev(T [g . . . n]) =max{0,c} prev(T [i . . . n]). Function Ω

correctly returns (j = max{0, c}, k = pLPF<[h]).
• For case (e) R[i] < R[a] < R[b], since already prev(T [x . . . n]) =w prev(T [i − 1 . . . n]) and now R[i] < R[h] ≤ R[a] <

R[b] ⇒ prev(T [h . . . n]) =max{0,c} prev(T [i . . . n]). Due to the fact that the previouslymatched p-suffixes are both lexi-
cographically greater than p-suffix i, the only matches conducted previously that can be used to connect the match
between prev(T [g . . . n]) and prev(T [i . . . n]) are from the matches between prev(T [g . . . n]) and prev(T [before>[g]
. . . n]). For the sake of discussion, assume that before>[g] exists. Then,we already know thatprev(T [before>[g] . . . n]) =v

prev(T [g . . . n]) and now R[g] < R[i] < R[before>[g]] ⇒ prev(T [before>[g] . . . n]) =v prev(T [i . . . n]) =v

prev(T [g . . . n]) where v = pLPF>[g] ≥ 0. Function Ω correctly returns (j = v, k = max{0, c}).
• For case (f) R[i] < R[b] < R[a], the argument is similar to that of case (e) except that now R[i] < R[h] ≤ R[b] < R[a] and

because already prev(T [y . . . n]) =z prev(T [i − 1 . . . n]) ⇒ prev(T [h . . . n]) =max{0,d} prev(T [i . . . n]). Function Ω

correctly returns (j = pLPF>[g], k = max{0, d}).

The other trivial cases of function Ω are situations when one or both of the entries in before< or before> do not exist
and are handled using the same techniques as the previous cases. Thus, Ω correctly uses previous matches to return
the pair (j, k) of known lengths of the current p-matches between the p-suffixes at before<[i], i, and before>[i] where
prev(T [before<[i] . . . n]) =j prev(T [i . . . n]) and prev(T [before>[i] . . . n]) =k prev(T [i . . . n]). �

Even though there are several cases and significant detail within the Ω function, a single call to Ω requires O(1) time,
which is formalized in the following lemma.

Lemma 15. Each call to the function Ω executes in O(1) time.

Proof. By an analysis of the Ω function in Algorithm 2b, we can trivially conclude that each call to Ω only executes a series
of selection and assignment statements and therefore, the lemma holds. �

Now, the discussion of pLPF moves toward analyzing the time complexity of the complete compute_pLPF algorithm.
The traditional LPF problem is solved in [2] by compute_LPF in O(n) time. The pLPF problem includes the added intricacies
of Lemmas 11 and 13, which are addressed by functions Λ and Ω respectively. These intricacies require a more involved
time complexity analysis, which is formalized in the following theorem.

Theorem 16. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the compute_pLPF algorithm constructs the pLPF array in O(max{n,mγ }) time, where m is the length of the longest
p-match between a p-suffix at i and two defined p-suffixes in T and γ is dependent on the lexicographical orderings of specified
p-suffixes in T .

Proof. Since Algorithm compute_pLPF utilizes Ω in order to extend p-matches by knowledge of previous p-matches, it
follows from Lemma 14 that compute_pLPF correctly exploits the properties of p-suffixes and pLPF to correctly compute
factors with the p-matching function Λ. We now analyze the running time of compute_pLPF. Primarily, the time to
compute the arrays before< and before> require O(n) processing as detailed in [13]. What remains now is to show that,
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between Algorithms 1, 2a, and 2b, the total number of matches performed, or the number of times that the body of the
while loop (lines 6–15 in Algorithm 2a) will be executed, is in O(max{n,mγ }). Consider the first iteration of the for loop in
Algorithm 1, i.e. i = 1. The initial call to Ω returns (0, 0) in O(1) time by Lemma 15. Since before<[1] = before>[1] = −1
in this case, no matching is performed by Λ, yielding pLPF<[1] = 0, pLPF>[1] = 0, and the result pLPF [1] = 0. Next,
consider i = 2. Here, Ω returns (0, 0) in O(1) time by Lemma 15. Assume that prev(T [1 . . . n]) ≺ prev(T [2 . . . n])
and so before<[2] = 1 and before>[2] does not exist, namely before>[2] = −1. Assume that, in the worst case,
prev(T [1 . . . n]) =n−2 prev(T [2 . . . n]), which requires O(n) work from Λ to compute pLPF<[2] = n − 2, pLPF>[2] = 0,
and the result pLPF [2] = n − 2. At this point, the entries pLPF [1] and pLPF [2] are computed in O(n) time. Now, we must
consider how the lexicographical ordering between the p-suffix prev(T [before<[2] + 1 . . . n]) and prev(T [3 . . . n]) helps
us to extend the next match at i = 3. More specifically, considering that currently pLPF<[i − 1] = n − 2 and pLPF>[i −
1] = 0, is prev(T [before<[i] . . . n]) =max{0,pLPF<[i−1]−1} prev(T [i . . . n]) or prev(T [before>[i] . . . n]) =max{0,pLPF<[i−1]−1}
prev(T [i . . . n])? So, we must consider the impact of the individual cases of function Ω as they relate to the matching
performed by Λ. These cases were proven for correctness in Lemma 14 and the non-trivial cases are illustrated in Fig. 1. For
brevity and without loss of generality, we further consider these non-trivial cases by assuming that all before<[i] ≥ 1 and
before>[i] ≥ 1. The proof is divided into the following two parts.

• First, assume that every call to Ω will execute either case (a) or case (b) of Fig. 1. In these situations, we know
that the p-suffix at i is lexicographically between the p-suffixes at before<[i − 1] + 1 and before>[i − 1] + 1, i.e.,
prev(T [before<[i − 1] + 1 . . . n]) ≺ prev(T [i . . . n]) ≺ prev(T [before>[i − 1] + 1 . . . n]) or prev(T [before>[i −

1] + 1 . . . n]) ≺ prev(T [i . . . n]) ≺ prev(T [before<[i − 1] + 1 . . . n]). Since we already know that the p-suffix at i is
lexicographically between the p-suffixes at before<[i] and before>[i] by definition of the before< and before> arrays, we
can guarantee that the p-suffixes at before<[i] and before>[i] are at least as lexicographically similar to the p-suffix at i as
the previously matched p-suffixes at before<[i − 1] + 1 and before>[i − 1] + 1. Let u = max{0, pLPF<[i − 1] − 1} and
v = max{0, pLPF>[i − 1] − 1}. It follows that prev(T [before<[i − 1] + 1 . . . n]) ≼u prev(T [before<[i] . . . n]) ≺u
prev(T [i . . . n]) ≺v prev(T [before>[i] . . . n]) ≼v prev(T [before>[i − 1] + 1 . . . n]) or prev(T [before>[i − 1] +

1 . . . n]) ≼v prev(T [before<[i] . . . n]) ≺v prev(T [i . . . n]) ≺u prev(T [before>[i] . . . n]) ≼u prev(T [before<[i − 1] +

1 . . . n]). So, we can always use previous matches to compute pLPF<[i], pLPF>[i], and hence, pLPF [i]. Recall that earlier in
the proof, already pLPF [2] = n − 2 is processed in O(n) time. From Lemma 12 and the fact that the decreasing lengths
of the succeeding p-suffixes at i = 3, 4, . . . , n cannot extend the matches any further, successive calls to Λ and Ω

are performed in O(1) time and the previous work of O(n) is amortized across all of the n iterations of the for loop
in compute_pLPF. Thus, the total work is O(n).

• Second, assume initially that every call to Ω will execute either case (c), (d), (e), or (f) of Fig. 1. Let u = max{0, pLPF<[i−
1] − 1} and v = max{0, pLPF>[i − 1] − 1}. In general from these cases, we know that prev(T [before<[i] . . . n]) =u
prev(T [i . . . n]) ∨ prev(T [before<[i] . . . n]) =v prev(T [i . . . n]) ∨ prev(T [before>[i] . . . n]) =u prev(T [i . . . n]) ∨

prev(T [before>[i] . . . n]) =v prev(T [i . . . n]) by a call to Ω that requires O(1) time by Lemma 15. In other words,
we only know how to extend the match between the p-suffix at i and either the p-suffix at before<[i] or before>[i].
In order to determine how to extend the other match, the Ω function oracles in O(1) time either pLPF<[before>[i]]
or pLPF>[before<[i]] – the values of these entries are dependent on the individual p-string. In order to get a bound
on the work required for Λ to extend matches in this case, assume that pLPF<[before>[i]] = pLPF>[before<[i]] = 0.
In other words, these set values will force additional work by Λ since nonzero entries provide symbols for future
matches and in turn, require less work from Λ. Let m be the length of the longest p-match between any p-suffix and
its respective before< or before> element or more formally, m = max{0, t | t = max{r, s | prev(T [before<[e] . . . n]) =r
prev(T [e . . . n]), prev(T [before>[e] . . . n]) =s prev(T [e . . . n]) ∀ 1 ≤ e ≤ n with before<[e] ≥ 1, before>[e] ≥ 1}}.
Under the previous conditions, the Λ function will need to perform O(m) work for a total of γ times in the worst case
requiring O(mγ ) time, where γ is the number of times that the p-string T forces either case (c), (d), (e), or (f) of Fig. 1,
i.e. γ is a count of the number of times (R[before<[b − 1] + 1] < R[b] ∧ R[before>[b − 1] + 1] < R[b]) ∨ (R[b] <
R[before<[b−1]+1]∧R[b] < R[before>[b−1]+1]) ∀ 2 ≤ b ≤ n. Recall that earlier in the proof, already pLPF [2] = n−2
is processed in O(n) time. Thus, O(n + mγ ) time is required overall. Moreover, the time required by Λ to interleave
p-matching with other possible cases (a) and (b) of Fig. 1 is clearly absorbed in this time complexity.

By combining the cases, it follows that Algorithm compute_pLPF executes in O(n + mγ ) time. Depending on the p-string,
the actual value of mγ may be the same as n (i.e. mγ = n), less than n (i.e. mγ < n or mγ << n), or greater than n (i.e.
mγ > n ormγ >> n). Therefore, compute_pLPF executes in O(max{n,mγ }) time. �

The difference in the time complexities between compute_LPF and compute_pLPF is due to the structure of
p-strings. Even though the worst case time of the compute_pLPF algorithm is bounded by O(max{n,mγ }), the expected
running time will be in O(n). This is because the actual values of m and γ are not independent and rather, they
share a special relationship in terms of tradeoffs. Note that we do not need to actually compute m and γ in order to
execute the algorithm. Instead, these values are simply used to indicate the bound on the time required to execute the
algorithm. Consider the n-length p-string T . If T [i] ∈ Σ ∀ 1 ≤ i < n and T [n] = $, then T is a traditional string and thus,
γ = 0. In this case, the worst case time complexity is O(n). In addition, let p be the number of T [i] ∈ Π . If p is small
(i.e. p << n), then also, the time complexity is O(n). In the absolute worst case, suppose that it is possible that the values
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Algorithm 3. pLCP computation.

1 int [ ] compute_pLCP ( int before< [ ] , int a f t e r< [ ] , int R [ ] ) {
2 int pLCP [n ] , X[n ] , Y[n ] , i
3 X = compute_pLPF ( before< , null , R)
4 Y = compute_pLPF ( a f t e r< , null , R)
5 for i = 1 to n
6 pLCP [R[ i ] ] = max{X[ i ] , Y[ i ] }
7 return pLCP
8 }

of p, m, and γ are all large, i.e. p ≈ m ≈ γ = O(n). What if this is the case? Consider two p-suffixes at c and d where
c < d, prev(T [c . . . n]) ≺ prev(T [d . . . n]), and prev(T [c . . . n]) = n

c
prev(T [d . . . n]) with n

c as an integer and c as a
constant. In this case, let T [c +

n
c − 1] = T [c +

n
c ] = π1 ∈ Π ⇒ prev(T [c . . . n])[ nc + 1] = 1 and let T [d] = T [d +

n
c ] =

π2 ∈ Π where T [q] ≠ π2 ∀ d < q < d+
n
c ⇒ prev(T [d . . . n])[ nc +1] =

n
c . Now, when we consider the ordering between

the p-suffixes prev(T [c+1 . . . n]) and prev(T [d+1 . . . n]), the lexicographical ordering changes to prev(T [d+1 . . . n]) ≺

prev(T [c + 1 . . . n]) because prev(T [d + 1 . . . n]) = n
c −1 prev(T [c + 1 . . . n]) and (prev(T [d + 1 . . . n])[ nc ] = 0) <

(prev(T [c + 1 . . . n])[ nc ] = 1). These p-suffixes still share a significant number of symbols and their respective lexico-
graphical orderings have been altered. However, the p-suffixes will not lexicographically change again until we process the
p-suffix starting at c +

n
c , which requires handling p-suffixes starting beyond the several symbols already matched. Should

there be lexicographically closer p-suffixes than c + 1 and d + 1, the additional matches will yield even fewer changes in
the lexicographical orderings. In this situation, it is shown that significant matches (large m) yield an insignificant number
of lexicographical changes (small γ ). Hence, there is a tradeoff betweenm and γ that allows the O(n) time bound to absorb
any instances where additional matching is required. The following corollary formalizes this expectation.

Corollary 17. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the pLPF array can be constructed in O(n) expected time.

5. From pLPF to pLCP

Deguchi et al. [10,11] studied the problem of constructing the pLCP array given the pSA. They showed that constructing
the pLCP array requires a non-trivial modification of the traditional LCP construction by Kasai et al. [29]. In [2], the LCP
array was used as the basis for constructing the LPF array for traditional strings. Here, we present a simpler algorithm for
constructing the pLCP array. In particular, we show that, unlike in [2], it is possible to go the other way around: that is, given
the pLPF solution, we now construct the pLCP array. Later, we show that the same pLPF algorithm can be used to construct
the LCP array and the LPF array for traditional strings.

Recall that Lemma 11 identifies that the suffixes of prev(T ) are not necessarily the p-suffixes of T . Also recall that
Lemma 13 indicates that a tuple of p-suffixes can change their respective lexicographical ordering (i.e. their respective
positions in the p-suffix array) when considering successive p-suffixes. These lemmas formalize the differences between
traditional strings and p-strings. From the previous section, our compute_pLPF algorithm correctly addresses these added
challenges. As a novel use of our compute_pLPF algorithm, we introduce a way to construct the pLCP array by modifying
the parameters. The key observation is that we can exploit the fact that the pLCP occurs between neighboring p-suffixes by
first preprocessing the before< array, which for each i in the p-string T maintains the p-suffix at h < i positioned prior to
the p-suffix at i in pSA. We can also construct the array after< to maintain the p-suffix at j > i also positioned prior to the
p-suffix at i in pSA. Since the p-suffixes at h and j are both positioned prior to the p-suffix at i in pSA, we can guarantee that
either h or jmust be the nearest neighbor to i. So, themaximum factor determines the nearest neighbor and thus, pLCP[R[i]],
where the rank array R is the inverse of pSA (see Algorithm 3). The following theorem formalizes this computation.

Theorem 18. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the compute_pLPF algorithm can be used to construct the pLCP array in O(max{n,mφ}) time, where m is the length of
the longest p-match between a p-suffix at i and two defined p-suffixes in T and φ is dependent on the lexicographical orderings of
specified p-suffixes in T .

Proof. We can clearly relax the p-suffix selection restrictions enforced by the problem pLPF to exploit the idea of extending
factors as in Lemma 12. Subsequently, only the parameters of Algorithms 1, 2a, and 2b impose such restrictions. Let R[1 . . . n]
be the rank array, the inverse of pSA. Let before<[1 . . . n] and after<[1 . . . n] maintain, for all the i in T , the p-suffixes at h < i
at position R[h] in pSA and j > i at position R[j] in pSA, respectively, that are positioned prior to the p-suffix i at position
R[i] in pSA; when no such p-suffix exists, the element is denoted by −1. Let X = compute_pLPF(before<,null, R) and
Y = compute_pLPF(after<,null, R). We prove that the pLCP is constructed by the statement pLCP[R[i]] = max{X[i],
Y [i]}. Without loss of generality, suppose that both h and j exist and 2 < i ≤ n, so we have either R[h] = R[i] − 1 or R[j] =

R[i] − 1 as the neighboring p-suffix. When x = plcp(prev(T [h . . . n]), prev(T [i . . . n])) and y = plcp(prev(T [j . . . n]),
prev(T [i . . . n])) then max{x, y} distinguishes which p-suffix at h or j is closer to i, identifying the nearest neighbor and
in turn, pLCP[R[i]]. Since it is the case that X[i] = x and Y [i] = y, then it follows that pLCP[R[i]] = max{X[i], Y [i]}. We
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Algorithm 4. Improved pLCP computation.

1 int [ ] compute_pLCP ( int R [ ] ) {
2 int M[n]={−1 , . . . ,−1} , Q[n ] , i
3 for i = 1 to n
4 Q[R[ i ] ] = i
5 for i = 2 to n
6 M[Q[ i ] ] = Q[ i−1]
7 M = compute_pLPF (M, null , R)
8 for i = 1 to n
9 Q[R[ i ] ] = M[ i ]

10 return Q
11 }

have yet to prove the time complexity. The parameter after< can be computed in O(n) time by deletions and indexing into
a doubly linked list similar to before< from [13]. Further, the array X is computed in O(max{n,m1γ1}) time and the array Y
is computed in O(max{n,m2γ2}) time by Theorem 16. Clearly, the rearranging of the results within X and Y into the pLCP
array is performed in O(n) time. So, O(max{n,m1γ1,m2γ2}) time is required. Let m = max{m1,m2} and φ = max{γ1, γ2}.
Overall, the time required is in O(max{n,mφ}). �

It readily follows that since the mφ term is a result of the compute_pLPF algorithm, the logical discussion leading to
Corollary 17 also applies here with respect to the compute_pLCP algorithm. Hence, it is expected that compute_pLCP
executes in O(n) time.

Corollary 19. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T , and pSA, the parameterized suffix array
for T , the pLCP array can be constructed in O(n) expected time.

For purposes of discussion, Algorithm 3 uses the preprocessed arrays before< and after< in calls to compute_pLPF to
infer the number of symbols matching with the neighboring p-suffix by observing the temporary results. This process of
finding the neighboring p-suffix can be found trivially with a p-suffix array, and thus, the novel use of both the before< and
after< arrays may be omitted for practical space. This observation is the focus of the improved solution in Algorithm 4. It is
possible to use pSA to identify the neighboring p-suffixes to yield one parameter:M . The call to compute_pLPF(M,null, R)
is possible because Algorithms 1, 2a, and 2b support the case when the parameter before> = null. In the algorithm, the
array Q is used as both an intermediate pSA (derived from R) and the resulting pLCP data structure. In passing, we identify
that upon the completion of line 7 in Algorithm 4, theM array is the permuted longest common prefix (PLCP) data structure
observed in [30] for traditional strings.

6. From pLPF to LPF and LCP

The power of defining the pLPF problem in terms of p-strings is the generalization of a p-string production. A useful
property of p-strings is that a special case of the alphabet definitions or composition of symbols will yield a traditional
string. If |Σ | > 0∧|Π | = 0, then only traditional strings are valid p-string productions. Similarly, when all of the individual
symbols σ of a p-string are such that σ ∈ Σ , this also yields a traditional string. Such generalization by the p-string allows
us to offer solutions to multiple problems with a single algorithm based on p-strings. We show in Theorems 20 and 21 that
our compute_pLPF algorithm also computes the traditional LPF and LCP arrays.

Theorem 20. Given an n-length traditional string W, the compute_pLPF algorithm constructs the LPF array in O(n) time.

Proof. SinceW [i] ∈ Σ ∀ i, 1 ≤ i < n andW [n] ∈ {$}, then by Definition 1 we haveW ∈ (Σ ∪ Π)∗$, which classifiesW as
a valid p-string. Since W consists of no such symbol π ∈ Π , then Theorem 16 proves that the construction of pLPF for the
n-length p-stringW requires O(max{n,mγ }) ∈ O(n) time with γ = 0 because Lemma 13 does not apply. Lemma 11 identi-
fies thatprev(W [i . . . n]) = prev(W )[i . . . n] and furtherW = prev(W )byDefinition 3, soW [i . . . n] = prev(W )[i . . . n],
which constrains the pLPF in Definition 10 to the LPF problem in Definition 9. Thus, compute_pLPF computes the LPF of
W in O(n) time. �

Theorem 21. Given an n-length traditional string W, the compute_pLCP algorithm constructs the LCP array in O(n) time.

Proof. In the same manner as Theorem 20, we may classify W as a valid p-string. Given this, Theorem 18 proves that the
construction of pLCP for the n-length p-string W requires O(max{n,mφ}) ∈ O(n) time with φ = 0 because Lemma 13
does not apply. Mirroring the proof of Theorem 20, we have W [i . . . n] = prev(W )[i . . . n], which constrains the pLCP in
Definition 7 to the traditional LCP problem. Thus, compute_pLCP computes the LCP ofW in O(n) time. �

7. Analysis

The algorithms presented in this work operate on an n-length p-string and theoretically demand O(n) time and O(n)
space. Since our algorithms are developed for the p-string and improve the theoretical complexity for the construction
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Table 3
Comparison of algorithms for a text T of length n where v is chosen and δ is determined based on application of
text.

Structure Algorithm Time ∗1 Space ∗2 Note

traditional strings

LCP Lcp6 by Manzini [31] O(n) (6+δ)n+o(n) overwrites SA
LCP space–time tradeoff by Puglisi et al. [32] O(nv) 5n + O(n/

√
v) –

LCP Lcp9 by Manzini [31] O(n) 9n + o(n) saves SA
LCP GetHeight by Kasai et al. [29] O(n) 13n + o(n) –
LCP P-Kasai by Tomohiro I et al. [10] O(n2) 14n + o(n) ∗3 –
LCP compute_pLCP (Algorithm 4) O(n) 17n + o(n) ∗3 –

LPF compute_LPF by Crochemore et al. [2] O(n) 21n + o(n) first SA solution
LPF compute_LPF by Crochemore et al. [24] O(n) 12n + o(n) –
LPF LPF-OPTIMAL by Crochemore et al. [28] O(n) 12n + o(1) –

LPF compute_pLPF (Algorithm 1) O(n) 21n + o(n) ∗3 also constructs pLPF ,
pLCP , and LCP

p-strings

pLCP P-Kasai by Tomohiro I et al. [10] O(n2)
14n + o(n) ∗3

first solution
20n + o(n) ∗4

pLCP compute_pLCP (Algorithm 4) O(n) ∗5 17n + o(n) ∗3
–

20n + o(n) ∗4

pLPF compute_pLPF (Algorithm 1) O(n) ∗6 21n + o(n) ∗3
only solution

24n + o(n) ∗4

∗1 for purposes of comparison, assume that |Σ | and |Π | are constant
∗2 claimed space usage in bytes or analysis of the most bytes needed by algorithm during execution,

assuming sizeof(int) = 4 bytes and sizeof(char) = 1 byte; preprocessing excluded
∗3 since (1) in the worst case for traditional strings or (2) on average for p-strings, a prev encoding

occupies a char array
∗4 since in the worst case for p-strings, a prev encoding occupies an int array
∗5 the expected running time (Corollary 19) or, more specifically, O(max{n,mφ}) based on the text
∗6 the expected running time (Corollary 17) or, more specifically, O(max{n,mγ }) based on the text

time of p-string data structures, we choose to analyze the practical space used by our solutions. We aim to show that even
though we are addressing p-string problems by exploiting the utility of a single algorithm compute_pLPF, our algorithms
are competitive, and thus represent practical solutions for constructing data structures for both p-strings and traditional
strings.

Algorithms thatworkwith p-strings, to solve the p-match problem, use theprev encoding to absorb the original text and
naturally avoid the housekeeping of parameters. The prev encoding, as defined in Definition 3, encodes constant symbols
with the same symbol and encodes parameters with numbers that identify the distance to the previous occurrence of that
parameter in the p-string. The question becomes, is it sufficient to encode an n-length prev arraywith 1-byte char variables
or 4-byte int variables? In reality, this is dependent on the application or more specifically, the maximum distance reported
in the prev encoding. Suppose that we are working with the ASCII character set and every σ ∈ Σ and π ∈ Π is a printable
character, including the V = 95 characters in the decimal range [32 − 126] or [1 − 95] after applying an offset F = −31.
Following the ordering scheme of Definition 4, we obtain the following scheme given that each element of prev uses an
unsigned char: 0 → $, 1 → SPACE, 2 →!, . . . , 34 → A, 35 → B, . . . , 95 →˜, 96 → d0, 97 → d1, . . . , 255 → d159,
where dx denotes the parameter encoded distance x. In the average case, if each of the V printable characters occurs
uniformly, then the maximum numeric distance encoded by prev is V, which is clearly represented by the d159 of an
unsigned char since 159 > V. Thus, an unsigned char array can represent the prev data structure on average for
p-strings. When operating with traditional strings, prev can be represented with a char in the worst case since only the
terminal symbol and the V constant symbols need to be encoded. In the case that the symbols are not uniformly distributed
and the parameter π only occurs in the p-string T at positions T [1] and T [232

− V − 1], then an unsigned int array will
suffice to represent the prev encoding. Any other assumptions about the encoded numeric distances in prevwill vary the
amount of space allocated.

We compile a comparative list of solutions in Table 3 that construct the LCP , LPF , pLCP and pLPF data structures. In the
table, the time complexities are displayed as theoretically identified in the corresponding papers. Unless the actual space
analysis was provided in the respective papers, we analyzed the provided algorithms, isolated from any preprocessing,
in terms of the most space required during an instance of execution of the algorithm. It is evident from Table 3 that our
algorithms are superior for problems with limited solutions such as pLCP processing and also, practically competitive for
constructing the LCP and LPF arrays. More specifically, the compute_pLPF algorithm for the pLPF and LPF arrays requires
at most 2n int elements of storage for the parameters before< and before>, 2n int elements for saving previous matches in
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pLPF< and pLPF>, n int elements for the rank array R, n int elements for the resulting pLPF data structure, and n elements for
the prev encoding that absorbs the original text. While Algorithm 1 uses various arrays for readability and ease of future
discussion, we acknowledge that it is possible to save an array in the algorithm by populating pLPF [i] after the main loop,
whichwill allowus to reuse pLPF< for the resulting pLPF array. (On a similar note,when before> =nullnomemory allocation
is needed for pLPF>.) Thus, compute_pLPF requires either 6n int elements or 5n int and n char elements on average. This
algorithm is the only solution for constructing the pLPF data structure and the complexities are similar to that of the original
compute_LPF in [2].

We also show how to exploit our compute_pLPF algorithm to construct the LCP and pLCP arrays. Since we provide
construction algorithms for several data structures using the pLPF construction as the groundwork, we are faced with
the practical limitation that our algorithms are only as efficient as the compute_pLPF solution. The compute_pLCP
(Algorithm 4) computes the pLCP and LCP data structures in expected linear time. Its space requirements are best analyzed
by comparing with the previous space analysis of compute_pLPF. The only differences are that (1) we use an additional
int array Q as an intermediate pSA and resulting pLCP array and (2) we use only one int parameter M , which saves the
need to allocate the two int arrays before> and pLPF>. This yields a savings of n int elements over the space required by
compute_pLPF. Thus, in the worst case for p-strings, 5n int elements are required whereas on average for p-strings and
in the worst case for traditional strings, 4n int elements are required in addition to n char elements for the prev encoding.
For the pLCP , our compute_pLCP algorithm is an improvement in terms of time complexity when compared to the claimed
O(n2) result of the P-Kasai [10] algorithm and in terms of practical space, our solution is competitive. In general, we handle
the dynamically changing p-suffixes differently than P-Kasai to save space and we use extra space to retain previous
matches in order to more quickly extend future matches.

In the context of this work, we chose to maximize the properties of pLPF and the utility of compute_pLPF to construct
many data structures with one algorithm, instead of refining different algorithms for each data structure. We acknowledge
the possibility of reworking the compute_pLPF algorithm to incorporate the LCP indexing contributions of [31] to further
improve the memory footprint of the algorithm. In passing, we note the possibility to improve the space consumption of
the LCP array by utilizing compression and other variants of the data structure as proposed in [30,32,33], since pLCP is also
an array of integers analogous to the traditional LCP . Also, we acknowledge the future research problem of integrating our
LPF , LCP , pLPF and pLCP solutions with the contributions in [28].

8. Conclusion

We introduce the parameterized longest previous factor (pLPF) problem for p-strings, which is analogous to the longest
previous factor (LPF) problem defined for traditional strings. An expected linear time algorithm is provided to construct
the pLPF array for a given p-string. The advantage of implementing our solution compute_pLPF is that the algorithm
may be used to compute the p-string related arrays pLPF and pLCP in an expected time linear to the length of the given
p-string and the traditional arrays LPF , LCP , and even the permuted LCP [30] in linear time. These are fundamental data
structures preprocessed for the efficiency of countless pattern matching applications. The significance of working though
the LPF as an intermediate data structure is the straightforward and space efficient algorithm to construct the Lempel–Ziv
(LZ) factorization based on the LPF structure [2,24]. Similarly, the pLPF array can easily derive the LZ data structure and allow
us to study such applications as maximal runs in p-strings extended to source code plagiarism or redundancies in biological
sequences.
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