
J. Parallel Distrib. Comput. 71 (2011) 1518–1531
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A hybrid heuristic–genetic algorithm for task scheduling in heterogeneous
processor networks
Mohammad I. Daoud a, Nawwaf Kharma b,∗

a Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
b Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, Canada

a r t i c l e i n f o

Article history:
Received 1 November 2010
Received in revised form
26 April 2011
Accepted 9 May 2011
Available online 27 May 2011

Keywords:
Genetic algorithms
Task scheduling
List-based scheduling heuristics
Directed acyclic graph
Parallel and distributed processing
Heterogeneous systems

a b s t r a c t

Efficient task scheduling on heterogeneous distributed computing systems (HeDCSs) requires the
consideration of the heterogeneity of processors and the inter-processor communication. This paper
presents a two-phase algorithm, called H2GS, for task scheduling on HeDCSs. The first phase implements
a heuristic list-based algorithm, called LDCP, to generate a high quality schedule. In the second phase, the
LDCP-generated schedule is injected into the initial population of a customized genetic algorithm, called
GAS, which proceeds to evolve shorter schedules. GAS employs a simple genome composed of a two-
dimensional chromosome. A mapping procedure is developed which maps every possible genome to a
valid schedule. Moreover, GAS uses customized operators that are designed for the scheduling problem
to enable an efficient stochastic search. The performance of each phase of H2GS is compared to two
leading scheduling algorithms, andH2GS outperforms both algorithms. The improvement in performance
obtained by H2GS increases as the inter-task communication cost increases.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

A distributed computing system (DCS) is a group of processors
connected via a high speed network, which supports the execu-
tion of parallel applications. DCSs provide a promising hardware
architecture for the execution of computationally intensive scien-
tific applications. The efficiency of executing parallel applications
on DCSs depends on the way in which the tasks are scheduled
onto the processors. Task scheduling aims to allocate the tasks of
an application to the set of available processors, and arrange the
execution of the tasks on each processor to minimize the total
execution time of the application. The task scheduling problem is
an NP-complete problem in most cases [42,31,16,17,24,32,40,9].

In general, task scheduling is presented in two forms: static and
dynamic [48,31,23]. In static scheduling algorithms, all information
needed for scheduling, such as the structure of the parallel
application, the execution times of individual tasks and the
communication costs between tasks, must be known in advance.
There are several techniques to estimate such information [44].
Static task scheduling takes place during compilation time before
running the parallel application. In dynamic scheduling, however,
tasks are allocated to processors upon their arrival, and scheduling

∗ Corresponding author.
E-mail addresses: mohammad.daoud@gmail.com (M.I. Daoud),

kharma@ece.concordia.ca (N. Kharma).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.05.005
decisions must be made at run time [4,7,23,24,29,31,48]. The
domain of application of this paper is static task scheduling for
DCSs with heterogeneous processor, or HeDCSs.

Many parallel applications have long execution times, and
hence they require high quality task schedules to minimize their
run times. Additionally, the static scheduling time of several sci-
entific and engineering applications is much lower than their run
time on DCSs. For example, the execution times of more than
50% of the parallel applications that were run on four real par-
allel computing systems are between tens to thousands of min-
utes [25], while the static scheduling times of parallel applications
with diverse characteristics, which were scheduled using several
static scheduling algorithms, are lower than one second as shown
in [42] and discussed in Section 5.2 in this paper. Hence, using com-
plex scheduling techniques to generate high quality task schedules,
which reduce the run time of parallel applications, is a justifiable
and potentially rewarding pursuit. In particular, the achievement
of high performance in commonly used HeDCSs requires efficient
scheduling algorithms that are specifically developed for such sys-
tems. However, it is easy to demonstrate, using counterexamples,
that the best existing scheduling algorithms for HeDCSs generate
sub-optimal task schedules [42,40]. Hence, there is much room for
the development of better scheduling algorithms for HeDCSs.

In this paper, we propose a new hybrid algorithm, called Hybrid
Heuristic–Genetic Scheduling (or H2GS) algorithm, which combines
two algorithms meant for dealing with the problem of scheduling
in HeDCSs. The H2GS algorithm starts by running a heuristic

http://dx.doi.org/10.1016/j.jpdc.2011.05.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:mohammad.daoud@gmail.com
mailto:kharma@ece.concordia.ca
http://dx.doi.org/10.1016/j.jpdc.2011.05.005


M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1519
scheduling algorithm, called the Longest Dynamic Critical Path (or
LDCP) algorithm [12], to quickly generate a high quality task
schedule. Next, the H2GS algorithm uses a new Genetic Algorithm,
called Genetic Algorithm for Scheduling (or GAS), that we propose in
this paper, to improve the LDCP-generated schedule. A preliminary
version of the GAS algorithm has been partially presented in a
conference paper [13] with limited results and analysis. The two-
phase feature of the H2GS algorithm allows for the customization
of the scheduling process. When the goal of the scheduling process
is to avoid low quality task schedules without the restriction of
short compilation time, the H2GS algorithm can be adjusted to run
the GAS algorithm for a large number of generations in order to
generate high quality task schedules. Such an approach is crucial if
the search space of the scheduling problem is multimodal [2] and
faulty scheduling decisions are expected to have high cost. On the
other hand, when the goal is to schedule the application on the
HeDCS within a short compilation time, H2GS can be adjusted so
the GAS algorithm runs for a small number of generations, in order
to generate task schedules quickly, but not necessarily optimally.

The paper is organized as follows: Section 2 formulates
the research problem and introduces some necessary terms. In
Section 3, we present related work and discuss two leading
task scheduling algorithms for HeDCSs. In Section 4, we present
the LDCP and GAS algorithms, then integrate them into one
overall algorithm, H2GS. Moreover, in this section an illustrative
example is presented that demonstrates the operation of the H2GS
algorithm. In Section 5, the performance of the H2GS algorithm is
compared to that of HEFT and DLS algorithms. Finally, a conclusion
and an overview of future work are provided in Section 6.

2. Problem description

Task scheduling for HeDCSs is the problem of assigning the
tasks of a parallel application to the processors of a HeDCS, which
have diverse capabilities, and specifying the start execution time
of each task. This must be done in a way that respects the
precedence constraints among tasks. An efficient schedule is one
that minimizes the total execution time, or the schedule length, of
the parallel application [3,24,32,42].

A parallel application is represented by a directed acyclic graph,
or DAG, defined by the tuple (T , E), where T is a set of n tasks and E
is a set of e edges. Each, ti ∈ T , represents a task in the parallel
application, which in turn is a set of instructions that must be
executed sequentially in the same processor without interruption.
Each edge (ti, tj) ∈ E represents a precedence constraint, such that
the execution of tj ∈ T cannot be started before ti ∈ T finishes its
execution. If (ti, tj) ∈ E, then ti is a parent of tj and tj is a child of
ti. A task with no parents is called an entry task, and a task with no
children is called an exit task. Each edge (ti, tj) ∈ E has a value that
represents the estimated inter-task communication cost required
to pass data from the parent task ti to the child task tj. Because tasks
might need data from their parent tasks, a task can start execution
on a processor onlywhen all data required from its parents become
available to that processor; at that time the task is marked as
ready. The speed of the inter-processor communication network is
assumed to be much lower than the speed of the intra-processor
bus, and consequently the inter-processor communication cost
is much higher than the communication cost between tasks
scheduled on the same processor. Therefore, when two tasks are
scheduled on the sameprocessor the communication cost between
these tasks can be ignored.

The HeDCS is represented by a set P of m processors that have
diverse capabilities. The n × m computation cost matrix C stores
the execution costs of tasks. Each element ci,j ∈ C represents the
estimated execution time of task ti on processor pj. Precise
calculation of the running times of the tasks on the processors is
a b

Fig. 1. A sample (a) DAG and (b) computation cost matrix.

unfeasible before running the application [36]. One approach to
estimate the execution time of task ti on processor pj is to use
profiling information of ti and pj. This estimation method has been
used in [11,46]. Another way to estimate the execution time of ti
on pj is to analyze past observations of the running times of similar
tasks on pj [36,27].

All processors in the HeDCS are assumed to be fully connected.
Communications between processors occur via independent com-
munication units; this allows for concurrent execution of com-
putation of tasks and communications between processors [3,42].
The computation costs of tasks are assumed to be monotonic. In
other words, if the computation cost of task ti on processor pj is
higher than that on processor pk, then the computation costs of
any task on pj is higher than or equal to that on processor pk. After
scheduling all the tasks of a parallel application on the processors
of a HeDCS, the schedule length is defined as the longest finish time
of theHeDCSprocessors. Fig. 1 presents an example of a parallel ap-
plication consisting of five tasks and a HeDCS with two processors,
where the application is represented as a DAG and the execution
costs estimated for the five tasks on theHeDCS are shown as a com-
putation cost matrix.

3. Related work

3.1. Task scheduling for DCSs

Static scheduling algorithms can be broadly classified into three
main groups: heuristic algorithms, guided random algorithms and
hybrid algorithms [34,42,48,19].

3.1.1. Heuristic scheduling algorithms
Heuristic scheduling algorithms move from one point in

the search space to another, following a particular rule. Such
algorithms, though efficient, search some paths in the search space
and ignore others [48]. Heuristic scheduling algorithms can be
subdivided into three subgroups: list-based heuristics, clustering
heuristics and duplication heuristics [42,48,32].

In list-based scheduling heuristics, each task is assigned a given
priority. The tasks are inserted in a list of waiting tasks, such that
tasks with higher priority are placed before those with lower pri-
orities. Three steps are then repeated until all the tasks in the list
are scheduled: task selection, processor selection and status up-
date. The ready task with the highest priority is removed from the
list and selected for scheduling during the task selection phase. In
the processor selection phase, the selected task is assigned to the
processor that minimizes a predefined cost criterion, such as min-
imizing the finish execution time of the selected task [42]. Finally,
the status of the system is updated in the status update phases. At
the end of this process, a valid task schedule is obtained [1,29,32,
40,42,44].Many list-based scheduling heuristicswork only if a pre-
defined simplifying assumption is maintained. Some assumptions
can be justified in particular contexts, but others cannot be satis-
fied in real-world applications. Homogeneous processors, unlim-
ited number of processors and no precedence constraints among



1520 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
tasks, are examples of the simplifying assumptions [20]. Examples
of list-based algorithms are the algorithms presented in [42,29,40,
44,15,32].

Clustering heuristics trade off inter-processor communication
overheadwith parallelization by allocating heavily communicating
tasks to the same processor. In such heuristics, the tasks are
grouped into an unlimited number of clusters. The tasks that
belong to the same cluster will be assigned to the same processor.
If the number of created clusters is greater than the number of
available processors, clusters are merged so that the number of
remaining clusters matches the number of processors. Finally, the
clusters are mapped to the available processors, and the local
execution of tasks within each processor is determined. In general,
the complexity of clustering algorithms tends to be lower than list-
based algorithms [42,5,33]. Examples of clustering algorithms are
the algorithms introduced in [45,38,44].

Duplication algorithms start by running a clustering or list-
based algorithm to create an initial schedule. Next, the tasks
that have a large number of dependent tasks are identified and
executed redundantly on the processors in which their dependent
tasks are allocated to reduce inter-processor communications.
Hence, the waiting time of dependent tasks will be reduced. This
improvement in performance comes at the cost of increasing the
complexity of scheduling process [42,48,5,1]. Examples of this type
of heuristics are the algorithms presented in [5,1,30].

3.1.2. Guided random search algorithms
Guided random scheduling algorithms mimic the principles

of evolution and natural genetics to evolve near-optimal task
schedules. Among the various guided random algorithms, Genetic
Algorithms (GAs) are the most widely used for the scheduling
problem [42,48,47,18,41]. GA-based scheduling algorithms oper-
ate on a population of chromosomes that encode possible candi-
date schedules. During each iteration, or generation, of a GA, a set of
genetic operators are run on the population to evolve a new pop-
ulation of chromosomes. GA-based scheduling algorithms aim to
evolve near-optimal schedules after sufficient number of genera-
tions. To guide the search process, GA-based algorithms need to as-
sess the quality, or the fitness, of the encoded schedules [48,18,41].
The algorithmdeveloped by Zomaya et al. [48] is an example of this
class of algorithms.

Heuristic algorithmsmove fromone point in the search space to
another using a particular transition rule. In multimodal problems,
this point-to-point transition may mislead the search process. GA-
based scheduling algorithms overcome this problem by working
on a population of chromosomes in parallel. Hence this reduces
the probability of converging to a local optimum. In contrast to
heuristic algorithms, which require direct information about the
application and the HeDCS to carry out scheduling, GA-based
scheduling algorithms operate on chromosomes that represent
possible candidate schedules.

3.1.3. Hybrid scheduling algorithms
A hybrid scheduling algorithm combines both heuristic algo-

rithms andGAs. The Genetic List Scheduling (GLS) algorithm [19] is
an example of this class of algorithms. The GLS algorithm operates
on a resource set composed of the processors and the communi-
cation buses, and a user set composed of the tasks and the inter-
task communications. A GA is used to evolve a set of priorities. The
evolved priorities are used by a list-based algorithm to generate a
task schedule. Each chromosome in theGApopulation encodes two
sets of genes: user priorities and user-resource priorities. The user
priorities genes encode priorities of all users, and they are used to
select users for scheduling. The user-resource priorities are used to
allocate a resource to the selected user.
3.2. Task scheduling for HeDCSs

Effective task scheduling is an essential issue in obtaining high
performance in HeDCSs. Therefore, there are several algorithms
proposed in the literature for the problem of task scheduling in
HeDCSs. Examples of these algorithms are: Heterogeneous Earliest
Finish Time (HEFT) [42], Critical Path on a Processor (CPOP) [42],
Dynamic Level Scheduling (DLS) [40], Mapping Heuristic (MH) [15]
and Levelized Min Time (LMT) [26].

The DLS and HEFT algorithms are two of the best existing
scheduling algorithms for HeDCSs [42], and are employed as
benchmark scheduling algorithms in many studies such as [6,37].
Therefore, detailed description of these two algorithms is given in
this section.

3.2.1. The Dynamic Level Scheduling (DLS) algorithm
The DLS algorithm uses a quantity called Dynamic Level

DL(ti, pj), which is the difference between the maximum sum of
computation costs from task ti to an exit task, and the earliest start
execution time of ti on processor pj. In this algorithm, the earliest
start execution time of ti on pj is defined as the maximum of the
ready time of ti on pj, and the timewhen pj finishes the execution of
its already scheduled tasks. The DLS algorithm does not schedule
tasks between two previously scheduled tasks. To accommodate
HeDCSs, the computation cost of a task is taken as themedian of the
execution times of that task over all processors. Moreover, a new
quantity is added to the equation of DL(ti, pj) to account for the
various execution times of the same task on different processors.
At each scheduling step, the DLS algorithm evaluates the DL values
for all combinations of ready tasks and available processors. The
pair of ready task and available processor that has the highest DL
value is chosen for scheduling. The general time complexity of the
DLS algorithm is O(m × n3), where m is the number of processors
and n is the number of tasks. The comparison study presented
in [42] shows that the DLS algorithm outperforms the MH and
LMT algorithms for different values of DAG size, communication
to computation cost ratio, and parallelism factor (these terms will
be defined in Section 5). Moreover, the performance of the DLS
algorithm is comparable to that of the CPOP algorithm.

3.2.2. The Heterogeneous Earliest Finish Time (HEFT) algorithm
The HEFT algorithm starts by setting the computation costs of

tasks and communication costs of edges to their mean values. Each
task is assigned a value called upward rank. In this algorithm, the
upward rank of a task ti is the largest sum of mean computation
costs andmean communication costs along any directed path from
task ti to an exit task. A task list is then generated by sorting all
tasks by decreasing order of their upward rank; ties are decided
on a random basis. At each scheduling step, the unscheduled task
with the highest upward rank value is selected and assigned to
the processor that minimizes its finish execution time, using the
insertion-based scheduling policy. When a processor pj is assigned a
task ti, the insertion-based scheduling policy considers all possible
idle time slots on pj to find a time slot of equal or greater length
than the execution time of ti on pj. This must be done without
violating the precedence constraints among tasks. An idle time slot
on processor pj is defined as the idle time space between the finish
execution time and the start execution time of two consecutively
scheduled tasks on pj. The search starts from a time equal to the
ready time of ti on pj, and proceeds until it finds the first idle time
slot with the sufficient length for the computation cost of ti on pj.
If no such idle time slot is found, the insertion-based scheduling
policy inserts the selected task after the last scheduled task on pj.
The HEFT algorithm has a general time complexity of O(m × e)
wherem is the number of processors, and e is the number of edges.
The time complexity for dense DAGs, inwhich the number of edges



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1521
is proportional to n2 (where n is the number of tasks), is O(m×n2).
It has been shown in [42] that the HEFT algorithm outperforms the
CPOP, DLS,MH and LMT algorithms for different values of DAG size,
communication to computation cost ratio, and parallelism factor.

4. The proposed algorithm

The Hybrid Heuristic–Genetic Scheduling (H2GS) algorithm is
a two-phase scheduling algorithm. In the first phase, the H2GS
algorithm runs a heuristic scheduling algorithm, called the Longest
Dynamic Critical Path (LDCP) algorithm [12], to quickly generate a
high quality task schedule. The schedule generated by the LDCP
algorithm is located at an approximate area in the search space
around the optimal schedule. In the second phase, a new Genetic
Algorithm, called Genetic Algorithm for Scheduling (GAS), searches
that approximate area to improve the schedule generated by the
LDCP algorithm.

4.1. The Longest Dynamic Critical Path (LDCP) algorithm

The LDCP algorithm is a list-based algorithm for task scheduling
in HeDCSs [12]. The performance of list-based algorithms depends
on the method used to assign priorities to the tasks of a parallel
application. During a particular scheduling step, a task must be
assigned a high priority if the selection of this task for scheduling
ultimately leads to a shorter schedule. In this section, the problem
of assigning task priorities in HeDCSs is reviewed and an effective
attribute to address this problem is presented. Moreover, a brief
description of the LDCP algorithm is provided in Section 4.1.2. A
fully detailed description of the LDCP algorithm is given in [12].

4.1.1. Task priorities in HeDCSs
For DCSs with homogeneous processors, the critical path (CP)

attribute of a DAG provides an effectiveway for assigning priorities
to tasks. For a given DAG, the CP is defined as the path from an
entry task to an exit task that has the greatest sum of computation
costs of tasks and communication costs of edges [32]. The sum
of computation costs of the tasks located on the CP determines
the lower bound of the final schedule length. Hence, an efficient
list-based scheduling algorithm requires proper scheduling of the
tasks located on the CP. On the other hand, when two tasks
are scheduled on the same processor, the communication cost
between them is zero. Consequently, a CP changes dynamically
during the scheduling process. To overcome the dynamic behavior
of CPs, Kwok et al. [32] used an efficient attribute, called the
Dynamic Critical Path (or DCP), to effectively select tasks for
scheduling in homogeneous DCSs. The DCP is simply a CP that
is computed at each intermediate scheduling step, such that the
communication cost among two tasks scheduled on the same
processor is considered zero.

In HeDCSs, the various computation costs of the same task on
different processors present us with a problem: the DCP computed
using the computation costs of tasks on a particular processor
may differ from the DCP computed using the computation costs
of tasks on another processor. To overcome this problem, previous
scheduling algorithms for HeDCSs set the computation costs of
tasks to their median values, as in the DLS algorithm [40], or their
mean values, as in the HEFT algorithm [42], in order to get a
single computation cost for each task. However, these techniques
estimate approximate computation costs of tasks and hence, limit
the ability of scheduling algorithms to precisely compute the
priorities of tasks.

One important attribute that can be used to compute priorities
of tasks in HeDCSs precisely is the Longest Dynamic Critical Path
(LDCP) [12]. The LDCP is explained in Definition 1.
a b

Fig. 2. The DAG in Fig. 1 constructed using the computation costs of tasks on
processors (a) p0 and (b) p1 .

Definition 1. Given a DAG with n tasks and e edges, and a HeDCS
withmheterogeneous processors, the Longest Dynamic Critical Path
(LDCP) during a particular scheduling step is a path of tasks and
edges from an entry task to an exit task that has the largest sum
of communication costs of edges and computation costs of tasks
over all processors. Communication costs between tasks scheduled
on the same processor are assumed zero, and the execution
constraints are preserved.

For example, consider the applicationDAGand the computation
costs matrix in Fig. 1. At the beginning of the scheduling process,
i.e. before scheduling any task, the DCP computed using the
computation costs of tasks on processor p0 is composed from tasks
t0, t2, t4 and has a length of 16, as shown in Fig. 2a. However, the
DCP computed using the computation costs of tasks on processor
p1 is composed from t1, t2, t4 and has a length of 23, as shown in
Fig. 2b. Hence, at the beginning of scheduling process the LDCP is
composed from tasks t1, t2, t4 and has a length of 23.

4.1.2. The LDCP algorithm
The LDCP algorithm is a list-based scheduling algorithm for a

finite number of heterogeneous processors. In the LDCP algorithm,
each scheduling step consists of three phases: task selection,
processor selection and status update. These three phases are
repeateduntil all the tasks of the parallel application are scheduled.
A. Task selection phase

The LDCP attribute identifies a set of tasks that play an
important role in determining the provisional schedule length. To
compute the LDCP, a Directed Acyclic Graph that Corresponds to a
Processor (DAGP), which is explained in Definition 2, is constructed
for each processor in the system. These DAGPs are constructed at
the beginning of the scheduling process.

Definition 2. Given a DAG with n tasks and e edges and a HeDCS
with m heterogeneous processors {p0, p1, . . . , pm−1}, the Directed
Acyclic Graph that Corresponds to processor pj, called DAGPj, is the
task graph constructed using the structure of the DAG, with sizes
of tasks set to their computation costs on processor pj.

The DAGP0 and DAGP1 shown in Fig. 2a and b, respectively,
correspond to the application DAG and the HeDCS shown in Fig. 1.
Through the course of this paper, the task ti is used to refer to the
ith task in the application DAG. The node ni in DAGPj corresponds
to task ti in the application DAGwith its size set to the computation
cost of ti on processor pj. Hence, node ni on DAGPj identifies task ti
on the application DAG.

For each DAGP, all nodes are assigned upward rank (URank)
values to reflect their priority within that DAGP. The upward rank
is explained in Definition 3.

Definition 3. The upward rank of a node ni in a task graph DAGPj,
denoted as URankj(ni), is recursively defined as:



1522 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
URankj(ni) = wj(ni) + max
nk∈succj(ni)

{cj(ni, nk) + URankj(nk)} (1)

where succj(ni) is the set of immediate successors of ni on
DAGPj; wj(ni) is the size of ni in DAGPj; cj(ni, nk) is the communi-
cation cost between ni and nk in DAGPj.

Definition 4. Given a node ni in a task graphDAGPj, the immediate
successor of ni that satisfies the maximization term in Eq. (1) is
called the upward rank associated successor (URAS) of node ni.

The URank values of the nodes in a given DAGP are computed
recursively by traversing that DAGP upward starting from exit
nodes to entry nodes. TheURank value of an exit node is equal to its
size. Since we recursively compute the URank values of the nodes
in a given DAGP upward starting for the exit nodes, the node with
the highest URank value will always be an entry node.

Theorem 1. The node that has the highest URank value over all
DAGPs identifies the entry task of the LDCP1.

Theorem 2. If the tasks on the LDCP are being identified recursively
downward starting from the entry task, and node ni in DAGPj is used
to identify the last identified task on the LDCP, then the URAS of node
ni on DAGPj identifies the next task on the LDCP.1

The entry task of the LDCP is determined by locating a node
ni that has the highest URank value over all nodes on all DAGPs.
The remaining tasks on the LDCP can be identified by recursively
traversing the DAGP that contains node ni. Traversal starts from
node ni and moves downward. During traversal, the nodes that
identify the tasks on the LDCP are located using Theorem 2.

Definition 5. During a particular scheduling step, let the set of
nodesN be used to identify the tasks on the LDCP. The unscheduled
node in N with the highest URank value is defined as the key node.
The DAGP in which the nodes in N are located is called the key
DAGP.

Definition 6. During a particular scheduling step if the key node
has unscheduled parents, then the unscheduled predecessor of the
key node with the highest URank is defined as the parent key node.

At each scheduling step the key node, or the parent key node if
the key node has unscheduled parents, is used to identify the task
thatwill be selected for scheduling. Ties are broken by selecting the
task with the highest number of output edges first; if more than
one task exists, the tie is broken on a random basis.
B. Processor selection phase

In this phase, the selected task is assigned to a processor
that minimizes its finish execution time. The insertion-based
scheduling policy, described in Section 3.2.2, is used to select a
processor to execute the selected task and to determine the start
execution time of the selected task.
C. Status update phase

When a task is scheduled on a processor, the status of the
systemmust be updated to reflect the newchanges. The scheduling
of task ti on processor pj means that the computation cost of ti is
no more unknown. Hence, the sizes of the nodes that identify ti
are set to the computation cost of ti on pj on all DAGPs. Moreover,
a value of zero is assigned to all edges that extend between the
nodes that identify ti and the nodes that identify its parents that
are scheduled on processor pj. This must be done for all DAGPs
to indicate the zero communication cost between tasks scheduled

1 The Proofs of Theorems 1 and 2 can be found in page 402 of Ref. [12].
on the same processor. To reflect these changes, the URank values
of the nodes that identify the currently scheduled task and the
previously scheduled tasks are updated on all DAGPs.
D. The LDCP algorithm

The LDCP algorithm is formalized in Fig. 3. The LDCP algorithm
has a general time complexity of O(m×n3)wherem is the number
of processors, and n is the number of tasks.

As an example, consider the application DAG and the compu-
tation cost matrix shown in Fig. 4a and b. A stepwise trace of the
LDCP algorithm along with the schedule generated by the LDCP al-
gorithm are shown in Fig. 4c d, respectively. The schedules gen-
erated by the DLS and HEFT algorithms are shown in Fig. 4e and
f, respectively. The schedule generated by the LDCP algorithm has
a length of 64, which is shorter than the schedules generated by
the DLS (65.5) algorithm and the HEFT (65.5) algorithm. The last
schedule (Fig. 4g), with a length of 61.5, is the result of applying
the complete H2GS algorithm, which includes the GAS algorithm
explained in Section 4.2.

4.2. Genetic algorithm for scheduling (GAS)

In this section, the Genetic Algorithm for Scheduling (GAS)
is presented. The GAS algorithm uses the schedule generated by
the LDCP algorithm to create its initial population. The schedule
generated by the LDCP algorithm is located at an approximate
area in the search space around the optimal schedule. The GAS
algorithm searches around that approximate area to improve the
LDCP-generated schedule.

The GAS algorithm employs a simple genotype composed of
two-dimensional (2-D) chromosomes. New encoding and decod-
ing mechanisms are developed to allow for an efficient mapping
between the simple genotype and the complex phenotype, i.e. task
schedules. The encoding mechanism uses a simple and fast way
to represent task schedules using 2-D chromosomes. The decod-
ing mechanism maps any chromosome in the search space into a
valid task schedule, and hence ensures a dense search space. If the
scheduling problem is multimodal, a genetic algorithmmight pre-
maturely converge to a local optimumwhen the population diver-
sity is not maintained by the genetic operators during the search
process [2]. In order to avoid the problem of premature conver-
gence, customized genetic operators are developed specifically for
the task scheduling problem to maintain population diversity and
simultaneously enable an efficient stochastic search process. The
GAS algorithm can work on top of any other heuristic scheduling
algorithm to optimize its output schedules. The operation of the
GAS algorithm is formalized in Fig. 5.
A. Schedule encoding

The structure of the task scheduling problem, which is
presented as an application DAG that must be allocated to a set
of processors, requires a long binary encoded chromosome to
include all of the information of a valid task schedule. The encoded
schedule has to represent a task schedule in a way that maintains
a set of constraints: all the tasks in the application DAG must
be scheduled, any task in the application DAG must be executed
only once, and the precedence constraints between tasks must be
preserved.

In GAS, a 2-D string chromosome is used to encode the task
schedule. The 2-D chromosome is composed of a set of substrings,
such that the number of substrings in the chromosome is equal
to the number of processors in the system. The jth substring in
the chromosome represents processor pj in the computing system.
A task schedule is encoded by traversing each processor in the
schedule. When processor pj is traversed, the labels of the tasks
scheduled on processor pj are copied, in the same order, into the
jth substring of the chromosome. Therefore, the encoding of a



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1523
Fig. 3. The LDCP algorithm.
given task schedule will always lead to the same chromosome.
For example, consider the computation cost matrix, composed of
processors p0 and p1, and the application DAG shown in Fig. 1,
a valid task schedule for this application is the schedule shown
in Fig. 6a. This schedule can be encoded by copying the tasks
scheduled on processors p0 (tasks t0, t1, t3) and p1 (tasks t2, t4),
in the same order, into the first and second substrings of the
chromosome, respectively, as shown in Fig. 6b. Therefore, the
chromosome in Fig. 6b encodes the task schedule in Fig. 6a.
B. Chromosome decoding

The 2-D string chromosome stores two types of genetic
information: (i) the assignment of each task in the application DAG
to one of the processors in the computing system, and (ii) the
execution ordering of tasks assigned to the same processor. The
structure of the application DAG alongwith a list-based scheduling
mechanism are used to decode the information stored in the
chromosome in order to create a valid task schedule.

When a chromosome is decoded, the DAG of the unscheduled
application is traversed downward, starting from the entry tasks.
At each decoding step, the ready tasks of the unscheduled
application DAG are defined and assigned to processors according
to the location of their corresponding labels in the chromosome. If
the label of ready task ti is located in the jth substring, then task
ti is assigned to processor pj using the insertion-based scheduling
policy described in Section 3.2.2. If, at a given decoding step, the
labels of two or more ready tasks are located simultaneously on
the jth substring, only the first ready task, with a label preceding
the labels of other ready tasks on the jth substring, is selected and
assigned to processor pj. The transversal of tasks of the application
continues until all task labels in the chromosome are decoded.
Consider the decoding of the chromosome in Fig. 6c that represents
a valid schedule for the application DAG and computation cost
matrix in Fig. 1. The entry tasks of this application DAG are t0 and
t1. Although the labels of these entry tasks in the chromosome are
located in the substring of processor p0, the label of t0 precedes t1,
and hence t0 is selected and assigned to p0. In the next step, t1 is the
only ready task, and therefore it is assigned to p0. After assigning
t0 and t1, tasks t2 and t3 become ready with their labels located in
the substrings of p1 and p0, respectively; hence, t2 is assigned to
p1 and t3 is assigned to p0. In the final step, t4 becomes ready with
its label located in the substring of p1, and therefore it is assigned
to p1. The result of this decoding is the schedule shown in Fig. 6a.
These decoding steps can also be used to decode the chromosome
shown in Fig. 6b to create the schedule presented in Fig. 6a.

This decoding mechanism ensures that the decoding of any
chromosome in the search space will always lead to a valid
schedule.Moreover, the task schedule produced by the decoding of
a given chromosome can also be produced by the decoding of other
chromosomes. For example, the decoding of the two chromosomes
shown in Fig. 6b and c produces the same schedule shown in Fig. 6a
as discussed before. Thismany-to-onemapping from the genotype
to the phenotype parallels the degeneracy of the genetic code in
nature [43]. Genetic code degeneracy allows for silent mutations,
and has been shown to result in improved genetic diversity in
genetic search algorithms [35].
C. Initialization

The first step in the GAS algorithm is the creation of the
initial population. The schedule generated by the LDCP algorithm
is encoded, and the resulting chromosome is inserted into the
initial population. In addition to the chromosome produced



1524 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
a b c

d e f g

Fig. 4. (a) A DAG of a parallel application, (b) a computation cost matrix of a HeDCS, (c) stepwise trace of the LDCP algorithm, the schedules generated by the (d) LDCP, (e)
DLS, (f) HEFT, and (g) H2GS algorithms.
Fig. 5. The GAS algorithm.
using the LDCP algorithm, GAS creates a set of processor-based
chromosomes and randomly-generated chromosomes to ensure a
diverse initial population.
For each processor in the computing system, one processor-
based chromosome is created and inserted into the initial
population. The processor-based chromosome that corresponds



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1525
a

b c

Fig. 6. (a) An example of a task schedule (b) + (c) chromosome examples.
to processor pj is created by randomly sorting the labels of all
tasks and allocating them to the jth substring. No task labels are
assigned to the substrings that correspond to the other processors.
The randomly-generated chromosomes are created by randomly
assigning the labels of all the tasks to the substrings of the
chromosome.

The insertion of the LDCP-generated schedule, which enables
GAS to exploit the high quality building blocks discovered by LDCP,
and the processor-based and randomly-generated chromosomes,
which ensure a diverse population, into the initial population
of GAS allows for an effective exploration of the search space.
To reduce the complexity of the GAS algorithm, the number of
chromosomes in the population, or the population size, is fixed
throughout a GAS run. The smallest population is composed of the
chromosome produced using the LDCP algorithm in addition to
the processor-based chromosomes. Hence, the size of the smallest
population is equal to the number of processors in the system
plus 1.
D. Fitness evaluation

The fitness evaluation of a chromosome is quite simple. First,
each chromosome in the population is decoded, as described in
the chromosome decoding subsection, to create a task schedule.
The fitness of a chromosome is equal to 1/l, where l is the length
of its decoded schedule. The fact that the fitness function is simple
significantly enhances the performance of the GAS algorithm, and
leads to an efficient search process.
E. Selection and elitism

Copies of the fittest 10% of the chromosomes in the population
are copied without change to the elitism set. This mechanism
guarantees that the best chromosomes are never destroyed by
either the crossover or the mutation operators.

A rank-based selection mechanism with replacement is used
to select chromosomes for the mating pool. Unlike proportional
selection, in which individuals with high fitness values can
dominate the population in a few generations since the selection
probability of a chromosome is proportional to its fitness, rank-
based selection reduces selection pressure for chromosomes
with superior fitness values by assigning selection probability
to each chromosome based on the rank of this chromosome
compared to other individuals [21]. Therefore, for task scheduling
problems with multimodal search spaces, rank-based selection
maintains population diversity and assists in reducing premature
convergence of the population toward a sub-optimal point on the
fitness surface [22,21]. The size of the mating pool is equal to 90%
of the population size.
F. Swap crossover

Swap crossoverworks on two chromosomes in themating pool,
called parent chromosomes, to produce two offspring chromosomes
each with genetic material from both parents. For each parent
chromosome, one substring is chosen for crossover such that two
crossover points are randomly located on each selected substring.
Swap crossover exchanges the relative ordering of the tasks
delineated by the two crossover points between the two parent
chromosomes.

Swap crossover works by creating an intermediate modified
chromosome, called the mask chromosome, for each parent
chromosome. In the mask chromosome, the task-slice located
between the two crossover points is removed and replaced by
a task-slice that is delineated by the two crossover points from
the other parent. If the task labels on the inserted task-slice do
not match the task labels on the removed task-slice, then the
task labels on the mask chromosome that match the labels on
the inserted task-slice, and consequently do not have matching
labels on the removed task-slice, are marked as don’t move (DM).
For example, consider the two parent chromosomes shown in
Fig. 7a and b. Two crossover points are located on each parent
chromosome: the crossover points CP11 and CP12 are located on
the chromosome shown in Fig. 7a, and the crossover points CP21
and CP22 are located on the chromosome shown in Fig. 7b. The
mask chromosomes that correspond to the parent chromosomes
in Fig. 7a and b are shown in Fig. 7c and d, respectively. The DM
tasks in the mask chromosomes are marked by asterisks.

To create the offspring chromosome, both the mask chromo-
some and its parent chromosome are traversed string by string,
starting with the first task label of each substring. If the current
task label on the parent chromosome is identical to the current
task label on the mask chromosome, then it is moved to the off-
spring chromosome. However, if the current task label on themask
chromosome is marked as DM, then the current task label on the
mask chromosome is deleted from both the parent chromosome
andmask chromosome. If the current task label on the parent chro-
mosome is different from the current task label on the mask chro-
mosome, only the current task label on the parent chromosome is
moved to the offspring chromosome. Finally, before traversing to
the next substring, all task labels left on the current substring of
themask chromosome and do not havematching labels on the off-
spring chromosome, are moved in the same order to the offspring
chromosome. Fig. 7e shows the offspring chromosome created by
the parent chromosome in Fig. 7a and its mask chromosome in
Fig. 7c. Also, the offspring chromosome shown in Fig. 7f is created
by the parent chromosome in Fig. 7b and its mask chromosome in
Fig. 7d.

As mentioned before, swap crossover copies the relative
ordering between the tasks of the inserted task-slice into the
offspring chromosome. For example in the chromosomes shown
in Fig. 7a, task t4 is scheduled before task t2; while in the
inserted task-slice copied form the chromosome in Fig. 7b, task
t4 is scheduled after task t2. Swap crossover copies the relative
ordering between tasks t4 and t2 from the inserted task-slice to
the offspring chromosome. Hence, task t4 is scheduled after task t2
in the offspring chromosome as shown in Fig. 7e. Moreover, swap



1526 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
a

c

e f

d

b

Fig. 7. The swap crossover operator.
crossover ensures that each task in the application DAG is assigned
to exactly one processor in the computing system. Therefore, the
customized crossover operator employed by GAS improves the
population diversity by creating new chromosomes with genetic
information inherited form both parents, and concurrently enables
an efficient search process.

The swap crossover is applied with crossover probability of Pc
to chromosomes in the mating pool. For example, if Pc is equal to
0.7, which matches the value of Pc that is obtained after tuning
the GAS algorithm as discussed in Section 5.2.2, then 70% of the
chromosomes in the mating pool, on average, are crossed-over.
G. Swap mutation

Swapmutation is applied to chromosomes in themating pool to
enhance the diversity of the population. To mutate a chromosome,
two task labels are randomly selected and swapped. Swap
mutation is applied with probability of Pm to the chromosomes in
themating pool. Aswill be discussed in Section 5.2.2, several values
of mutation probability are examined to tune the GAS algorithm,
and the tuning results suggest that a Pm value of 0.5 enables GAS to
obtain the shortest schedules.

After applying the swap crossover and swap mutation opera-
tors, the chromosomes in the mating pool are combined with the
chromosomes in the elitism set to create the new population.
H. Termination criterion

Although static scheduling takes place offline, a limit must
be placed on the running time of the scheduling algorithm to
provide a practical solution. The maximum running time of the
GAS algorithm depends on the characteristics of the parallel
application. As will be discussed in Section 5.2.3, coarse-task
parallel applications, or parallel applications that are composed
of tasks with relatively long execution times, require high quality
task schedules because of the relatively high cost of a faulty
scheduling decision. On the other hand, parallel applications that
are composed of fine tasks, which execute quickly, require lower
quality task schedules, still near-optimal, that can be produced
within short compilation times. To provide a practical solution, the
GAS algorithm runs for a predetermined number of generations
which is set according to the characteristics and real-world context
of the parallel application.

5. Results and analysis

In this section, the performance of each phase of the H2GS
algorithm is presented in comparison with the DLS and HEFT
algorithms, which are two of the best existing scheduling
algorithms for HeDCSs as discussed in Section 3.2. An explicit
comparison with some other well-known scheduling algorithms
for HeDCSs, such as the CPOP, MH and LMT algorithms, is not
carried out as the DLS and HEFT algorithms have already been
tested against them, and have given better or, atworst, very similar
results [42].

To carry out the comparison, the H2GS, DLS and HEFT algo-
rithms are simulated. In order to avoid any bias toward a partic-
ular graph structure, two sets of benchmark application graphs are
used: randomly-generated application graphs and regular applica-
tion graphs that correspond to three numerical applications.

5.1. Performance metrics

The performance metrics chosen for the comparison are the
Normalized Schedule Length (NSL) [5], speedup [42] and running
time of the algorithms. The three metrics are explained below:
- Normalized Schedule Length (NSL): the NSL of a task schedule is
defined as the normalized schedule length to the lower bound of
the schedule length. It is calculated using Eq. (2):

NSL =
Schedule Length∑

ti∈CPlower

ci,a
(2)

where the CPlower is the CP of the unscheduled application DAG,
based on the computation cost of tasks on the fastest processor pa.
The denominator of Eq. (2) is equal to the sumof computation costs
of tasks located on CPlower , when they are executed on pa.
- Speedup: the speedup of a task schedule is the ratio of the
serial schedule length obtained by assigning all tasks to the fastest
processor, to the parallel execution time of the task schedule.
- Running Time: the running time of a scheduling algorithm is
defined as the execution time required to produce the output
schedule.

The average NSL, speedup and running time over a set of
application DAGs are computed for the scheduling algorithms.

5.2. Performance results on random graphs

5.2.1. Creation of random graphs
A set of randomly-generated DAGs is created using a random

DAG generator. The random DAG generator has a set of input
parameters that determines the characteristics of the generated
DAGs. These input parameters are described below:
- DAG size, n: the number of tasks in the application DAG.
- Communication to computation cost ratio, CCR: the average
communication cost divided by the average computation cost of
the application DAG.



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1527
Fig. 8. Average NSL and speedup on random graphs.
- Parallelism factor, α: the number of levels of the application DAG
is calculated by randomly generating a number, using a uniform
distributionwith amean value of

√
n

α
, and then rounding it up to the

nearest integer. The width of each level is calculated by randomly
generating a number using a uniform distribution with a mean
value ofα×

√
n, and then rounding it up to the nearest integer [42].

A low α value leads to a DAG with a low parallelism degree [5].
- Computation cost heterogeneity factor, h: a high h value indicates
high variance of the computation costs of a task, with respect to
the processors in the system, and visa versa. If the heterogeneity
factor is set to 0, the computation cost of a task is the same for
all processors. The average computation cost of a task ti(wi) is
randomly generated using a uniform distribution with a mean
value of W . The value of W , which represents the average
computation cost of all tasks in the parallel application, does not
affect the comparison results, and it can be any arbitrary value. If
there arem processors in the HeDCS, the computation cost of a task
ti for each processor is set by randomly selecting m computation
cost values of ti from the range [wi × (1 −

h
2 ), wi × (1 +

h
2 )]. The

m selected computation cost values of ti are sorted in an increasing
order. The computation cost value of ti on processor p0 is set to the
first (i.e lowest) computation cost. The computation cost of ti on
processor p1 is set to the second value. This allocation continues
until all processors are processed [42].

The created randomDAGs set consists of 2000 applicationDAGs
with four different numbers of processors, varying from 2 to 8
with an increment of 2. For each number of processors, we use
five different DAG sizes varying from 20 to 100 nodes with an
increment of 20; five different CCR values: 0.1, 0.5, 1.0, 2.0 and 5.0;
fourα values: 0.5, 1.0, 2.0 and 5.0; and five h values: 0.1, 0.2, 0.4, 0.6
and 0.8. Hence, corresponding to each number of processors, a set
of 500 application DAGs is created. The large set of random graphs,
which consists of 2000 DAGswith diverse characteristics, prevents
bias toward one specific scheduling algorithm. The parameter
values, which are used in this subsection and the next subsection,
are essentially the same as those used by Topcuoglu et al. in [42].
5.2.2. Tuning the GAS algorithm
To select the parameter values of GAS, which include Pc , Pm,

population size and number of generations, 50 DAGs are randomly
selected from the random DAGs set, which consists of 2000 DAGs,
and used to tune GAS. Twenty values of Pm and Pc are tested,
varying from 0.05 to 1.00 with an increment of 0.05. Ten values
of number of generations are tested, varying from 5 to 50 with an
increment of 5. The population size is varied from 10 to 50 with
an increment of 5. GAS, on average, achieved the shortest task
schedules when Pc and Pm are equal to 0.7 and 0.5, respectively.
Moreover, the improvement in performance, in terms of schedule
length, obtained by running GAS for more than 20 generations,
is less than 10% compared to the schedules obtained using 20
generations. For the number of processors used in this study, a
population of 25 chromosomes is found to produce satisfactory
results since larger values of population size do not lead to
effective improvement in performance and, at the same time,
considerably increase the running timeof theGAS algorithm. Based
on these results, the values of Pc, Pm, population size and number
of generations are set to 0.7, 0.5, 25 and 20, respectively, to produce
the results reported in this paper. It is worth mentioning that
there are several other approaches that can be used to select the
parameter values of GAS [14].

5.2.3. Performance results
TheNSL and speedupvalues achievedby eachphase of theH2GS

algorithm and the DLS and HEFT algorithms are compared with
respect to variousDAG sizes andCCRvalues.Moreover, the running
time of the scheduling algorithms is studied with respect to the
number of nodes.

The NSLs produced by the H2GS, DLS and HEFT algorithms with
respect to CCR are shown in Fig. 8a. The average NSL of the first
phase of H2GS, i.e. the LDCP algorithm, is shorter than the DLS
and HEFT algorithms by: (1.0%, 0.9%), (2.4%, 1.6%), (4.4%, 2.0%),
(5.7%, 2.2%) and (7.5%, 3.1%), for CCR of: 0.1, 0.5, 1.0, 2.0 and 5.0,
respectively. Moreover, as shown in Fig. 8a, GAS enhances the



1528 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
schedules generated by LDCP to generate shorter schedules. The
average NSL value of the complete H2GS algorithm is shorter than
the DLS and HEFT algorithms by: (1.5%, 1.5%), (3.3%, 2.5%), (5.8%,
3.4%), (8.1%, 4.7%) and (17.3%, 13.3%), for CCR of: 0.1, 0.5, 1.0, 2.0
and 5.0, respectively. The first value of each parenthesized pair is
the improvement achieved by each phase of the H2GS algorithm
over the DLS algorithm,while the second value is the improvement
of each phase of H2GS over theHEFT algorithm. This convention for
representing results will be adhered throughout this paper, unless
an exception is explicitly noted.

The speedup values achieved by the scheduling algorithms
with respect to CCR are shown in Fig. 8b. The average speedup
value of the first phase of the H2GS algorithm is higher than
those returned by the DLS and HEFT algorithms by: (1.9%, 1.4%),
(4.7%, 2.6%), (7.0%, 2.5%), (8.2%, 4.1%) and (12.3%, 5.0%), for CCR of:
0.1, 0.5, 1.0, 2.0 and 5.0, respectively. Furthermore, as shown in
Fig. 8b, the GAS algorithm improves the speedup obtained by the
LDCP algorithm. The average speedup achieved by the complete
H2GS algorithm is greater than those gained by the DLS and HEFT
algorithms by: (2.5%, 2.0%), (5.9%, 3.8%), (9.1%, 4.4%), (12.1%, 7.7%)
and (24.1%, 16.1%), when the CCR is equal to: 0.1, 0.5, 1.0, 2.0 and
5.0, respectively.

In these experiments, the first phase of H2GS outperforms
the DLS and HEFT algorithms for all tested CCR values in terms
of both NSL and speedup. As the value of CCR increases, inter-
processor communication overhead dominates computation and
hence, the performance of the scheduling algorithms tends to
degrade. However, as shown in Fig. 8a and b, the first phase of
H2GS, or the LDCP algorithm, is more effectively able to deal with
the increase in communication cost compared to both the DLS and
HEFT algorithms. The ability of the LDCP algorithm to efficiently
handle the increase in communication overhead can be explained
as follows. As the CCR value increases, the LDCP attribute will be
dominated by tasks that have high inter-processor communication
overhead. Hence, heavily communicating tasks will be identified
and selected for scheduling before other tasks. Moreover, at each
scheduling step, the insertion-based scheduling policy assigns the
selected task to a processor that minimizes its finish executing
time. Hence, heavily communicating tasks will be selected and
assigned to the same processor if such an assignment leads to
a shorter provisional schedule. Finally, the status update phase
ensures that the LDCP attribute is effectively updated during the
scheduling process. Therefore, heavily communicating tasks will
be regularly identified and scheduled to reduce the final schedule
length. Moreover, as shown in Fig. 8a and b, the improvement
of performance achieved by the second phase of H2GS, or the
GAS algorithm, increases as the value of CCR increases. Hence,
the improvement of performance obtained by the complete H2GS
algorithm over the DLS and HEFT algorithms, as well as the LDCP
algorithm, increases as CCR becomes higher.

The average NSL values achieved by the scheduling algorithms
with respect to DAG size are shown in Fig. 8c. The average NSL
value of the first phase of H2GS is shorter than those of the DLS
and HEFT algorithms by: (5.1%, 3.1%), (5.1%, 2.3%), (5.8%, 2.7%),
(4.1%, 1.7%) and (4.3%, 1.3%), for DAG sizes of: 20, 40, 60, 80 and
100, respectively. Moreover, the average NSL value produced by
the complete H2GS algorithm is shorter than the DLS and HEFT
algorithms by: (17.2%, 15.5%), (9.9%, 7.3%), (7.9%, 4.9%), (6.0%, 3.6%)
and (6.1%, 3.2%), when the number of nodes is equal to: 20, 40,
60, 80 and 100, respectively. The speedup values obtained by
the scheduling algorithms with respect to DAG size are shown
in Fig. 8d. The average speedup achieved by the first phase of
H2GS is greater than the DLS and HEFT algorithms by: (6.6%, 3.1%),
(6.0%, 2.6%), (6.6%, 3.4%), (4.9%, 2.4%) and (5.0%, 2.4%), when the
number of nodes is equal to: 20, 40, 60, 80 and 100, respectively.
Furthermore, the average speedup obtained by the complete H2GS
Fig. 9. Average running time with respect to DAG size.

algorithm is higher than the DLS and HEFT algorithms by: (13.2%,
9.4%), (8.5%, 5.1%), (9.0%, 5.7%), (6.6%, 4.0%) and (6.3%, 3.6%), forDAG
sizes of: 20, 40, 60, 80 and 100, respectively. The first phase ofH2GS
achieves better results than both the DLS and HEFT algorithms in
terms of NSL as well as speedup, for any number of nodes in our
range. Furthermore, the second phase of H2GS improves the LDCP-
generated schedules,whichwas created in the first phase, to obtain
task schedules of better quality for all tested values of DAG size.

Fig. 9 shows the average running time of each phase of the
H2GS algorithm as well as the DLS and HEFT algorithms with
respect to the DAG size. The running times of all scheduling
algorithms are much lower than the execution times reported for
parallel applications run on real parallel computing systems [25].
The average running time of the first phase of H2GS is higher
than both the DLS and HEFT algorithms by 189.3% and 454.9%,
respectively. The average running time of the complete H2GS
algorithm is higher than the DLS and HEFT algorithms by 1428.8%
and 2832.0%, respectively. On average 81.1% of the H2GS running
time comes from the GAS phase. An advantage to the vast running
time difference between the LDCP phase and the GAS phase is that
the LDCP algorithm is run first to find high quality task schedules.
The GAS algorithm is run for a predefined number of generations
to further improve the schedules created by the LDCP algorithm.
The running of GAS can be interrupted at any time.

The scheduling process of the DLS, HEFT and LDCP algorithms
depends on the relative values of the computation costs of tasks
and communication costs of edges with respect to each other,
rather than the absolute costs of tasks and edges [40,42,12].
Moreover, all operators of the GAS algorithm do not depend
on the absolute values of the computation costs of tasks and
communication costs of edges, but they can be affected by the
relative costs of tasks and edges. Therefore, the structure, i.e. the
allocation of the tasks to the processors and the execution order
of the tasks assigned to each processor, of the schedules generated
by the DLS, HEFT, LDCP and H2GS algorithms depends only on the
relative costs of tasks and edges. For example, assume that the
communication costs of all edges in the DAG shown in Fig. 4a is
scaled by a factor of a and the values of the computation costmatrix
of the HeDCS shown in Fig. 4b are scaled by the same factor a, the
structure of the schedules generated by the LDCP, DLS, HEFT and
H2GS algorithms for the scaled DAG and the scaled computation
cost matrix will be identical to the structure of the schedules
shown in Fig. 4d, e, f and g, respectively, that are achieved by
the algorithms before scaling the DAG and the computation cost
matrix. However, the lengths of schedules created by the LDCP,
DLS, HEFT and H2GS algorithms for the scaled DAG and the scaled
computation costmatrix are equal to a×64, a×65.5, a×65.5 and
a × 61.5, respectively, compared to schedule lengths of 64, 65.5,
65.5 and 61.5, respectively, obtained using the same algorithms
before applying the scaling factor. This reasoning suggests that the



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1529
cost of faulty scheduling decisions obtained using these algorithms
for parallel applications with coarse tasks, i.e. tasks with large
computation costs, and intensive inter-task data transfers, i.e.
edges with large communication costs, is higher than the cost of
faulty schedules computed for applications with fine tasks and
small inter-task data transfers.

The two-phase feature of the H2GS algorithm allows for the
customization of the scheduling process based on the scheduling
problem under consideration. When the cost of faulty scheduling
decision is high and the search space of the scheduling problem
is multimodal [2], the GAS algorithm can be adjusted to run for
a large number of generations such that at each new generation
the GAS algorithm exploits the high quality building blocks that
are discovered in the previous generations to explore new areas
in the search space. The large number of iterations along with
the customized genetic operators that are designed to maintain
population diversity enable the search process to converge to
the global optimum and prevent premature convergence to a
local optimum [2]. Another approach to avoiding premature
convergence of genetic algorithms, especially when applied to
multimodal problems, utilizes a large population consisting of
multiple subpopulations within the niches defined by the various
optima of the fitness surface. This enhances the diversity of
the population and hence improves the search, as witnessed
by [39]. On the other hand, when fast scheduling decisions are
required, the GAS algorithm can be run for a predefined number
of generations in order to generate task schedules within a specific
time window, but not necessarily optimally. The characteristics of
the search space of a particular application can be estimated from
observations of previous runs of this application on the HeDCS.

5.3. Performance results on regular graphs

In this section, the performance of the scheduling algorithms
is studied with respect to the application DAGs of three real
world parallel algorithms: Gaussian elimination algorithm [42,44],
fast Fourier transform algorithm [8,10] and a molecular dynamics
code given in [28,42]. Since the structure of the regular graphs
is known, there is no need for the parallelism factor parameter.
The CCR and h parameters have the same set of values here as in
Section 5.2. The NSL and speedup of the regular graphs will be
presented with respect to CCR. Hence, the order of parenthesized
pairs will correspond to CCR values of: 0.1, 0.5, 1.0, 2.0 and
5.0, respectively. This convention for representing results will be
adhered throughout this section.

5.3.1. Gaussian elimination
The Gaussian elimination algorithm is characterized by the

size of the input matrix. If N is the size of the input matrix, the
number of nodes in the task graph is equal to N2

+N−2
2 [42]. For

the experiments of the Gaussian elimination algorithm, the size of
input matrix (N) is used in place of the DAG size (n).

For the NSL comparison, the matrix size is varied from 5 to 20,
with an increment of 1, and the number of processors is set to
5. Fig. 10a shows the average NSLs produced by each scheduling
algorithm in relation to CCR. The average NSL value of the first
phase of H2GS is shorter than those of theDLS andHEFT algorithms
by: (0.5%, 0.4%), (0.9%, 0.7%), (1.4%, 1.2%), (2.4%, 1.7%) and (3.7%,
2.8%). Moreover, the NSL value of the complete H2GS algorithm is
shorter than the DLS and HEFT algorithms by: (1.5%, 1.4%), (2.1%,
1.9%), (2.8%, 2.6%), (4.0%, 3.3%) and (5.8%, 4.9%).

Fig. 10b shows the speedup values of the scheduling algorithms
with respect to CCRwhen the number of processors is varied from
2 and 8, with an increment of 2, and the size of the input matrix is
set to 20. The first phase of H2GS has a higher speedup value than
the DLS and HEFT algorithms by: (0.8%, 0.5%), (1.0%, 0.8%), (2.4%,
1.3%), (2.9%, 1.8%) and (3.7%, 2.8%). The average speedup obtained
by the complete H2GS algorithm is greater that the DLS and HEFT
algorithms by: (1.9%, 1.6%), (2.3%, 2.2%), (3.9%, 2.8%), (4.3%, 3.2%)
and (6.3%, 5.3%).

5.3.2. Fast Fourier transform
The task graph of the fast Fourier transform (FFT) algorithm is

characterized by the size of the input vector. For an input vector
of size M, the total number of nodes in the task graph is equal to
(2×M−1)+(M×log2 M). As inGaussian elimination experiments,
the size of the input vector (M) is used in place of the DAG size.

To study the NSL values of the scheduling algorithms, the size
of the input vector is varied between 2 and 32, incrementing by
a power of 2, and the number of processors is set to 5. Fig. 10c
shows the average NLS values of the scheduling algorithms with
respect to CCR. The average NSL obtained by the first phase of H2GS
is shorter than the DLS and HEFT algorithms by: (0.8%, 0.9%), (1.6%,
1.3%), (2.5%, 2.3%), (3.0%, 3.4%) and (4.9%, 5.8%). The average NSL
value achieved by the complete H2GS algorithm is better than the
DLS and HEFT algorithms by: (1.7%, 1.8%), (2.8%, 2.5%), (3.7%, 3.7%),
(5.5%, 6.3%) and (7.4%, 9.0%).

Fig. 10d presents the speedup values obtained by the four
scheduling algorithms with respect to CCR, when the size of the
input vector is set to 32, and the number of processors is varied
from2 to 8with an increment of 2. The first phase ofH2GS achieved
a greater speedup value than the DLS and HEFT algorithms by:
(0.6%, 0.7%), (1.2%, 1.1%), (2.1%, 2.2%), (4.0%, 4.0%) and (5.7%,
8.2%). Moreover, the average speedup value of the complete H2GS
algorithm is greater than the DLS and HEFT algorithms by: (1.8%,
1.9%), (2.8%, 2.7%), (4.9%, 5.0%), (7.0%, 6.9%) and (9.5%, 12.0%).

5.3.3. Molecular dynamics code
Theperformance of the scheduling algorithms is comparedwith

respect to the application DAG of the molecular dynamics code
given in [28,42]. Since the number of tasks (41 tasks) and the graph
structure are known, only the CCR and h values are used in this
experiment.

Fig. 10e shows the average NSL values of the scheduling
algorithms with respect to CCR when the number of processors is
set to 5. The first phase of H2GS outperforms the DLS and HEFT
algorithms in termsofNSL by: (1.2%, 1.4%), (1.5%, 2.3%), (1.8%, 2.9%),
(2.8%, 3.2%) and (10.4%, 5.7%). The average NSL value obtained by
the complete H2GS algorithm is better than the HEFT and DLS
algorithms by: (1.5%, 1.7%), (2.2%, 3.0%), (3.7%, 4.8%), (6.5%, 6.9%)
and (14.8%, 10.3%).

Fig. 10f presents the average speedup values of the scheduling
algorithms with respect to CCR. Since the maximum number of
tasks in any level of the molecular dynamics code DAG is less
than 7, the number of used processors is varied from 2 to 7 with
an increment of 1 [42]. The average speedup value gained by the
first phase of H2GS is higher than the DLS and HEFT algorithms
by: (0.7%, 0.8%), (1.2%, 3.0%), (5.4%, 7.2%), (6.9%, 9.3%) and (10.0%,
12.5%). Moreover, the speedup values obtained by the complete
H2GS algorithm outperform the DLS and HEFT algorithms by:
(2.5%, 2.6%), (3.3%, 5.0%), (5.6%, 7.4%), (10.9%, 13.4%) and (15.8%,
18.5%).

For real world applications, the H2GS algorithms outperform
the DLS and HEFT algorithms in terms of schedule length
and speedup. The general trend of increasing improvement in
performance obtained by each phase of the H2GS algorithm over
the DLS and HEFT algorithms as CCR increases, is observed here as
well. This provides clear indication that there is a trendof improved
performance with increasing CCR.

6. Summary and conclusions

In this paper, we present a new algorithm, called H2GS, for
static task scheduling on heterogeneous distributed computing



1530 M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531
Fig. 10. Average NSL and speedup on regular graphs.
systems (HeDCSs). H2GS is a two-phase algorithm, with the first
phase being a list-based scheduling heuristic, called the Longest
Dynamic Critical Path algorithm (or LDCP). The LDCP algorithm
generates a near-optimal task schedule, which in turn is injected
into the second phase of H2GS: an especially designed Genetic
Algorithm for Scheduling (or GAS). GAS uses a simple chromosome
structure to represent task schedules. A newmapping procedure is
developed to map every possible chromosome in the search space
into a valid task schedule. Moreover, a set of customized genetic
operators are introduced to further optimize the schedule received
from the LDCP algorithm. The degree of improvement achieved by
GAS depends on the number of generations that GAS is run for,
which is user-controllable. A user with strict scheduler execution-
time requirements will have to run GAS for a few generations,
while one with loose execution-time requirements (e.g. off-line
optimization) can run it for a large number of generations to evolve
the shortest possible schedules.

On randomly-generated graphs, the H2GS algorithm shows sig-
nificant improvement, in termsofNormalized Schedule Length and
Speedup, over two leading existing scheduling algorithms for HeD-
CSs: the HEFT and DLS algorithms. H2GS is also compared against
HEFT and DLS on three real-world parallel applications: Gaussian
elimination, fast Fourier transform and amolecular dynamics code,
with favorable results in every case. The improvement in perfor-
mance achieved by the two-phased H2GS algorithm, over both the
DLS and HEFT algorithms tends to increase as CCR increases. Due
to its ability to generate high quality task schedules at high CCR
values, the H2GS algorithm provides a practical solution for task
scheduling on HeDCSs for applications with high communication
costs.

We plan to extend the H2GS algorithm to partially-connected
networks of heterogeneous processors. This will allow the use of
the H2GS algorithm for a wide range of HeDCSs.

References

[1] I. Ahmad, Y.K. Kwok, On exploiting task duplication in parallel program
scheduling, IEEE Trans. Parallel Distrib. Syst. 9 (1998) 872–892.

[2] J. Andre, P. Siarry, T. Dognon, An improvement of the standard genetic
algorithm fighting premature convergence in continuous optimization, Adv.
Eng. Softw. 32 (2001) 49–60.

[3] R. Bajaj, D.P. Agrawal, Improving scheduling of tasks in a heterogeneous
environment, IEEE Trans. Parallel Distrib. Syst. 15 (2004) 107–118.

[4] S. Bansal, P. Kumar, K. Singh, Dealing with heterogeneity through limited
duplication for scheduling precedence constrained task graphs, J. Parallel
Distrib. Comput. 65 (2005) 479–491.

[5] S. Bansal, P. Kumar, K. Singh, An improved duplication strategy for scheduling
precedence constrained graphs inmultiprocessor systems, IEEE Trans. Parallel
Distrib. Syst. 14 (2003) 533–544.



M.I. Daoud, N. Kharma / J. Parallel Distrib. Comput. 71 (2011) 1518–1531 1531
[6] S. Baskiyar, C. Dickinson, Scheduling directed a-cyclic task graphs on a
bounded set of heterogeneous processors using task duplication, J. Parallel
Distrib. Comput. 65 (2005) 911–921.

[7] W.F. Boyer, G.S. Hura, Non-evolutionary algorithm for scheduling dependent
tasks in distributed heterogeneous computing environments, J. Parallel
Distrib. Comput. 65 (2005) 1035–1046.

[8] Y.C. Chung, S. Ranka, Application and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed-memory
multiprocessors, in: Proc. Supercomputing’92, Minneapolis, MN, 1992,
pp. 512–521.

[9] E.G. Coffman, Computer and Jop-Shop Scheduling Theory, John Wiley & Sons
Inc, New York, NY, 1976.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[11] H. Dail, F. Berman, H. Casanova, A decoupled scheduling approach for grid
application development environments, J. Parallel Distrib. Comput. 63 (2003)
505–524.

[12] M.I. Daoud, N. Kharma, A high performance algorithm for static task
scheduling in heterogeneous distributed computing systems, J. Parallel Distrib.
Comput. 68 (2008) 399–409.

[13] M.I. Daoud, N. Kharma, An efficient genetic algorithm for task scheduling in
heterogeneous distributed computing systems, in: Proc. 2006 IEEE Congress
on Evolutionary Computation, Vancouver, BC, Canada, 2006, pp. 3258–3265.

[14] A.E. Eiben, Z. Michalewicz, M. Schoenauer, J.E. Smith, Parameter control in
evolutionary algorithms, Stud.Comput. Intell. 54 (2007) 19–46.

[15] H. El-Rewini, T.G. Lewis, Scheduling parallel program tasks onto arbitrary
target machines, J. Parallel Distrib. Comput. 9 (1990) 138–153.

[16] H. El-Rewini, T.G. Lewis, H.H. Ali, Task Scheduling in Parallel and Distributed
Systems, Prentice Hall, New Jersey, NJ, 1994.

[17] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Co, New York, NY, 1979.

[18] D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine
Learning, Addison-Wesley, Boston, MA, 1989.

[19] M. Grajcar, Genetic list scheduling algorithm for scheduling and allocation
on a loosely coupled heterogeneous multiprocessor system, in: Proc. 36th
ACM/IEEE Conference on Design automation, New Orleans, LA, 1999,
pp. 280–285.

[20] M. Grajcar, Strengths and weaknesses of genetic list scheduling for hetero-
geneous systems, in: Proc. 2nd International Conference on Application of
Concurrency to System Design ACSD’01, Newcastle upon Tyne, UK, 2001,
pp. 123–132.

[21] J. Grefenstette, Rank-based selection, in: T. Back, D.B. Fogel, Z. Michalewicz
(Eds.), Handbook of Evolutionary Computation, first ed., Oxford Univ. Press,
Oxford, UK, 1997, pp. C2.4.1–C2.4.6.

[22] J.J. Grefenstette, K.A. De Jong, W.M. Spears, Competition-based learning,
in: A.L. Meyrowitz, S. Chipman (Eds.), Foundations of Knowledge Acquisi-
tion: Machine Learning, Kluwer Academic Publishers, Norwell, MA, 1993,
pp. 203–226.

[23] B. Hamidzadeh, L.Y. Kit, D.J. Lilja, Dynamic task scheduling using online
optimization, IEEE Trans. Parallel Distrib. Syst. 11 (2000) 1151–1163.

[24] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, Performance effective task
scheduling algorithm for heterogeneous computing system, in: Proc. 4th
International Symposium on Parallel and Distributed Computing, France,
2005, pp. 28–38.

[25] A. Iosup, C. Dumitrescu, D. Epema, H. Li, L. Wolters, How are real grids used?
The analysis of four grid traces and its implications, in: Proc. 7th IEEE/ACM
International Conference on Grid Computing, Spain, 2006, pp. 262–269.

[26] M. Iverson, F. Ozguner, G. Follen, Parallelizing existing applications in
a distributed heterogeneous environment, in: Proc. 4th Heterogeneous
Computing Workshop, Santa Barbara, CA, 1995, pp. 93–100.

[27] M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task execution
times through analytic benchmarking for scheduling in a heterogeneous
environment, IEEE Trans. Comput. 48 (1999) 1374–1379.

[28] S.J. Kim, J.C. Browne, A general approach to mapping of parallel computation
upon multiprocessor architectures, in: Proc. International Conference on
Parallel Processing, Pennsylvania State University, University Park, PA, 1988,
pp. 1–8.

[29] J. Kim, J. Rho, J.-O. Lee, M.-C. Ko, CPOC: Effective static task scheduling for
grid computing, in: Proc. 2005 International Conference on High Performance
Computing and Communications, Italy, 2005, pp. 477–486.

[30] B. Kuatrachue, T.G. Lewis, Grain size determination for parallel processing,
IEEE Softw. 5 (1988) 23–32.

[31] Y.K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv. 31 (1999) 406–471.
[32] Y.K. Kwok, I. Ahmad, Dynamic critical-path Scheduling: An effective technique
for allocating task graphs to multiprocessors, IEEE Trans. Parallel Distrib. Syst.
7 (1996) 506–521.

[33] J. Liou, M.A Palis, A comparison of genetic approaches to multiprocessor
scheduling, in: Proc. 11th International Parallel Processing Symp., Geneva,
Switzerland, 1997, pp. 152–156.

[34] S. Nesmachnow, H. Cancela, E. Alba, Heterogeneous computing scheduling
with evolutionary algorithms, Soft Computing-A Fusion of Foundations,
Methodologies and Applications (2010); Available from:
http://dx.doi.org/10.1007/s00500-010-0594-y.

[35] M. O’Neill, C. Ryan, Genetic code degeneracy: Implications for grammatical
evolution and beyond, in: Proc. 5th European Conference on Artificial Life,
Lausanne, Switzerland, 1999, pp. 149–143.

[36] P. Phinjaroenphan, S. Bevinakoppa, P. Zeephongsekul, Amethod for estimating
the execution time of a parallel task on a grid node, in: Lecture Notes in
Computer Science 3470, European Grid Conference on Advances in Grid
Computing, Amsterdam, Netherlands, 2005, pp. 226–236.

[37] A. Radulescu, A.J.C. van Gemund, Low-cost task scheduling for distributed-
memory machines, IEEE Trans. Parallel Distrib. Syst. 13 (2002) 648–658.

[38] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors,
MIT Press, Cambridge, MA, 1989.

[39] P. Siarry, A. Petrowski, M. Bessaou, Amultipopulation genetic algorithm aimed
at multimodal optimization, in: A.L. Meyrowitz, S. Chipman (Eds.), Advances
in Engineering Software, 33, 2002, pp. 207–213.

[40] G.C. Sih, E.A. Lee, A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures, IEEE Trans. Parallel
Distrib. Syst. 4 (1993) 175–187.

[41] M. Srinivas, L.M. Patnaik, Genetic algorithms: A survey, Computer 27 (1994)
17–26.

[42] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (2002) 260–274.

[43] R.F. Weaver, Molecular Biology, fourth ed., McGraw-Hill Higher Education,
Boston, MA, 2008.

[44] M.Wu, D. Dajski, Hypertool: A programming aid for message passing systems,
IEEE Trans. Parallel Distrib. Syst. 1 (1990) 330–343.

[45] T. Yang, A. Gerasoulis, DSC: Scheduling parallel tasks on anunboundednumber
of processors, IEEE Trans. Parallel Distrib. Syst. 5 (1994) 951–967.

[46] W. Zhang, B. Fang, H. He, H. Zhang, M. Hu, Multisite resource selection
and scheduling algorithm on computational grid, in: Proc. 18th International
Parallel and Distributed Processing Symp., Los Alamitos, CA, 2004, p. 105.

[47] A.Y. Zomaya, Y.H. Teh, Observations on using genetic algorithms for dynamic
load balancing, IEEE Trans. Parallel Distrib. Syst. 12 (2001) 899–911.

[48] A. Zomaya, C. Ward, B. Macey, Genetic scheduling for parallel processor
systems: Comparative studies and performance issues, IEEE Trans. Parallel
Distrib. Syst. 10 (1999) 795–812.

Mohammad I. Daoud received an M.A.Sc. degree in elec-
trical and computer engineering from Concordia Univer-
sity,Montreal, Quebec, Canada, in 2005, and a Ph.D. degree
in electrical and computer engineering from the Univer-
sity of Western Ontario, London, Ontario, Canada, in 2009.
He joined the Department of Electrical and Computer En-
gineering at theUniversity of British Columbia, Vancouver,
British Columbia, Canada, as a Postdoctoral Research Fel-
low in March 2010. His research interests include paral-
lel processing using computer clusters and computational
modeling of ultrasound imaging.

Nawwaf Kharma is a graduate of City University and Im-
perial College, London. His Ph.D. is in Machine Learning,
and his research has been in practical applications of Ge-
netic Algorithms with special emphasis on Pattern Recog-
nition & Image Processing. He has authored or co-authored
several books and book chapters and numerous journal
and conference papers. Dr. Kharma is currently an Asso-
ciate Professor at the Electrical & Computer Engineering
department of Concordia University,Montreal, with an ex-
panding interest in Synthetic Biology for computation.

http://dx.doi.org/10.1007/s00500-010-0594-y

	A hybrid heuristic--genetic algorithm for task scheduling in heterogeneous processor networks
	Introduction
	Problem description
	Related work
	Task scheduling for DCSs
	Heuristic scheduling algorithms
	Guided random search algorithms
	Hybrid scheduling algorithms

	Task scheduling for HeDCSs
	The Dynamic Level Scheduling (DLS) algorithm
	The Heterogeneous Earliest Finish Time (HEFT) algorithm


	The proposed algorithm
	The Longest Dynamic Critical Path (LDCP) algorithm
	Task priorities in HeDCSs
	The LDCP algorithm

	Genetic algorithm for scheduling (GAS)

	Results and analysis
	Performance metrics
	Performance results on random graphs
	Creation of random graphs
	Tuning the GAS algorithm
	Performance results

	Performance results on regular graphs
	Gaussian elimination
	Fast Fourier transform
	Molecular dynamics code


	Summary and conclusions
	References


