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a b s t r a c t

This paper presents a variable iterated greedy algorithm for solving the traveling salesman
problem with time windows (TSPTW) to identify a tour minimizing the total travel cost or
the makespan, separately. The TSPTW has several practical applications in both production
scheduling and logistic operations. The proposed algorithm basically relies on a greedy
algorithm generating an increasing number of neighboring solutions through the use of
the idea of neighborhood change in variable neighborhood search (VNS) algorithms. In
other words, neighboring solutions are generated by destructing a solution component
and re-constructing the solution again with variable destruction sizes. In addition, the
proposed algorithm is hybridized with a VNS algorithm employing backward and forward
1_Opt local searches to further enhance the solution quality. The performance of the pro-
posed algorithm was tested on several benchmark suites from the literature. Experimental
results confirm that the proposed algorithm is either competitive to or even better than the
best performing algorithms from the literature. Ultimately, new best-known solutions are
obtained for 38 out of 125 problem instances of the recently proposed benchmark suite,
whereas 15 out of 31 problem instances are also further improved for the makespan
criterion.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The traveling salesman problem with time windows (TSPTW) addresses finding a minimum cost-tour that starts and ends
at a given depot and features exactly one visit to a given set of customers. Each customer has a service time and a time win-
dow defining its ready time and due date. Each customer must be visited before its due date minus service time for a feasible
tour. Otherwise, the tour is considered infeasible. On the other hand, if the vehicle arrives before the customer ready time, it
must wait. The TSPTW can be modeled as a routing or a scheduling problem. For routing tasks, the objective is to find a route
to visit a number of customers, starting and ending at a depot with the constraint that each customer must be visited in a
time window. Typically, in this case, the objective function is the cost of a tour, which is, in fact, the total distance traveled. In
addition to above, the TSPTW is equivalent to modeling the problem of scheduling jobs on a single machine where setup
times are sequence dependent, and each job has a release and due date. In this case, the objective function is to minimize
the tour-completion time, the so-called makespan.
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The TSPTW has been demonstrated to be NP-Hard. In addition, even finding a feasible solution is an NP-complete problem
[1]. Solution methods for the TSPTW can be categorized into exact and heuristic approaches. The first exact algorithms for
the TSPTW, developed by Christofides et al. [2] and Baker [3], were branch-and-bound algorithms, and the main focus was on
the makespan minimization for solving instances up to 50 nodes. However, they were restricted to tight time windows or
mostly overlapping windows. Both makespan and travel-cost optimization were considered in Langevin et al. [4], where a
two-commodity How formulation was presented within a branch-and-bound procedure that was able to solve instances
up to 40 nodes. Dumas et al. [5] extended earlier dynamic programming approaches through the use of a state-space-reduc-
tion technique that was able to solve instances up to 200 customers. In addition to the above, Ascheuer et al. [6] considered a
branch-and-cut algorithm for solving the asymmetric TSPTW, and Balas and Simonetti [7] developed a dynamic program-
ming algorithm for various TSP variants with precedence constraints, including the TSPTW. Constraint programming has also
been employed to develop exact and heuristic algorithms in Pesant et al. [8] and Focacci et al. [9].

As the problem is NP-Hard, heuristic approaches have attracted attention for solving the TSPTW. Carlton and Barnes [10]
presented a tabu search approach that considers infeasible solutions in its search neighborhood by using a static penalty
function. Gendreau et al. [11] offered a construction and post-optimization heuristic based on a near-optimal TSP heuristic
proposed by Gendreau et al. [12]. Calvo [13] introduced a construction heuristic where an initial solution was constructed by
a novel assignment relaxation, which then improves upon this tour through a local search. Ohlmann and Thomas [14] devel-
oped an excellent compressed annealing (CA) algorithm employing a variable penalty function. An ant colony algorithm was
also proposed by Cheng and Mao [15] where the makespan criterion was considered.

Very recently, two excellent papers were presented to solve the TSPTW. A beam-ant colony (Beam-ACO) approach was
presented by Ibanez and Blum [16] where most of the best-known solutions reported in [14] were further improved, and
the Beam-ACO algorithm was regarded as the state-of-art. However, a general variable neighborhood search (GVNS) heuris-
tic was presented by da Silva and Urrutia [17] where further improvements were also reported, and the results for the
instances compared with those of Dumas et al. [5], Gendreau et al. [11] and Ohlmann and Thomas [14] were better than
those in Ibanez and Blum [16]. In addition, da Silva and Urrutia [17] have also presented new instances varying from 200
nodes to 400 nodes with time windows varying from 100 to 500.

In fact, the GVNS algorithm is a variable iterated local search where the perturbation level is determined by the idea of
neighborhood change in variable neighborhood search algorithms (VNS). In other words, the perturbation level is fixed at
level = 1 at the beginning. Then, a local search is applied to the perturbed solution. If the solution after the local search is
further improved, the perturbation level remains at level = 1. Otherwise, the perturbation level is increased by one, i.e.,
level = level + 1. The maximum perturbation and maximum iteration levels are fixed at LevelMax = 8 and IterMax = 30, respec-
tively. The GVNS algorithm has two phases. In the first phase, a feasible solution is first established by a VNS algorithm,
which is called the constructive phase. Next, the GVNS algorithm is iteratively applied in a VNS loop again by using the
variable neighborhood descend (VND) algorithm with two neighborhood structures of Local1Shift and Local2Opt. In this
paper, we took inspiration from the GVNS algorithm by replacing the perturbation phase with the destruction and
construction procedure of iterated greedy algorithms in [18,19]. As the state-of-art results are presented in da Silva and
Urrutia [17], we mainly compare the performance of the proposed algorithm to the GVNS algorithm presented in da Silva
and Urrutia [17].

The IG algorithm is presented in Ruiz and Stützle [18], which has successful applications in discrete/combinatorial opti-
mization problems such as those in [19–32]. The IG algorithm is fascinating in terms of its conceptual simplicity, which
makes it easily tunable and extendible to any combinatorial optimization problem. In an IG algorithm, there are two central
procedures consisting of the destruction and the construction phases. The algorithm starts from some initial solution and
then iterates through a main loop where a partial candidate solution is first obtained by removing a number of solution com-
ponents from a complete candidate solution. This is called the destruction phase. Next, a complete solution is reconstructed
with a constructive insertion heuristic by inserting each job in the partial candidate solution. Before continuing with the next
loop, an acceptance criterion is then used to decide whether the re-constructed solution will replace the incumbent one. This
is called the construction phase. These simple steps are iterated until some predetermined termination criterion, such as a
maximum number of iterations or a computation time limit, is met. For the details of the IG algorithm, we refer to Ruiz and
Stützle [18].

In addition to the above, a variable IG algorithm (VIG_FL) is also presented and implemented to solve the permutation
flowshop scheduling with the tardiness criterion in Framinan and Leisten [19]. The VIG_FL algorithm is inspired by the
VNS algorithm in [33]. The idea of neighborhood change of the VNS algorithm is used to determine variable destruction sizes.
The maximum destruction size is fixed at dmax = n ! 1. The destruction size is initially set to d = 1. The current solution is
destructed with a variable size of d and re-constructed again. Then, a local search is applied to the reconstructed solution.
The destruction size is incremented by one, that is, d = d + 1, if the solution is not improved until dmax = n ! 1. Whenever
a solution improves in any destruction size, the destruction size is again set to d = 1. Hence, the search starts from scratch
again. For the details of the VIG_FL algorithm, we refer to Framinan and Leisten [19].

For scheduling problems in general, the IG and VIG_FL algorithms begin with a problem specific heuristic, which is usually
the NEH heuristic [34]. Both in the destruction and construction phases, the well-known insertion scheme of the NEH heu-
ristic is used. Insertion based local search algorithms are employed to further enhance the solution quality. However, the
above IG and VIG_FL algorithms are specifically designed for scheduling problems. In the following section, we propose a
simple variable iterated greedy algorithm (VIG_VNS) algorithm, which is tailored for solving the TSPTW problem. We
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demonstrate in this paper that the VIG_VNS algorithm is able to yield the state-of-art results for the TSPTW. To the best of
our knowledge, this paper is the first to employ the iterated greedy algorithm (IG) to solve the TSPTW. Ultimately, 38 out of
125 instances are further improved for the new benchmark instances proposed in da Silva and Urrutia [17], whereas 15 out
31 problem instances are also further improved for the makespan criterion.

The remaining part of the paper is organized as follows. Section 2 provides the problem formulation. Section 3 is devoted
to the details of the proposed VIG_VNS algorithm. The computational results for the benchmark suite are discussed in
Section 4. Section 5 presents the conclusions.

2. Problem formulation

We have an undirected complete graph G = {N,A} where N = {0, 1, . . . , n} is a set of nodes representing the depot (node 0)
and n customers, and A = N " N is a set of edges connecting the nodes where a solution to the TSPTW is a tour visiting each
node once, starting and ending at the depot. Therefore, a tour is represented as p = {p0, p1, . . . , pn, pn+1} where p0 = pn+1 = 0,
and the sub-sequence p = {p1, . . . , pk, . . . , pn} is a permutation of the nodes in Nn{0}, and pk denotes the index of the cus-
tomer at the kth position of the tour. Two additional elements, p0 and pn+1, represent the depot where each tour must start
and end.

For every edge (i, j) 2 A between two nodes i and j, there is an associated cost c(i, j) that represents the travel time between
customers i and j plus a service time at customer i. In addition, there is a time window [ei, li] related to each node i 2 N that
specifies that customer i cannot be serviced before ei or visited later than li. Furthermore, waiting times are permitted, that is,
a node i can be reached before the start of its time window ei but cannot be left before ei. Therefore, given a particular tour p,
the departure time from customer pk is calculated as Dpk ¼ maxðApk ; epk Þwhere Apk ¼ Dpk!1 þ cðpk!1;pkÞ is the arrival time at
customer pk.

In general, two primary TSPTW objective functions are considered in the literature. The first function is used to minimize
the sum of arc-traversal costs along the tour, and the second function is used to minimize the tour-completion time, i.e., the
time to return to the depot, the so-called makespan. In this paper, we focus on the minimization of both objectives. The
TSPTW can be formulated under the objective of the total travel cost as follows:

min f ðpÞ ¼
Xn

k¼0

cðpk;pkþ1Þ ð1Þ

st : vðpÞ ¼
Xnþ1

k¼0

xðpkÞ ¼ 0 ð2Þ

where

xðpkÞ ¼
1 if Apk

> lpk

0 otherwise

!
ð3Þ

In the above definition, v(p) denotes the total number of time window constraints that are violated by tour p, which must be
zero for feasible solutions. Note that in the case of minimization of the makespan, we keep track of the waiting time of the
vehicle at each position of the tour as Wpk ¼ Dpk ! Apk . The total waiting time,

Pnþ1
k¼0 Wpk will be added to the objective func-

tion in (1).
It should be noted that the TSPTW is a constrained optimization problem; thus, search operators may generate infeasible

solutions. In this case, care must be taken in regards to them violating the constraints. Different approaches exist that can
handle the constraints [35]. In this paper, two very sophisticated approaches are employed to handle the constraints. These
approaches are summarized below.

Deb [36] proposed the superiority of feasible solutions (SF) for constrained optimization based on lexicographic ordering,
where constraint violation and objective function value are distinguished. The aim is to optimize both the constraint viola-
tion and objective function by a lexicographic order where constraint violation precedes the objective function value. In SF,
when two solutions pa and pb are evaluated, pa is deemed to be superior to pb under the following conditions for a minimi-
zation problem:

' pa is feasible, and pb is not.
' pa and pb are both feasible, and pa has a smaller objective function value than pb.
' pa and pb are both infeasible, but pa has a smaller overall constraint violation v(pa) as computed by using the Eq. (2).

The adaptive penalty approach is presented in [37] where the notion of a ‘‘near feasibility threshold’’ (NFT) corresponds to a
‘‘promising region’’ beyond the feasible region. The NFT is defined as a threshold distance from a feasible region such that the
search within feasible region and the NFT-neighborhood of the feasible region is encouraged, whereas it is discouraged
beyond that threshold. In addition, an adaptive term is added to the penalty function to consider the gap between the best
feasible value and best infeasible value found so far. Then, the adaptive penalty function is defined for the m number of con-
straints as follows:
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fpðpÞ ¼ f ðpÞ þ ðffeas ! fallÞ
Xm

i¼1

v iðpÞ
NFTi

" #a

ð4Þ

where fall denotes the un-penalized value of the best solution found yet, and ffeas denotes the value of the best feasible solu-
tion yet found. As noted in [38], the adaptive term may lead to zero or over-penalty. For this reason, only the dynamic part of
the above penalty function with NFT threshold is used in this paper as follows:

fpðpÞ ¼
Xn

k¼0

cðpk;pkþ1Þ þ
vðpÞ
NFT

" #a

ð5Þ

Note that we have only a single constraint in the TSPTW problem. The general form of the NFT is given by NFT ¼ NFT0
1þk"t, where

NFT0 is an upper bound for NFT; k is a user-defined positive parameter; and t is the iteration counter.

3. Variable iterated greedy algorithm

A permutation-based representation is employed in the VIG_VNS algorithm, and a solution is represented by the permu-
tation of nodes as p = {p0, p1, . . . , pn, pn+1}. The initial solution is constructed randomly. Then, a VNS algorithm based on for-
ward and backward 1_Opt local searches is applied to the initial solution, which is denoted as the VNS_1_Opt local search
from now on. Subsequently, a loop is started and continues until a predetermined stopping criterion is satisfied. Inside
the loop, the current solution is destructed and constructed. Again, the VNS_1_Opt local search is applied to the solution gen-
erated after the destruction and construction phase. Note that we use a variant of VIG_FL algorithm where the determination
of the destruction size is somewhat different. In other words, we start with k = 1 and increase the neighborhood counter by
k = k + 1, which is the same as in the VIG_FL algorithm. However, we determine the destruction by d = k " 5 to avoid large
CPU time requirements. In other words, d is increased by 5, 10, 15, . . . , until d = kmax " 5, where kmax is fixed at kmax = bn ! 1/
5c. The outline of the VIG_VNS algorithm is given in Fig. 1.

Regarding the destruction and construction procedure denoted as DestructConstruct(), a given number d of nodes are ran-
domly chosen and removed from the solution without repetition in the destruction step. This generates two partial solutions.

Fig. 1. The proposed VIG_VNS algorithm.
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The first one with the size d of nodes is denoted as pR, including the removed nodes in the order in which they are removed.
The second one with the size n ! d of nodes is the original solution without the removed nodes, which is denoted as pD. Fi-
nally, in the construction phase, the second phase of the NEH insertion heuristic is used to complete the solution. To do so,
the first node pR

1 is inserted into all possible n ! d + 1 positions in the destructed solution pD, generating n ! d + 1 partial
solutions. Among these n ! d + 1 partial solutions, the best partial solution with the minimum tour length or makespan is
chosen and kept for the next iteration. Then, the second node pR

2 is considered and so on until pR is empty or a final solution
is obtained. Hence, pD is again of size n.

As the TSPTW problem is a constrained optimization problem, constraint handling methods play an important role. In the
construction step, we employ an adaptive penalty function, the NFT, which is explained in Section 2 in detail. In other words,
when a tour is being constructed after the destruction phase, the penalized fitness values are compared, and feasibility con-
ditions are not considered. When applying the VNS_1_Opt local search to the destructed and constructed solution, we use the
superiority of feasible solution (SF) method of Deb [35] when comparing two solutions. It should be noted that 00 < lex

00 indi-
cates the use of the SF method, which is based on lexicographic ordering where constraint violation and objective function
value are distinguished. In addition, we also always use SF when we update the pbest solution.

As mentioned before, the local search employed in this work is based on the 1_Opt neighborhood. In the 1_Opt local
search, a single node is removed from the tour and is re-inserted in different positions in a forward or backward manner.
In both procedures, a node is removed and re-inserted into n ! 1 positions if the insertion point is feasible. In other words,
the local search phase considers only the feasible movements. When inserting node i into position j, feasibility is defined as
follows:

epj þ cðpj;piÞ 6 lpi and epi þ cðpi;pjþ1Þ 6 lpjþ1 ð6Þ

Given that the 1_Opt local search can be conducted in a backward and forward manner, we developed a simple VNS_1_Opt
local search algorithm using backward and forward insertion schemes as two neighborhood structures. These two neighbor-
hoods are chosen as N1 (p) = Backward_1_Opt and N2(p) = Forward_1_Opt, respectively. The outline of the VNS_1_Opt local
search is provided in Fig. 2.

In both procedures of the VNS_1_Opt local search, we consider the ‘‘gain’’ and ‘‘feasibility’’ at the same time to avoid
moving into infeasible solutions. If there is a gain in the move and if it is feasible, we insert node i into position j. Then,
we compare two solutions with respect to the SF constraint handling method. The outlines of the backward and forward
insertion methods are given in Figs. 3 and 4. In addition, an example illustrates the ‘‘gain’’ and ‘‘feasibility’’ in Appendix A.

4. Computational results

We implemented the VIG_VNS algorithm in C++ and conducted all experiments on a computer with an Intel Core i5 pro-
cessor at 2.53 GHz. We considered five available sets of benchmark instances, where n represents the number of customers.
w is the time window width, and Best is the best known or optimal value.

1. The first benchmark set consists of 27 classes of five instances each. All instances were proposed and solved to optimality
by Dumas et al. [5]. The instance size ranges from 20 to 200 customers.

2. The second benchmark set was proposed by Gendreau et al. [11] and consists of 140 instances grouped into 28 classes
with an equal number of customers and time window width. These instances were obtained from the instances proposed

Fig. 2. The VNS_1_Opt algorithm.
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by Dumas et al. [5] by extending the time windows by 100 units, resulting in time windows in the range from 120 to 200
time units.

3. The third benchmark set was proposed by Ohlmann and Thomas [14] and consists of 25 instances grouped into 5 classes.
These instances were obtained from the instances with 150 and 200 customers proposed by Dumas et al. [5] by extending
the time windows by 100 time units.

4. The fourth benchmark set was proposed by da Silva and Urrutia [17] and consists of 125 instances grouped into 25 classes
with 200–400 customers per instance and time windows between 100 and 500 units.

5. The fifth benchmark set was proposed by Potvin and Bengio [39] and consists of 31 problem instances derived from
Solomon’s RC2 VRPTW [40].

Fig. 3. The backward 1_Opt algorithm.

Fig. 4. The forward 1_Opt algorithm.
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As for the parameters of the NFT constraint handling method, they are carefully and experimentally fixed at NFT0 = 0.001
and k = 0.04, respectively. We performed 25 independent runs for our algorithm, and the statistics over 25 runs for each
instance are averaged over the five instances of each instance class. Note that bolded values in all statistics in all tables indi-
cate the better results than comparison algorithms.

4.1. Computational results for Dumas’s instances

The computational results of the VIG_VNS algorithm for Dumas’s instances are given in Table 1. In terms of solution qual-
ity, the VIG_VNS and GVNS algorithms were able to find all the best or optimal solutions and achieve a feasible solution in all
runs except for instance n150w60. For instances n40w80, n60w80 and n200w20, the VIG_VNS algorithm generated slightly
better average values than the GVNS algorithm. In addition, the average r values indicate that the VIG_VNS algorithm
was more robust than the GVNS algorithm. However, we performed a nonparametric Mann–Whitney test with a confidence
level a = 0.05 to determine the equality of population medians in terms of Avg values. The test statistic W = 741.5 has a
p-value of 0.9931. As the p-value is not less than the chosen a level of 0.05, we can conclude that there is no difference be-
tween the population medians. In other words, the two algorithms were equivalent.

4.2. Computational results for Gendreau’s instances

The computational results of the VIG_VNS algorithm for Gendreau’s instances are given in Table 2, where the VIG_VNS
algorithm is compared to the best-known results in the literature because optimal solutions are not known for these in-
stances. These best-known solutions include the results improved by the Beam_ACO in [16]. However, both the VIG_VNS
and GVNS algorithms were able to further improve on the best-known results. In particular, new best known solutions were
found by the VIG_VNS and GVNS algorithms for the instances n80w100, n80w140, n100w120, n100w140, n100w160 and
n100w200. When comparing VIG_VNS with GVNS, the VIG_VNS algorithm generated better average results for 13 out of
28 instance classes. The smaller standard deviation of the VIG_VNS algorithm compared with that of the GVNS algorithm
indicates the former is a more robust algorithm than the latter. Briefly, both the VIG_VNS and GVNS algorithms provide
new best known solutions for 6 out of 28 instance classes. In addition, VIG_VNS provides new best solutions for
n100w100 instances. Again, we performed a nonparametric Mann–Whitney test with a confidence level a = 0.05 to deter-
mine the equality of population medians in terms of Avg values. The test statistic W = 792.5 has a p-value of 0.9347. As

Table 1
Comparison between VIG_VNS and GVNS on instances by Dumas et al. [5]. Tmax = 60 s.

Instance GVNS VIG_VNS

n w Optimal Best Avg Avg r Avg Sec Avg r Sec Best Avg Avg r Avg Sec Avg r Sec

20 20 361.2 361.2 361.2 0.0 0.2 0.0 361.2 361.2 0.0 0.0 0.0
40 316.0 316.0 316.0 0.0 0.2 0.0 316.0 316.0 0.0 0.0 0.0
60 309.8 309.8 309.8 0.0 0.2 0.0 309.8 309.8 0.0 0.0 0.0
80 311.0 311.0 311.0 0.0 0.3 0.0 311.0 311.0 0.0 0.0 0.0

100 275.2 275.2 275.2 0.0 0.3 0.0 275.2 275.2 0.0 0.0 0.0

40 20 486.6 486.6 486.6 0.0 0.3 0.0 486.6 486.6 0.0 0.0 0.0
40 461.0 461.0 461.0 0.0 0.4 0.0 461.0 461.0 0.0 0.0 0.0
60 416.4 416.4 416.4 0.0 0.5 0.0 416.4 416.4 0.0 0.0 0.0
80 399.8 399.8 399.9 0.4 0.5 0.0 399.8 399.8 0.0 0.0 0.0

100 377.0 377.0 377.0 0.2 0.6 0.0 377.0 377.0 0.0 0.0 0.0

60 20 581.6 581.6 581.6 0.0 0.6 0.0 581.6 581.6 0.0 0.0 0.0
40 590.2 590.2 590.2 0.0 0.8 0.0 590.2 590.2 0.0 0.0 0.0
60 560.0 560.0 560.0 0.0 0.9 0.0 560.0 560.0 0.0 0.0 0.0
80 508.0 508.0 508.1 0.2 1.2 0.0 508.0 508.0 0.0 0.0 0.0

100 514.8 514.8 514.8 0.0 1.3 0.0 514.8 514.8 0.0 0.1 0.3

80 20 676.6 676.6 676.6 0.0 0.9 0.0 676.6 676.6 0.0 0.0 0.0
40 630.0 630.0 630.0 0.0 1.3 0.0 630.0 630.0 0.0 0.3 0.4
60 606.4 606.4 606.4 0.1 1.8 0.1 606.4 606.4 0.0 0.1 0.2
80 593.8 593.8 593.8 0.1 2.1 0.1 593.8 593.8 0.0 1.6 2.0

100 20 757.6 757.6 757.6 0.0 1.4 0.0 757.6 757.6 0.0 0.2 0.7
40 701.8 701.8 701.8 0.0 1.9 0.1 701.8 701.8 0.0 0.0 0.1
60 696.6 696.6 696.6 0.0 2.7 0.1 696.6 696.6 0.0 0.1 0.2

150 20 868.4 868.4 868.4 0.0 3.6 0.3 868.4 868.4 0.0 0.7 1.0
40 834.8 834.8 834.8 0.0 5.3 0.3 834.8 834.8 0.0 1.7 2.0
60 805.0 818.6 818.6 0.1 7.4 0.7 818.6 818.6 0.0 6.2 6.2

200 20 1009.0 1009.0 1009.1 0.1 8.5 0.5 1009.0 1009.0 0.1 6.0 5.7
40 984.2 984.2 984.2 0.1 12.6 0.8 984.2 984.3 0.3 9.6 9.7
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the p-value is not less than the chosen a level of 0.05, we can conclude that there is no difference between the population
medians. In other words, the two algorithms were equivalent.

For the remaining sets of benchmark instances, we fixed the maximum CPU time to 100 s because they were more dif-
ficult instances than the previous two benchmark sets.

4.3. Computational results for Ohlmann and Tomas’s instances

The computational results of the VIG_VNS algorithm for Ohlmann and Tomas’s instances are given in Table 3, where the
VIG_VNS algorithm is compared to the GVNS algorithm. Note that these best-known solutions include the results improved
by the Beam_ACO algorithm in [16]. As seen in Table 3, the VIG_VNS and GVNS algorithms were able to further improve all
the results and present new best-known solutions for these classes of instances. When comparing the two best-performing
algorithms, the GVNS algorithm was slightly better than the VIG_VNS algorithm in terms of average values, indicating that
when the problem size gets larger, the performance of the VIG_VNS algorithm degrades slightly. Again, we performed a non-
parametric Mann–Whitney test with a confidence level a = 0.05 to determine the equality of population medians in terms of
Avg values. The test statistic W = 29 has a p-value of 0.8345. Given that the p-value is not less than the chosen a level of 0.05,
we can conclude that there is no difference between the population medians. In other words, the two algorithms were
equivalent.

Table 2
Comparison between VIG_VNS and GVNS on instances by Gendreau et al. [11]. Tmax = 60 s.

Instance GVNS VIG_VNS

n w Best known Best Avg Avg r Avg sec Avg r sec Best Avg Avg r Avg sec Avg r sec

20 120 265.6 265.6 265.6 0.0 0.3 0.0 265.6 265.6 0.0 0.0 0.0
140 232.8 232.8 232.8 0.0 0.3 0.0 232.8 232.8 0.0 0.0 0.0
160 218.2 218.2 218.2 0.0 0.3 0.0 218.2 218.2 0.0 0.0 0.0
180 236.6 236.6 236.6 0.0 0.4 0.0 236.6 236.6 0.0 0.0 0.0
200 241.0 241.0 241.0 0.0 0.4 0.0 241.0 241.0 0.0 0.0 0.0

40 120 360.0 377.8 377.8 0.0 0.8 0.0 377.8 377.8 0.0 0.0 0.0
140 348.4 364.4 364.4 0.0 0.8 0.0 364.4 364.4 0.0 0.0 0.0
160 326.8 326.8 326.8 0.0 0.9 0.0 326.8 326.8 0.0 0.0 0.0
180 326.8 330.4 331.3 0.8 1.0 0.0 330.4 330.4 0.0 0.0 0.0
200 313.8 313.8 314.3 0.4 1.0 0.1 313.8 313.8 0.0 0.0 0.0

60 120 451.0 451.0 451.0 0.1 1.5 0.1 451.0 451.0 0.0 0.1 0.2
140 452.0a 452.0 452.1 0.2 1.7 0.1 452.0 452.0 0.0 0.3 0.5
160 448.6 464.0 464.5 0.2 1.7 0.0 464.0 464.0 0.0 0.6 1.0
180 421.2a 421.2 421.2 0.1 2.2 0.1 421.2 421.2 0.0 0.1 0.3
200 427.4 427.4 427.4 0.0 2.4 0.1 427.4 427.4 0.0 0.0 0.2

80 100 578.8a 578.6 578.7 0.2 2.3 0.1 578.6 578.6 0.0 0.8 1.0
120 541.4 541.4 541.4 0.0 2.7 0.1 541.4 541.4 0.0 2.8 3.7
140 506.8a 506.0 506.3 0.2 3.2 0.3 506.0 506.0 0.1 2.5 3.5
160 502.8 504.8 505.5 0.7 3.3 0.1 504.8 504.8 0.0 0.5 0.9
180 489.0 500.6 501.2 0.9 3.7 0.1 500.6 500.6 0.0 3.7 4.8
200 481.4 481.4 481.8 0.1 4.2 0.2 481.4 481.7 0.2 3.2 5.7

100 80 666.4 666.4 666.6 0.2 3.1 0.2 666.4 666.4 0.0 0.2 0.4
100 642.0 642.0 642.1 0.1 3.7 0.1 640.6 640.6 0.1 1.7 3.5
120 599.4a 597.2 597.5 0.3 4.1 0.2 597.2 597.2 0.1 8.1 8.0
140 550.2a 548.4 548.4 0.0 4.4 0.2 548.4 548.4 0.0 1.9 3.0
160 556.6a 555.0 555.0 0.1 5.1 0.2 555.0 555.2 0.1 1.3 1.4
180 561.6 561.6 561.6 0.0 6.3 0.3 561.6 561.7 0.1 2.3 4.7
200 555.4 550.2 551.0 1.2 6.8 0.3 550.2 550.2 0.0 5.6 6.8

a Best known results obtained in [16].

Table 3
Comparison between VIG_VNS and GVNS on instances by Ohlmann and Thomas [14]. Tmax = 100 s.

Instance GVNS VIG_VNS

n w Best known Best Avg Avg r Avg sec Avg r sec Best Avg Avg r Avg sec Avg r sec

150 120 724.0a 722.0 722.3 0.4 11.8 0.3 722.0 722.5 0.8 29.3 35.3
140 697.2a 693.8 694.8 0.5 13.3 0.5 693.8 694.6 1.0 27.2 34.7
160 672.6a 671.0 671.2 0.3 15.0 0.8 671.0 672.0 1.5 22.9 29.4

200 120 806.4a 803.6 803.9 0.1 30.3 2.0 803.6 804.8 1.8 48.6 48.6
140 802.4a 798.0 799.5 1.1 38.0 1.8 798.0 802.0 4.6 48.8 49.3

a Best known results obtained in [16].
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4.4. Computational results for Silva and Urrutia’s instances

The computational results of the VIG_VNS algorithm for da Silva and Urrutia’s instances are given in Table 4, where the
VIG_VNS algorithm is compared to the GVNS algorithm. The VIG_VNS algorithm was not able to generate feasible solutions
in 28 out of 3125 runs. In other words, each problem class has 5 instances, and there are 25 classes, which makes a total of
125 problem instances. As we had 25 replications for each instance, we conducted 3125 runs for the 25 classes in total.
Among them, only 28 replications ended up with infeasible solutions as indicated by ‘‘a’’ in Table 4. In terms of generating
feasible solutions, the GVNS algorithm was better than the VIG_VNS algorithm. However, the VIG_VNS algorithm was also
able to further improve 12 out of 25 instance classes and find the same results for 10 instance classes. The GVNS algorithm
outperformed the other algorithm in only 3 out of 25 instance classes. However, we performed a nonparametric Mann–
Whitney test with a confidence level a = 0.05 to determine the equality of population medians in terms of Avg values.
The test statistic W = 639.5 has a p-value of 0.9768. As the p-value is not less than the chosen a level of 0.05, we can conclude
that there is no difference between the population medians. In other words, the two algorithms were equivalent.

To determine the peak performance of the VIG_VNS algorithm for these new benchmark set, we fix the maximum CPU
time to 300 s for each run. The computational results are given in Table 5 where new best known solutions are provided
for 14 out of 25 instance classes. Note that the number of infeasible solutions are decreased considerably at the expense
of increased CPU times. Again, we carried out a nonparametric Mann–Whitney test with a confidence level a = 0.05 to see
the equality of population medians in terms of Avg values. The test statistic W = 631.5 has a p-value of 0.9150. Because
the p-value is not less than the chosen a level of 0.05, we can conclude that there is no difference between the population
medians. In other words, two algorithms were equivalent.

Regarding the CPU times in general, it is clear that the GVNS algorithm was superior to the VIG_VNS algorithm as it used
the neighborhood partitioning improvement method in their local search. In addition, the parameter !03 was used in com-
pilation to optimize their code. Because our aim is to demonstrate that a simple variable iterated greedy algorithm can solve
the TSPTW, we focused on the solution quality rather than the computational time. All permutations of new best known
solutions can be found at http://kkarabulut.yasar.edu.tr/tsptw.

In addition to the above, one might wonder about the performance of pure VIG_VNS algorithm without local search. For
this purpose, we fixed the maximum CPU time to 300 s and ran the n400w500 instance class with and without local search.
The computational results are given in Table 6 where the performance of the VIG_VNS algorithm using only the destruction
and construction procedure was quite remarkable. When considering the overall average values, the relative percent devi-
ation was only 0.86 percent from the best average value with local search (i.e., (12724.6 ! 12833.4) ( 100/12724.6 = !0.86).

Table 4
Comparison between VIG_VNS and GVNS on instances by da Silva and Urrutia [17]. Tmax = 100 s.

Instance GVNS VIG_VNS

n w Best Avg Avg r Avg sec Avg r sec Best Avg Avg r Avg sec Avg r sec

200 100 10019.6 10019.6 0.1 4.8 0.3 10019.6 10019.6 0.0 0.1 0.3
200 9252.0 9254.1 7.2 5.8 0.2 9252.0 9252.0 0.0 6.7 8.0
300 8026.4 8034.3 4.5 7.2 0.2 8022.8 8024.3 2.7 25.6 23.0
400 7067.2 7079.3 4.4 8.7 0.4 7062.4 7069.3 6.0 27.0 20.4
500 6466.4 6474.0 5.1 10.0 0.3 6466.2 6472.4 9.1 32.3 23.4

250 100 12633.0 12633.0 0.0 9.9 0.2 12633.0 12633.0 0.0 0.5 1.0
200 11310.4 11310.7 0.7 11.9 0.4 11310.4 11311.7 5.6 18.2 15.8
300 10230.4 10235.1 2.8 14.9 0.6 10230.4 10233.5 1.7 26.0 20.5
400 8899.2 8908.5 4.1 18.9 0.7 8896.2 8903.6 7.5a 48.5 25.3
500 8082.4 6474.0A 6.7 20.7 0.9 8066.4 8088.5 14.8 52.3 24.6

300 100 15041.2 15041.2 0.0 21.2 0.7 15041.2 15041.2 0.0 0.7 0.9
200 13846.8 13853.1 2.3 23.7 0.6 13851.4 13852.0 1.5 21.4 14.3
300 11477.6 11488.5 5.2 37.0 3.8 11477.2 11481.0 10.1 47.5 23.3
400 10413.0 10437.4 12.9 31.7 1.2 10402.8 10413.3 12.3 59.8 21.1
500 9861.8 9876.7 8.9 35.4 1.1 9844.2 9872.5 20.5 63.5 20.8

350 100 17494.0 17494.0 0.0 41.0 2.5 17494.0 17494.0 0.0 5.3 6.4
200 15672.0 15672.2 0.6 47.3 2.1 15672.0 15674.6 5.5a 41.9 21.6
300 13650.2 13654.1 1.7 54.9 2.2 13648.8 13658.8 13.4a 60.7 26.0
400 12099.0 12119.6 8.9 60.2 2.8 12090.2 12143.4 42.2a 76.1 21.5
500 11365.8 11388.2 12.0 57.8 1.2 11350.6 11399.4 36.9 75.5 20.7

400 100 19454.8 19454.8 0.0 57.1 0.6 19454.8 19454.8 0.0 4.9 5.7
200 18439.8 18439.9 0.6 66.9 1.9 18439.8 18440.5 1.8a 38.8 22.3
300 15873.4 15879.1 3.0 93.6 7.9 15876.4 15891.6 16.0 69.3 19.3
400 14115.4 14145.5 12.9 96.2 3.9 14125.6 14184.9 50.8a 80.6 20.7
500 12747.6 12766.2 9.7 109.3 4.4 12736.0 12802.0 42.5a 85.8 16.2

A Must be mistyped in [17] because average cannot be smaller than best value reported.
a Averaged after removing infeasible solutions (total of 28 out of 3125 runs).
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This indicates the fact that a simple IG algorithm was able to generate results no worse than 0.86% from the best results ob-
tained by the local search. Again, we performed a nonparametric Mann–Whitney test with a confidence level a = 0.05 to
determine the equality of population medians in terms of Avg values. The test statistic W = 25.0 has a p-value of 0.6765.
As the p-value is not less than the chosen a level of 0.05, we can conclude that there is no difference between the population
medians. In other words, VIG without a VNS local search was statistically equivalent to the VIG_VNS algorithm.

Again, one might wonder about the performance of the VIG_FL algorithm as compared with the VIG_VNS algorithm. For
this purpose, we fixed the maximum CPU time to 300 s and ran the n400w500 instance class with the local search. The com-
putational results are given in Table 7, which indicates that the performance of the VIG_FL algorithm was slightly worse than
the VIG_VNS algorithm in overall average. The problem with the VIG_FL algorithm is because it considers each increment of
the destruction size until d = n ! 1. As it is inside the VNS loop, it consumes more CPU time than the VIG_VNS algorithm, as
seen in Avg run sec column indicating the total CPU time spent. It is also interesting to see that the VIG_FL algorithm was
able to carry out only 2.5 iterations overall on average, whereas the VIG_VNS algorithm was able to iterate almost 60 times
overall on average. However, Table 7 results indicate that the VIG_FL algorithm was very competitive with the VIG_VNS
algorithm as indicated by the relative percent deviation being only 0.094 percent from the best average value with local
search (i.e., (12724.6! 12736.6) ( 100/12724.6 = !0.094) when considering the overall average values. We performed a
nonparametric Mann–Whitney test with a confidence level a = 0.05 to determine the equality of population medians in
terms of Avg values. The test statistic W = 26.0 has a p-value of 0.8345. As the p-value is not less than the chosen a level
of 0.05, we can conclude that there is no difference between the population medians. In other words, VIG_FL with a VNS local
search was statistically equivalent to the VIG_VNS algorithm.

Table 5
Peak performance of VIG_VNS compared to GVNS on instances by da Silva and Urrutia [17]. Tmax = 300 s.

Instance GVNS VIG_VNS

n w Best Avg Avg r Avg sec Avg r sec Best Avg Avg r Avg sec Avg r sec

200 100 10019.6 10019.6 0.1 4.8 0.3 10019.6 10019.6 0.0 0.2 0.3
200 9252.0 9254.1 7.2 5.8 0.2 9252.0 9252.0 0.0 6.5 7.9
300 8026.4 8034.3 4.5 7.2 0.2 8022.8 8023.5 1.8 44.5 45.8
400 7067.2 7079.3 4.4 8.7 0.4 7062.4 7066.0 3.9 66.6 64.8
500 6466.4 6474.0 5.1 10.0 0.3 6466.2 6467.8 4.7 70.3 66.2

250 100 12633.0 12633.0 0.0 9.9 0.2 12633.0 12633.0 0.0 0.5 0.9
200 11310.4 11310.7 0.7 11.9 0.4 11310.4 11310.4 0.1 24.6 24.0
300 10230.4 10235.1 2.8 14.9 0.6 10230.4 10231.6 1.8 50.0 39.7
400 8899.2 8908.5 4.1 18.9 0.7 8896.2 8899.3 4.6 97.0 67.3
500 8082.4 6474.0A 6.7 20.7 0.9 8066.4 8078.8 10.6 126.3 79.7

300 100 15041.2 15041.2 0.0 21.2 0.7 15041.2 15041.2 0.0 0.7 0.9
200 13846.8 13853.1 2.3 23.7 0.6 13851.4 13851.4 0.0 24.5 18.6
300 11477.6 11488.5 5.2 37.0 3.8 11477.2 11477.2 0.2 79.9 55.1
400 10413.0 10437.4 12.9 31.7 1.2 10402.8 10405.2 5.9 104.3 61.8
500 9861.8 9876.7 8.9 35.4 1.1 9842.2 9854.9 13.2 161.4 74.7

350 100 17494.0 17494.0 0.0 41.0 2.5 17494.0 17494.0 0.0 5.2 6.4
200 15672.0 15672.2 0.6 47.3 2.1 15672.0 15672.4 1.2a 65.1 50.1
300 13650.2 13654.1 1.7 54.9 2.2 13648.8 13652.9 3.7 121.4 74.9
400 12099.0 12119.6 8.9 60.2 2.8 12083.2 12103.2 18.0 193.2 62.8
500 11365.8 11388.2 12.0 57.8 1.2 11347.8 11366.7 19.9 177.9 69.7

400 100 19454.8 19454.8 0.0 57.1 0.6 19454.8 19454.8 0.0 4.9 5.7
200 18439.8 18439.9 0.6 66.9 1.9 18439.8 18439.8 0.0 45.3 31.3
300 15873.4 15879.1 3.0 93.6 7.9 15872.8 15878.6 5.9 134.2 60.7
400 14155.4 14145.5 12.9 96.2 3.9 14086.6 14130.1 32.4a 213.3 68.7
500 12747.6 12766.2 9.7 109.3 4.4 12722.4 12753.5 24.3a 221.6 58.1

A Must be mistyped in [17] because average cannot be smaller than best value reported.
a Averaged after removing infeasible solutions (total of 4 out of 3125 runs).

Table 6
Impact of the VNS local search. Tmax = 300 s.

VIG (without VNS local search) VIG_VNS

Instance Best Avg Avg r Avg sec Avg r sec Avg Iter Best Avg Avg r Avg sec Avg r sec Avg Iter

n400w500.001 12261 12322.2 32.4 247.1 41.8 65.3 12141 12169.6 23.1 223.7 58.6 59.0
n400w500.002 13144 13195.9 37.7 219.2 72.0 66.3 13015 13043.3 22.1 232.7 51.4 61.0
n400w500.003 13357 13445.3 67.2 249.8 53.8 67.4 13273 13293.5 13.2 234.5 52.4 58.4
n400w500.004 12515 12665.3 88.5 232.1 50.0 68.6 12351 12381.6 30.3 244.9 35.3 57.6
n400w500.005 12890 12990.3 92.1 252.0 50.5 67.6 12843 12897.6 46.1 184.8 64.2 62.0

Overall Avg 12833.4 12923.8 63.6 240.0 53.6 67.0 12724.6 12757.1 27.0 224.1 52.4 59.6
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4.5. Computational results for Makespan criterion

For the fifth benchmark set with the makespan criterion, we fixed the maximum CPU time to 100 s for each run. We
compared to the ACO algorithm in Cheng and Mao in [15] for 31 problem instances proposed by Potvin and Bengio [39].
The computational results are given in Table 8, which indicates that substantial improvements are achieved. The VIG_VNS
algorithm was able to further improve the best-known results provided by Cheng and Mao in [15] for 15 out of 31 problem
instances, whereas the ACO algorithm was slightly better in 10 instances. The VIG_VNS algorithm was not able to generate a
feasible solution for 3 out of 25 runs for instance rc204.1, whereas the ACO algorithm could not find any feasible solution for
3 problem instances denoted by1 in Table 8. In addition, the VIG_VNS algorithm was much faster than the ACO algorithm.
We performed a nonparametric Mann–Whitney test with a confidence level a = 0.05 to determine the equality of population
medians in terms of Avg values. The test statistic W = 880.5 has a p-value of 0.1788. As the p-value is not less than the chosen
a level of 0.05, we can conclude that there is no difference between the population medians. In other words, VIG_VNS was
statistically equivalent to the ACO algorithm. Again, all permutations of new best known solutions can be found at http://
kkarabulut.yasar.edu.tr/tsptw.

Table 7
Comparison between VIG_VNS and VIG_FL with local search. Tmax = 300 s.

VIG_FL (with VNS local search) VIG_VNS

Instance Best Avg Avg r Avg sec Avg r sec Avg Iter Best Avg Avg r Avg sec Avg r sec Avg Iter

n400w500.001 12144 12204.9 42.8 220.5 339.9 2.2 12141 12169.6 23.1 223.7 301.4 59.0
n400w500.002 13031 13073.4 28.0 228.1 366.0 2.8 13015 13043.3 22.1 232.7 301.5 61.0
n400w500.003 13296 13329.3 37.6 233.0 351.4 2.5 13273 13293.5 13.2 234.5 301.5 58.4
n400w500.004 12356 12417.1 40.3 228.3 346.0 2.2 12351 12381.6 30.3 244.9 302.0 57.6
n400w500.005 12856 12886.4 36.3 171.1 358.2 2.9 12843 12897.6 46.1 184.8 300.9 62.0

Overall Avg 12736.6 12782.2 37.0 216.2 352.3 2.5 12724.6 12757.1 27.0 224.1 301.5 59.6

Table 8
Comparison between VIG_VNS and ACO [15] for makespan criterion. Tmax = 100 s.

Instance n VIG_VNS ACO

Avg Best CPU Avg Best CPU

rc201.1 20 592.06 592.06 0.00 592.06 592.06 100.94
rc201.2 26 869.90 869.90 0.00 877.49 861.91 246.26
rc201.3 32 854.12 854.12 0.00 867.61 853.71 464.30
rc201.4 26 889.18 889.18 0.00 900.52 900.38 151.05
rc202.1 33 850.48 850.48 1.96 880.74 871.11 241.77
rc202.2 14 342.20 342.20 0.00 338.52 338.52 46.77
rc202.3 29 904.48 904.48 3.00 892.18 847.31 190.24
rc202.4 28 854.12 854.12 0.00 1 1 –
rc203.1 19 488.42 488.42 0.00 673.07 663.66 78.83
rc203.2 33 853.71 853.71 0.08 926.75 897.88 255.77
rc203.3 37 956.92 956.92 2.12 1 1 –
rc203.4 15 350.83 350.83 0.00 493.85 493.85 53.08
rc204.1 46 950.36a 950.36 29.92 949.68 949.22 438.25
rc204.2 33 701.62 701.62 0.80 863.65 821.63 240.55
rc204.3 24 455.03 455.03 0.00 642.06 635.36 127.27
rc204.4 14 426.13 426.13 0.00 428.39 425.20 46.75
rc205.1 14 455.94 455.94 0.00 422.24 417.81 46.89
rc205.2 27 820.19 820.19 0.00 820.19 820.19 181.06
rc205.3 35 950.05 950.05 1.92 950.05 950.05 274.55
rc205.4 28 867.13 867.13 1.40 870.43 850.99 186.56
rc206.1 4 117.85 117.85 0.00 117.85 117.85 13.27
rc206.2 37 917.26 917.26 2.56 914.99 909.30 306.13
rc206.3 25 661.07 661.07 0.00 650.59 650.59 140.72
rc206.4 38 930.10 930.10 1.80 943.31 943.31 320.19
rc207.1 34 865.07 865.07 1.04 860.98 851.06 258.44
rc207.2 31 735.56 735.56 0.08 1 1 –
rc207.3 33 800.39 800.39 0.08 955.7 944.52 241.70
rc207.4 6 133.14 133.14 0.00 133.14 133.14 22.45
rc208.1 38 841.28 841.06 12.20 934.8 925.36 334.72
rc208.2 29 644.13 644.13 0.08 722.24 712.96 185.73
rc208.3 36 747.15 747.15 0.08 795.03 774.72 291.98

[1] No feasible solution found.
a Average of 22 runs without 3 infeasible solutions.
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5. Conclusions

This paper presents a VIG_VNS algorithm for the TSPTW. The outcomes of the paper can be summarized as follows. For
the first benchmark set, both the VIG_VNS and GVNS algorithms were able to find all the optimal solutions. For the second
benchmark set, both the VIG_VNS and GVNS algorithms provided new best-known solutions for 6 out of 28 instance classes.
For the third benchmark set, both the VIG_VNS and GVNS algorithms provided new best-known solutions for all the instance
classes. However, for the fourth benchmark set, the VIG_VNS algorithm was able to further improve 14 out of 25 instance
classes at the expense of increased CPU times. In terms of solution quality, the VIG_VNS algorithm was statistically equiv-
alent to the GVNS algorithm, whereas the GVNS algorithm was much faster than the VIG_VNS algorithm due to the use of
neighborhood partitioning improvement method in their algorithm. Regarding the fifth benchmark set with the makespan
criterion, the VIG_VNS algorithm generated the new best-known solutions for 15 out of 31 problem instances compared to
Cheng and Mao in [15] on the instances in Potvin and Bengio [39].

For the future work, the proposed VIG_VNS algorithm can be extended to other variants of TSP problem, such as a
team-orienteering problem with and without time windows. The algorithm can be extended to capacitated vehicle-routing
problems. In addition, several new meta-heuristics such as [41,42] can also be applied to the TSPTW.

Appendix A. Forward pass example

Step 1. Insert node i = 1 into position j = 2

j 0 1 2 3 4 5 0

p 0 3 1 4 5 2 0

i j c(0,3) c(3,1) c(1,4) c(4, 5) c(5,2) c(2,0)

1 2 Remove = c(p0,p1) + c(p1, p2) ! c(p0,p2)
Remove = c(0,3) + c(3,1) ! c(0,1)
Add = c(p3,p1) + c(p1,p2) ! c(p2,p3)
Add = c(4,3) + c(3, 1) ! c(1,4)

After
insertion

p 0 1 3 4 5 2 0

Cost c(0,1) c(1,3) c(3,4) c(4, 5) c(5,2) c(2,0)

Gain = Add ! Remove
Gain = c(4,3) + c(3,1) ! c(1,4) ! (c(0,3) + c(3,1) ! c(0,1))
Gain = c(4,3) + c(3,1) ! c(1,4) ! c(0,3) ! c(3,1) + c(0,1)
Gain = (c(0,1) + c(3,1) + c(4,3)) ! (c(0,3) + c(3, 1) + c(1,4)) < 0

is feasible epj þ cðpj;piÞ 6 lpi and epi þ cðpi;pjþ1Þ 6 lpjþ1

ep2 þ cðp2;p1Þ 6 lp1 and ep1 þ cðp1;p3Þ 6 lp3

e1 + c(3, 1) 6 l3 and e3 + c(3,4) 6 l4

Step 2. Insert node i = 1 into position j = 3

j 0 1 2 3 4 5 0

p 0 3 1 4 5 2 0

i j c(0,3) c(3,1) c(1,4) c(4, 5) c(5,2) c(2,0)

1 3 Remove = c(p0,p1) + c(p1,p2) ! c(p0,p2)
Remove = c(0,3) + c(3,1) ! c(0,1)
Add = c(p4,p1) + c(p1,p3) ! c(p3,p4)
Add = c(5,3) + c(3, 4) ! c(4,5)

After
insertion

p 0 1 4 3 5 2 0

Distance c(0,1) c(1,4) c(4,3) c(3, 5) c(5,2) c(2,0)
Gain = Add ! Remove
Gain = c(5,3) + c(3,4) ! c(4,5) ! (c(0,3) + c(3,1) ! c(0,1))
Gain = c(5,3) + c(3,4) ! c(4,5) ! c(0,3) ! c(3,1) + c(0,1)
Gain = (c(5,3) + c(3,4) + c(0,1)) ! (c(4,5) + c(0,3) + c(3,1)) < 0

is feasible epj þ cðpj;piÞ 6 lpi and epi þ cðpi;pjþ1Þ 6 lpjþ1

ep3 þ cðp3;p1Þ 6 lp1 and ep1 þ cðp1;p4Þ 6 lp4

e4 + c(4, 3) 6 l3 and e3 + c(3,5) 6 l5
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