
Towards Human-Level Performance
in Solving Double Dummy Bridge

Problem

Szymon Kowalik and Jacek Mańdziuk(B)

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Koszykowa 75, 00-662 Warsaw, Poland

mandziuk@mini.pw.edu.pl

Abstract. Double Dummy Bridge Problem (DDBP) is a hard classifi-
cation problem that consists in estimating the number of tricks to be
taken by N-S pair during a bridge game. In this paper we propose a new
approach to DDBP which utilizes convolutional neural networks (CNNs)
and a dedicated matrix representation of the problem, suitable for the
CNN application. Following previous studies on the application of neu-
ral networks to DDBP, we take a knowledge-free approach, i.e. the CNN
models are trained with no use of any expert knowledge or explicitly
indicated bridge rules. As a result, two models are derived: a baseline
CNN model and its ensemble refinement. The results are compared with
two former neural network approaches, showing significant superiority of
the CNN-based solution. Depending on the type DDBP deal, i.e. trump
or notrump, our approach either outperforms or is slightly inferior to
the outcomes of human bridge grandmasters solving DDBP. This state-
of-the-art performance is complemented in the paper with an analysis
of the internal structure (weight patterns) of the trained CNNs, which
partly explains the underlying classification process.

Keywords: Deep learning · Convolutional neural network · Double
dummy bridge problem · Classification

1 Introduction

The Game of Bridge. Contract bridge (or simply bridge) - one of the most
popular classic card games - is an interesting Artificial Intelligence (AI) challenge.
Among others, incomplete information about game state and cooperation of
players in pairs can be pointed out as demanding aspects of this game. Creating
a master-level bridge program is therefore a difficult task.

Formally, bridge is a trick-taking card game for four players. It begins by
dealing a standard 52-card deck to the players. Each card has its value (from
lowest to highest: 2, 3, . . . , 10, J - Jack, Q - Queen, K - King, A - Ace) and suit
(♠ - spades, ♥ - hearts, ♦ - diamonds, ♣ - clubs). The players are forming two
pairs playing against each other. They are marked according to their positions
c© Springer Nature Switzerland AG 2021
T. Mantoro et al. (Eds.): ICONIP 2021, LNCS 13111, pp. 15–27, 2021.
https://doi.org/10.1007/978-3-030-92273-3_2

16 S. Kowalik and J. Mańdziuk

at the table: N - North and S - South (first pair); E - East and W - West (second
pair). Following bridge related literature, we will refer to the set of 13 cards
possessed by a given player as his/her hand.

A bridge game begins with a bidding phase that aims at establishing a con-
tract which is defined as the number of tricks to be taken by the partners (within
a pair) assuming a given trump (TR) suit or its absence - the so-called notrump
(NT) contract. After an auction the trick-taking part of game begins (aka play
phase). Each trick consists of four cards - one played by each player. The player
with the highest card takes the trick. However, any card in TR suit is considered
to be higher than any card in other suits. The team that made the highest bid
during auction tries to win at least as many tricks as it was declared in the
contract, otherwise - it loses. More detailed bridge rules can be found in [16].

Definition and Significance of Double Dummy Bridge Problem
(DDBP). The key issue during a bidding phase is to identify opponents’ and
partner’s hands and determine the highest possible contract based on this knowl-
edge. Experienced bridge players are able to deduce a partial distribution of cards
among players based on the course of bidding. This allows to estimate the most
probable variants of card locations, evaluate them and determine the optimal
contract.

As proposed in [11], a similar approach can be imitated by a bridge playing
program. To this end the DDBP was defined as an auxiliary problem. DDBP
consists in answering the question of “How many tricks can be taken by N-S
pair assuming that location of each card is known and each player plays in an
optimal way?”. Please note that considering possible locations of certain key
cards mentioned above is equivalent to solving a number of DDBP instances
related to their possible distributions. This observation led to a simulation-based
bidding approach that considers numerous possible cards distributions and their
DDBP outcomes. Such an approach was successfully implemented in a bridge-
playing program utilizing the DDBP solver [6].

The assumptions made in DDBP make the problem deterministic. However,
as indicated below in Sect. 2, DDBP proven to be a demanding machine learning
challenge due to its high complexity and strong sensitivity to even subtle changes
in input data. For example, swapping two seemingly minor cards can result in a
significant change in the DDBP outcome [18].

Contribution. The main contribution of this work is threefold. Firstly, we ver-
ify the suitability of CNNs to solving complex, combinatorial problem known
as the DDBP. Secondly, we compare the efficacy of CNN DDBP solver with
shallower neural network architectures considered in the past - a multilayer per-
ceptron (MLP) and its combination with an autoencoder (MLP-AE). Thirdly,
we demonstrate the state-of-the-art AI performance in solving DDBP, which in
certain problem settings outperforms the results of top human bridge players,
while in other settings narrows the gap between humans and AI.

Towards Human-Level Performance in Solving DDBP 17

2 Related Literature

Fast DDBP solver relying on the so-called partition search [5] is a core element of
Ginsberg’s Intelligent Bridgeplayer (GIB) program [6]. GIB was solving DDBP
to find an optimal contract based on Monte Carlo (MC) simulation of various
possible double dummy distributions of the key cards among four players. The
program was twice winning a title of the World Computer Bridge Champion in
the late 1990s [7]. The approach was further developed in [1] leading to significant
reductions of the search tree and computation time.

Despite over 20 years of research, bridge-playing programs based on this idea
still determine the state-of-the-art.1 Recent research also focused on a bidding
phase using deep learning techniques and double dummy analysis [20,21]. In
parallel, the use the Recursive Monte Carlo method instead of MC search (which
tends to stuck in local extremes [2]) was also proposed.

When it comes to DDBP itself, several neural network approaches to solving
this problem were considered over the years. The key ones, from the perspective
of this study, are briefly summarized below. The main rationale behind their
usage is an extremely fast inference phase of neural models. Once trained, the
network is capable to solve millions of deals in a fraction of time required by
exact methods, e.g. partition search [5].

Multilayer Perceptron (MLP) approach to DDBP was initially proposed
in [17], further developed in several subsequent papers and summarized in [18],
where results of a direct comparison with human grandmasters solving DDBP
task within 30 s time per instance were presented.

One of the critical factors in this research was effective representation of a
hand in the input layer. Furthermore, it was noticed that TR and NT deals
are significantly different, thus require separate training in order to achieve the
best fit of each resulting model. Additionally, it was observed that the most
effective approach in TR contracts is to assume one particular TR suit in all
deals (without loss of generality - a spade suit ♠). Deals with other TR suit can
be considered by simply mapping a real TR suit to ♠.

The results obtained with MLP, presented in the top row of Table 1, indi-
cate high model performance which, however, demonstrates certain difficulties
in determining the exact number of tricks. It is also apparent that the case of
NT contracts is more difficult than the case of TR contracts. This discrepancy
is caused by the way in which neural networks solve DDBP, i.e. basing solely on
the analysis of the distribution of cards among players. Professional players, on
the other hand, in addition to statistical hand analysis also benefit from mental
simulation of the play phase based on their experience, which is of particular
importance in NT deals [13].

1 The 2019 World Computer Bridge Champion, Micro Bridge (http://www.osk.3web.
ne.jp/∼mcbridge/index.html), uses MC simulations and DDBP solver.

18 S. Kowalik and J. Mańdziuk

Autoencoder (AE-MLP). DDBP was revisited in [14] with the use of MLP
combined with a shallow autoencoder. The model consists of two parts - pre-
trained encoding layers that provide an efficient representation of the problem
and fully connected layers responsible for further inference. Please consult [14]
for the details. The efficacy of AE-MLP is similar to that of MLP (see Table 1).

Table 1. Summary of literature results in comparison with the results of human pro-
fessional bridge players (bottom row) achieved in experiments described in [13]. For
each combination of model and contract type three error measures are presented, from
left to right referred to as (acc2 | acc1 | acc0) that indicate the percentage of deals in
which the error did not exceed two, one and zero tricks (exact result), respectively. This
notation was proposed in [18] and is followed in this paper for the sake of comparability.

Model NT Contracts TR Contracts

MLP 97.34|84.31|37.80 99.88|96.48|53.11

AE-MLP 96.63|86.18|41.73 99.72|95.33|51.28

Human grandmasters 94.74|88.30|73.68 88.34|81.63|53.06

3 Proposed CNN-Based Approach to DDBP

3.1 Effective DDBP Coding

The key concept contributing to the overall efficacy of the proposed solution is
innovative, CNN-plausible problem representation. It extends the idea proposed
in the Poker-CNN model [19] and relies on the following assumptions [9]: (a)
each card is represented by fixed matrix element; (b) spatial arrangement of
matrix elements reflect certain relations between them (e.g. neighbouring ele-
ments correspond to cards of similar strength); (c) channels refer to players or
suits. Initial tests showed that the first option - assigning channels to players -
is more advantageous, thus it has been utilized in presented experiments.

Several DDBP encodings were proposed and tested until selecting the most
effective variant, presented in Fig. 1. The encoding matrix consists of 13 columns
assigned to cards’ ranks and 12 rows corresponding to suits. Four channels are
used, one per each player. The matrix has three parts, four rows each:

In rows 1–4 the binary coding is used. Each matrix element has a value of 1
for a hand containing a card in the corresponding rank and suit, or 0 otherwise.

Rows 5–8 are structured in a similar manner with positive values correspond-
ing to the rank of the card to which they refer to. Each cell of this matrix frag-
ment can thus take one of 14 values uniformly distributed in the range 〈0, 1〉,
the lowest of which - 0 - represents the absence of a given card. The stronger the
card, the higher the number representing it.

Coding in rows 9–12 is derived from rows 5–8 by shifting positive values to
the left, replacing zero values. So in this case, the location of the value in the
column is not related to the card rank. It is only represented by a numeric value.

Towards Human-Level Performance in Solving DDBP 19

Fig. 1. Example of the DDBP encoding. It refers to the deal presented in the left part
of the figure. Channels are illustrated as layers. In the upper left corner of each layer,
the corresponding player is indicated.

Unlike in the previous approaches with MLP [18] and AE-MLP [14] the key
aspect of proposed coding is data redundancy. Presentation of the same infor-
mation in different ways facilitates more complex reasoning process (compared
to previous architectures) implemented in the CNN model.

3.2 Baseline CNN-Based DDBP Solver

Our CNN model relies on AlexNet [10], but is heavily adapted to the considered
problem. Figure 2 presents the model architecture and Table 2 its hyperpareme-
ter values. The input layer is fed with matrices containing the DDBP instance,
encoded in a way described in Sect. 3.1. The output layer consists of 14 neurons,
each corresponding to one of the possible DDBP outcomes.

Fig. 2. Baseline CNN model architecture used in the experiments - TR contract variant.

The model is composed of 3 or 4 convolutional layers - depending on the
variant (specialized for TR or NT contracts, respectively). The first two convo-
lutional layers use filters of the same size as the input data. This approach is
intended to support feature extraction with respect to the full problem knowl-
edge (e.g. suits length determination or individual cards strength identification).

20 S. Kowalik and J. Mańdziuk

This is not a typical approach for CNNs, but in this case it turns out to be valid
(as confirmed by the results). A possible explanation is attributed to the fact
that the input data is also not structured in a typical way. Full knowledge of the
problem seems to be much more important in this case than in image analysis
- a typical CNNs domain of application - that relies on detecting patterns in
chunks of the input data.

Deeper convolutional layers serve just this purpose: the filters used there
have a significantly smaller size (2 × 3) and extract local, non-obvious features.
All convolutional layers include zero-padding to keep the matrix size equal at
their input and output. In Fig. 2, zero-padding is omitted for the sake of clarity
of the presentation. The use of pooling layers was abandoned as they cause
a reduction in the size of the problem representation, which is relatively small in
terms of CNNs. Consequently, in preliminary tests we observed that the networks
containing pooling layers perform visibly worse than networks without these
layers. Typically for CNNs, convolutional layers are followed by fully connected
layer (cf. Table 2).

Table 2. Baseline model hyperparameters values.

Hyperparameter Value

NT Contracts TR Contracts

Convolutional layers

Number of layers 4 3

Filter sizes in
successive layers

(12 × 13), (12 × 13),
(2 × 3), (2 × 3)

(12 × 13), (12 × 13),
(2 × 3)

Number of filters 32

Activation function SELU

Fully connected layers

Number of layers 4 and output layer

Number of neurons in
successive layers

52, 52, 26, 26, 14 52, 52, 52, 52, 14

Activation function ELU Softplus

3.3 Ensemble of Classifiers

We also attempted to increase classification accuracy by using an ensemble of
classifiers consisting of 10 independently trained instances of the above-described
baseline CNN model. Two different types of training set construction for each
component model were considered: (1) all instances of the baseline model were
trained on the full training set (the differences between the models were caused
by random weight initialization); (2) bagging [3].

Additionally, the influence of the voting method on the ensemble results was
also investigated. Two approaches were tested: (1) hard (majority) voting, where

Towards Human-Level Performance in Solving DDBP 21

each individual model votes for the class and the ensemble result is determined by
a majority vote, and (2) soft voting involving the summation of the probabilities
assigned to each class by individual classifiers - the class with the highest sum
becomes the ensemble outcome [8].

4 Experimental Evaluation

The Dataset. Using the GIB program, M.L. Ginsberg generated a library of
DDBP solutions [4], hereafter referred to as the GIB library. The set consists
of exact problem solutions for over 700 000 randomly generated bridge deals.
For each deal, the number of tricks to be taken by N-S pair under the DDBP
assumptions was calculated. It is given for all combinations of the TR suit and a
player making an opening lead, which gives a total of 20 values for a single deal.

The GIB library has been used in all previous research on neural networks in
DDBP referenced in this paper. For the sake of results comparability we follow
the training/test set construction proposed in previous works [15,18]. Namely,
deals numbered from 1 to 100 000 form a training set and deals numbered from
600 001 to 700 000 form a test set. Additionally, a validation set consisting of
deals numbered from 500 001 to 600 000 is used.

Baseline Model Tuning. We adopted the following tuning methodology [9].
First, several hyperparameters were simultaneously tuned to discover their impact
on model quality. Once a significant hyperparameter was detected, a second phase
aimed at finding its optimal value proceeded. It was discovered using the best
model configuration so far. This process was repeated until getting a model that no
longer showed significant performance improvement by further tuning. The great-
est impact on the performance of the trained model comes from the size of the
filters in the convolutional layers and the number of these layers.

4.1 Results

Baseline Model. For each of the two deal types (TR/NT) 10 independent
experiments were performed. The aggregated results are presented in Table 3.

Table 3. The average out-of-sample results obtained in 10 tests of the baseline model
(Mean) vs the state-of-the-art results (SOTA). Higher outcomes are bolded.

NT Contracts TR Contracts

Mean 98.03 |93.17 |57.24 99.89 |97.84 |58.42

St. dev. 00.18 | 00.44 | 00.89 00.02 | 00.21 | 00.90

SOTA 96.63 | 86.18 | 41.73 99.88 | 96.48 | 53.11

The first observation is the superiority of the CNN model over state-of-the-art
(SOTA) literature results. It is worth noting that in case of NT contracts - the

22 S. Kowalik and J. Mańdziuk

more challenging variant - the improvement is significant: 15 p.p. with respect
to accuracy measure (acc0). Actually, the CNN model yields very similar acc0

results for NT (average 57.24%) and TR (average 58.42%) contracts. However,
the difference between these variants is clearly evident when one compares the
percentage of deals where the estimation error did not exceed one or two tricks
(acc1 and acc2, resp.). This confirms higher level of complexity in the case of NT
contracts, which manifests in higher errors. The proposed solution is stable - the
standard deviation of accuracy (acc0) does not exceed 1 p.p., and is naturally
even lower for acc1 and acc2.

In summary, the baseline model is a strong estimator of the number of tricks
to be taken by the N-S pair and provides a promising starting point for the
ensemble approach discussed below.

Ensemble of Classifiers. Table 4 presents the results of an ensemble of classi-
fiers built on 10 instances of the baseline model. According to the assumptions
described in Sect. 3.3, four variants were considered.

Table 4. Out-of-sample results of four variants of classifier ensembles. Each ensemble
is built on 10 instances of the baseline CNN model. The best results are bolded. The
average results of the 10 baseline models (Mean) and the best literature results (SOTA)
are outperformed by the best ensemble variant (Full/Soft). Compared to results of
professional players, the Full/Soft variant is inferior only in acc0 measure for NT deals.

Training set Voting NT Contracts TR Contracts

Full Hard 98.55 | 95.16 | 63.46 99.93 | 98.79 | 63.62

Full Soft 98.61 |95.39 | 64.13 99.94 |98.83 |63.83

Bagging Hard 98.08 | 93.68 | 58.40 99.91 | 98.27 | 60.37

Bagging Soft 98.15 | 94.03 | 59.08 99.91 | 98.38 | 60.87

Mean 98.03 | 93.17 | 57.24 99.89 | 97.84 | 58.42

SOTA 96.63 | 86.18 | 41.73 99.88 | 96.48 | 53.11

Human grandmasters 94.74 | 88.30 |73.68 88.34 | 81.63 | 53.06

In all cases, the results improved significantly over a single instance of the
baseline model. It is worth observing that ensembles composed of models trained
on the full training set perform better than those using bagging. This implies
that the size of training set is crucial for the discussed problem and using only
2/3 of the original set deteriorates model quality. Moreover, visible improvement
in ensemble performance over a single model confirms the non-trivial nature of
DDBP as already noted in previous research [18].

The voting method has less influence on the results, nevertheless it is possible
to indicate that soft voting performs better than hard voting in both regarded
cases considering all measures. Therefore, one can conclude that even if the model

Towards Human-Level Performance in Solving DDBP 23

outputs an incorrect result, it assigns a relatively high probability to the correct
number of tricks to be taken by N-S pair.

Even though the ensemble performance improvement relative to a single
model was certainly expected, its degree is surprisingly large. The accuracy
(acc0) increases by more than 5 p.p. (to 63%) and almost 7 p.p. (to 64%) for
TR and NT contracts, resp. In the latter case the results excelled human grand-
master scores by 10 p.p. This also resulted in an outperforming the TR model
by the NT one with respect to the acc0, which is reported for the first time in
the literature.

4.2 Analysis of Weight Structures of Trained Baseline CNN Models

Following previous studies, an analysis of weight structures of trained baseline
models was performed in attempt to explain the model performance. In particu-
lar, the first convolutional layer filters, in both TR and NT models were examined
after training. The goal of this process is to relate patterns found in these filters
to the common bridge knowledge. An intriguing research question is whether the
knowledge gained by CNN models during training will be in line with human
expert knowledge. Attention was given to finding analogous patterns to those
identified in previous neural network studies [12,15] as well as new, previously
unobserved ones - specific to CNN-based approach.

As a general remark, it is worth emphasizing that the analyzed filters are
applied multiple times to the matrix representing DDBP, each time with differ-
ent offsets. Consequently, the structure of the filters should not be expected to
explicitly correspond to the selected DDBP coding, thus the search for patterns
should rather focus on the spatial relationships between the filter weights.

The contents of the exemplary filters are shown in Fig. 3. At first glance one
can see that filter elements form mainly two types of patterns - vertical stripes
and horizontal stripes. A stripe is defined as a row or column (or part thereof)
that contains mostly elements with absolute values significantly higher than its
surroundings and/or elements with values of the same sign. It can be deduced
that vertical stripes are used to detect cards of certain ranks, while the horizontal
ones have to do with suits. More detailed information on the identified patterns
is highlighted below. These patterns have been identified in networks specialized
in processing both TR and NT contracts.
Patterns consistent with observations from previous studies:

Vertical stripes on the right side of the filters (e.g. filter #2). Due to their
location, it can be hypothesized that they are responsible for identifying cards
of the highest rank, aka honors. Their importance (i.e. frequency of occurrence
and distinctness) is greater for NT contracts than for TR ones, which is in line
with the expert knowledge - having high-ranked cards is more important in NT
deals [16].

A single vertical stripe in the far right column (e.g. #20). This pat-
tern is presumably used to identify Aces - the strongest cards in a deck whose
significance is widely supported by the expert knowledge.

24 S. Kowalik and J. Mańdziuk

Fig. 3. Visualization of example filters in the first convolutional layer - a variant of
TR contract network. The absolute value of each matrix element (filter weight) is
represented by the cell color intensity and the circle radius. Positive value is indicated
by red cell and black circle, negative value is marked with blue cell and white circle.
(Color figure online)

Long horizontal stripes whose weights approximate the card hierarchy
(e.g. #12). For TR deals, the hierarchy is reversed, which can be interpreted as
detecting unfavorable patterns for a given pair of players that may have a positive
effect on their opponents situation.

Long horizontal stripes with relatively low absolute values, but clearly
distinguishable along the entire filter length, occurring only in the case
of TR contracts (e.g. #15). They can be used to detect all cards of a particular
suit in a hand, which is a crucial information for such deals.
Newly observed patterns:

Horizontal stripes repeatable every 4 rows (e.g. #22). This is in line with
the structure of the input data. Correlations between various representations of
the same information have been correctly detected.

Accumulation of relevant elements in the lower left corner of the filter
(e.g. #11). These patterns refer to elements in the last four rows of the DDBP
coding. As described in Sect. 3.1, for these elements, the location in the columns
does not matter, and all non-zero values are shifted left. The presence of such
pattern suggests that the network captured the high significance of the data in
this part of the matrix during training.

Towards Human-Level Performance in Solving DDBP 25

Associating the sign of filter elements’ values to players (e.g. #15).
Elements of the pattern have the same sign for players within one pair and the
opposite sign for players within the other pair. Hence, the network identifies the
positive impact of certain card combinations on the situation of one pair and,
at the same time, its negative impact for the other pair.

The above overview demonstrates that despite knowledge-free training regime
CNNs are able to infer extensive knowledge about the game of bridge, consis-
tent with expert experience. Most of the patterns found in previously applied
neural models were also identified in our experiments. Additionally, some new
patterns, arising mainly from a new way of data representation and processing,
were discovered. What is more, several patterns described above can be often
found within a single filter (e.g. #2). At the same time - in contrast to previous
models - no filters with structures appearing to be fully random were discovered.
These observations, together with excellent performance of the baseline model,
suggest that deep CNNs are able to infer much more information about the
DDBP than shallower MLP and AE-MLP models.

5 Conclusions and Future Work

In this paper a new approach to solving DDBP relying on CNNs was proposed.
The results outperform those of the previous SOTA reference models, i.e. MLP
and AE-MLP, by a significant margin. Hence, the primary conclusion of this
research is that deep convolutional networks are very well suited to modeling
the DDBP.

The experiments confirm the previous conclusion regarding the difference
between NT and TR contracts. Despite similar accuracy (acc0) in these two
variants, it is shown that if the prediction is incorrect, the error is statistically
greater for NT deals than for TR ones. What is more, a model specialized for NT
contracts requires a more complex architecture in order to obtain best results,
which further confirms the more challenging nature of this DDBP variant.

The internal structure analysis of the trained networks identified patterns
with similar roles as those found in the MLP and AE-MLP models, albeit in the
case of CNNs they are, in general, less straightforward and harder to explain.
This is due to the fact that deeper networks are capable of making more complex
inference, which positively influences the quality of the model but negatively
impacts its interpretability.

Application of an ensemble of classifiers yielded significant improvement over
the performance of a baseline model. The range of the advancement of results is
yet another indication of high complexity of the considered problem.

Finally, a comparison of results presented in Table 4 reveals that proposed
solution outperforms the results of top human players (bridge grandmasters) in
TR deals. It is, however, still inferior in NT contracts, albeit in the exact measure
(acc0) only.

26 S. Kowalik and J. Mańdziuk

Acknowledgements. Studies were funded by BIOTECHMED-1 project granted by
Warsaw University of Technology under the program Excellence Initiative: Research
University (ID-UB).

References

1. Beling, P.: Partition search revisited. IEEE Trans. Comput. Intell. AI Games 9(1),
76–87 (2017)

2. Bouzy, B., Rimbaud, A., Ventos, V.: Recursive Monte Carlo search for bridge card
play. In: 2020 IEEE Conference on Games (CoG), pp. 229–236 (2020)

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
4. Ginsberg, M.L.: Library of double-dummy results. http://www.cirl.uoregon.edu/

ginsberg/gibresearch.html
5. Ginsberg, M.L.: Partition search. In: Shrobe, H., Senator, T. (eds.) Proceedings

of the Thirteenth National Conference on Artificial Intelligence and the Eighth
Innovative Applications of Artificial Intelligence Conference, vol. 2. pp. 228–233.
AAAI Press, Menlo Park (1996)

6. Ginsberg, M.L.: GIB: Steps toward an expert-level bridge-playing program. In:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 1999), pp. 584–589 (1999)

7. Ginsberg, M.L.: GIB: imperfect information in a computationally challenging
game. J. Artif. Intell. Res. 14, 303–358 (2001)

8. Kim, J., Choi, S.: Automated machine learning for soft voting in an ensemble
of tree-based classifiers. In: ICML Workshop on Automatic Machine Learning
(AutoML), Stockholm, Sweden (2018)

9. Kowalik, Sz.: Deep learning in Double Dummy Bridge Problem. Master’s thesis,
Warsaw University of Technology, Warsaw, Poland (2021)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference on
Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran
Associates Inc., Red Hook (2012)

11. Levy, D.N.: The million pound bridge program. In: Levy, D., Beal, D. (eds.) Heuris-
tic Programming in Artificial Intelligence: The First Computer Olympiad, pp. 95–
103. Ellis Horwood, Chichester (1989)

12. Mańdziuk, J., Mossakowski, K.: Looking inside neural networks trained to solve
double-dummy bridge problems. In: 5th Game-On International Conference on
Computer Games: Artificial Intelligence, Design and Education (CGAIDE 2004),
Reading, UK, pp. 182–186 (2004)

13. Mańdziuk, J., Mossakowski, K.: Neural networks compete with expert human play-
ers in solving the double dummy bridge problem. In: 2009 IEEE Symposium on
Computational Intelligence and Games, pp. 117–124, September 2009

14. Mańdziuk, J., Suchan, J.: Solving the double dummy bridge problem with shallow
autoencoders. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS,
vol. 11304, pp. 268–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-04212-7 23

15. Mańdziuk, J., Suchan, J.: Who should bid higher, NS or WE, in a given bridge
deal? In: 2019 International Joint Conference on Neural Networks, pp. 1–8 (2019)

16. Manley, B., Horton, M., Greenberg-Yarbro, T., Rigal, B. (eds.): The Official Ency-
clopedia of Bridge, 7th edn. American Contract Bridge League Inc (2011)

Towards Human-Level Performance in Solving DDBP 27

17. Mossakowski, K., Mańdziuk, J.: Artificial neural networks for solving double
dummy bridge problems. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 915–921. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6 142

18. Mossakowski, K., Mańdziuk, J.: Learning without human expertise: a case study
of the double dummy bridge problem. IEEE Trans. Neural Netw. 20(2), 278–299
(2009)

19. Yakovenko, N., Cao, L., Raffel, C., Fan, J.: Poker-CNN: a pattern learning strat-
egy for making draws and bets in poker games using convolutional networks. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2016), pp.
360–367 (2016)

20. Yeh, C.K., Hsieh, C.Y., Lin, H.T.: Automatic bridge bidding using deep reinforce-
ment learning. IEEE Trans. Games 10(4), 365–377 (2018)

21. Zhang, X., Liu, W., Yang, F.: A neural model for automatic bidding of con-
tract bridge. In: 2020 IEEE 22nd International Conference on High Perfor-
mance Computing and Communications; IEEE 18th International Conference on
Smart City; IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 999–1005 (2020)

