
Direct Linear Time Construction of
Parameterized Suffix and LCP Arrays for

Constant Alphabets

Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai[0000−0002−6856−5185], and Masayuki Takeda

Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
{noriki.fujisato,yuto.nakashima,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. We present the first worst-case linear time algorithm that
directly computes the parameterized suffix and LCP arrays for constant
sized alphabets. Previous algorithms either required quadratic time or
the parameterized suffix tree to be built first. More formally, for a string
over static alphabet Σ and parameterized alphabet Π, our algorithm
runs in O(nπ) time and O(n) words of space, where π is the number of
distinct symbols of Π in the string.

Keywords: parameterized pattern matching, paramterized suffix array
paramterized LCP array

1 Introduction

Parameterized pattern matching is one of the well studied “non-standard” pat-
tern matching problems which was initiated by Baker [1], in an application to
find duplicated code where variable names may be renamed. In the parameter-
ized matching problem, we consider strings over an alphabet partitioned into
two sets: the parameterized alphabet Π and the static alphabet Σ. Two strings
x, y ∈ (Π ∪ Σ)∗ of length n are said to parameterized match (p-match), if
one can be obtained from the other with a bijective mapping over symbols
of Π, i.e., there exists a bijection φ : Π → Π such that for all 1 ≤ i ≤ n,
x[i] = y[i] if x[i] ∈ Σ, and φ(x[i]) = y[i] if x[i] ∈ Π. For example, if Π = {x, y, z}
and Σ = {A, B, C}, strings xxAzxByzBCzy and yyAxyBzxBCxz p-match, since we
can choose φ(x) = y, φ(y) = z, and φ(z) = x, while strings xyAzzByxBCz and
yyAzxByxBCy do not p-match, since there is no such bijection on Π. As parame-
terized matching captures the “structure” of the string, it has also been extended
to RNA structural matching [16].

Baker introduced the so-called prev encoding of a p-string which maps each
symbol of the p-string that is in Π to the distance to its previous occurrence (or
0 if it is the first occurrence), and showed that two p-strings p-match if and only
if their prev encodings are equivalent. For example, the prev encodings for p-
strings xxAzxByzBCzy and yyAxyBzxBCxz are both (0, 1, A, 0, 3, B, 0, 4, B, C, 3, 5).

ar
X

iv
:1

90
6.

00
56

3v
1

 [
cs

.D
S]

 3
 J

un
 2

01
9

2 Fujisato et al.

Thus, the parameterized matching problem amounts to efficiently comparing the
prev encodings of the p-strings.

Using the prev encoding allows for the development of data structures that
mimic those of standard strings. The central difficulty, in contrast with standard
strings, is in coping with the following property of prev encodings; a substring
of a prev encoding is not necessarily equivalent to the prev encoding of the
corresponding substring.

Nevertheless, several data structures and algorithms have so far successfully
been developed. Baker proposed the parameterized suffix tree (PST), an ana-
logue of the suffix tree for standard strings [17], and showed that for a string of
length n, it could be built in O(n|Π|) time and O(n) words of space [2]. Using
the PST for T , all occurrences of a substring in T which parameterized match
a given pattern P can be computed in O(|P |(log(|Π|+ |Σ|)) + occ) time, where
occ is the number of occurrences of the pattern in the text. Kosaruju [15] further
improved the running time of construction to O(n log(|Π|+ |Σ|)). Furthermore,
Shibuya [16] proposed an on-line algorithm for constructing the PST that runs
in the same time bounds.

Deguchi et al. [5] proposed the parameterized suffix array (PSA). Given the
PST of a string, the PSA can be constructed in linear time, but as in the case for
standard strings, the direct construction of PSAs has been a topic of interest.j
Deguchi et al. [5] showed a linear time algorithm for the special case of |Π| = 2
and Σ = ∅. I et al. [11] proposed a lightweight and practically efficient algorithm
for largerΠ, but the worst-case time was still quadratic in n. Beal and Adjeroh [4]
proposed an algorithm based on arithmetic coding that runs in O(n) time on
average. Furthermore, they claimed a worst-case running time of o(n2). However,

the proved upperbound is O(n2(log(n−log1+ε n)
log1+ε n

)) for a very small ε > 0 (Corollary

27 of [4]), so it is only slightly better than quadratic.

In this paper, we break the worst-case quadratic time barrier considerably,
and present the first worst-case linear time algorithm for constructing the param-
eterized suffix and LCP arrays of a given p-string, when the number of distinct
parameterized symbols in the string is constant. Namely, our algorithm runs in
O(nπ) time and O(n) words of space, where π is the number of distinct symbols
of Π in the string.

Several other indices for parameterized pattern matching have been proposed.
Diptarama et al. [6] and Fujisato et al. [8] proposed the parameterized position
heaps (PPH), an analogue of the position heap for standard strings [7], and
showed that it could be built in O(n log(|Σ|+|Π|)) time and O(n) words of space.
Using the PPH for T , all occurrences of a substring in T which parameterized
match a given pattern P can be computed in O(|P |(|Π| + log(|Π| + |Σ|)) +
occ) time, where occ is the number of occurrences of the pattern in the text.
Parameterized BWT’s have been proposed in [10]. Also, paramterized text index
with one wildcard was proposed in [9].

Linear Time Parameterized Suffix and LCP Arrays for Constant Alphabets 3

2 Preliminaries

For any set A of symbols, A∗ denotes the set of strings over the alphabet A.
Let |x| denote the length of a string x. The empty string is denoted by ε. For
any string w ∈ A∗, if w = xyz for some (possibly empty) x, y, z ∈ A∗, x, y, z
are respectively called a prefix, substring, suffix of w. When x, y, z 6= w, they
are respectively called a proper prefix, substring, and suffix of w. For any integer
1 ≤ i ≤ |x|, x[i] denotes the ith symbol in x, and for any 1 ≤ i ≤ j ≤ |x|, x[i..j] =
x[i] · · ·x[j]. Let ≺ denote a total order on A, as well as the lexicographic order it
induces. For two strings x, y ∈ A∗, x ≺ y if and only if x is a proper prefix of y,
or there is some position 1 ≤ k ≤ min{|x|, |y|} such that x[1..k− 1] = y[1..k− 1]
and x[k] ≺ y[k].

Let Π and Σ denote disjoint sets of symbols. Π is called the parameterized
alphabet, and Σ is called the static alphabet. A string in (Π ∪Σ)∗ is sometimes
called a p-string. Two p-strings x, y ∈ (Π ∪ Σ)∗ of equal length are said to
parameterized match, denoted x ≈ y, if there exists a bijection φ : Π → Π, such
that for all 1 ≤ i ≤ |x|, x[i] = y[i] if x[i] ∈ Σ, and φ(x[i]) = y[i] if x[i] ∈ Π.

The prev encoding of a p-string x of length n is the string prev(x) over the
alphabet Σ ∪ {0, . . . , n− 1} defined as follows:

prev(x)[i] =


x[i] if x[i] ∈ Σ,

0 if x[i] ∈ Π and x[i] 6= x[j] for any 1 ≤ j < i,

i− j if x[i] ∈ Π, x[i] = x[j] and x[i] 6= x[k] for any j < k < i.

For example, if Π = {s, t, u}, Σ = {A} and p-string x = ssuAAstuAst, then
prev(x) = (0, 1, 0, A, A, 4, 0, 5, A, 4, 4). Baker showed that x ≈ y if and only if
prev(x) = prev(y) [3]. We assume that Π and Σ are disjoint integer alphabets,
where Π = {0, . . . , nc1} for some constant c1 ≥ 1 and Σ = {nc1 + 1, . . . , nc2}
for some constant c2 ≥ 1. This way, we can distinguish whether a symbol of a
given prev encoding belongs to Σ or not. Also, given p-string x of length n, we
can compute prev(x) in O(n) time and space, by sorting the pairs (x[i], i) using
radix sort, followed by a simple scan of the result.

The following are the data structures that we consider in this paper.

Definition 1 (Parameterized Suffix Array [5]). The parameterized suffix
array of a p-string x of length n, is an array PSA[1..n] of integers such that
PSA[i] = j if and only if prev(x[j..n]) is the ith lexicographically smallest string
in {prev(x[i..n]) | i = 1, . . . , n}.

Definition 2 (Parameterized LCP Array [5]). The parameterized LCP ar-
ray of a p-string x of length n, is an array pLCP [1..n] of integers such that
pLCP [1] = 0, and pLCP [i], for any i ∈ {2, . . . , n}, is the longest common prefix
between prev(x[PSA[i− 1]..n]) and prev(x[PSA[i]..n]).

The difficulty when dealing with the prev encoding of suffixes of a string, is
that they are not necessarily the suffixes of the prev encoding of the string. It is
important to notice however, that, given the prev encoding prev(x) of the whole

4 Fujisato et al.

string x, any value specific of the prev encoding of an arbitrary suffix of x can
be retrieved in constant time, i.e., for any 1 ≤ i ≤ n and 1 ≤ k ≤ n− i+ 1,

prev(x[i..n])[k] =

{
0 if x[k′] ∈ Π and prev(x)[k′] > k.

prev(x)[k′] otherwise

where k′ = i + k − 1. The critical problem for suffix sorting is that even if
two prev encodings prev(x[i..n]) and prev(x[j..n]) share a common prefix and
satisfies prev(x[i..n]) ≺ prev(x[j..n]), it may still be that prev(x[j + 1..n]) ≺
prev(x[i+ 1..n]).

Fig. 1 shows an example of PSA and pLCP for the string stssAtssAs. For
example, we have that prev(x[6..10]) ≺ prev(x[1..10]), which share a common
prefix of length 2, yet prev(x[2..10]) ≺ prev(x[7..10]).

i PSA[i] prev(x[PSA[i]..|r|]) pLCP [i]

1 10 0 0

2 6 0 0 1 A 2 1

3 2 0 0 1 A 4 3 1 A 2 4

4 1 0 0 2 1 A 4 3 1 A 2 2

5 3 0 1 A 0 3 1 A 2 1

6 7 0 1 A 2 3

7 4 0 A 0 3 1 A 2 1

8 8 0 A 2 2

9 9 A 0 0

10 5 A 0 0 1 A 2 2

Fig. 1. An example of the parameterized suffix and LCP arrays for a p-string x =
stssAtssAs, where Σ = {A}, Π = {s, t}.

3 Algorithms

In this section we describe our algorithms for constructing the parameterized
suffix and LCP arrays. First, we mention a simple observation below.

From the definition of prev(x), we have that prev(x)[i] = 0 for some position i
if and only if i is the first occurrence of symbol x[i] ∈ Π. Therefore, the following
observation can be made.

Observation 1 For any p-string x, the prev encoding prev(x′) of any substring
x′ of x contains at most π positions that are 0’s, where π is the number of distinct
symbols of Π in x.

Linear Time Parameterized Suffix and LCP Arrays for Constant Alphabets 5

3.1 PSA Construction

Based on this observation, we can see that the prev encoding of each suffix x[i..n]
can be partitioned into zi + 1 ≤ π + 1 blocks, where zi is the number of 0’s in
prev(x[i..n]), and the jth block is the substring of prev(x[i..n]) that ends at the
jth 0 in prev(x[i..n]) for j = 1, . . . , zi, and the (possibly empty) remaining suffix
for j = zi + 1. For technical reasons, we will append 0 to the last block as well.
That is, we can write

prev(x[i..n])0 = Bi,1 · · ·Bi,zi+1 (1)

where, Bi,j denotes the jth block of prev(x[i..n]). Furthermore, for each j, let
Bj denote the set of all jth blocks for all i = 1, . . . , n, and let Ci,j denote the
lexicographic rank of Bi,j in Bj . Finally, let Ci denote the string over the alpha-
bet {1, . . . , n} obtained by renaming each block Bi,j of the string prev(x[i..n])0
with its lexicographic rank Ci,j . More formally,

Bj = {Bi,j | i = 1, . . . , n}
Ci,j = |{Bi′,j | Bi′,j ≺ Bi,j}|+ 1

Ci = Ci,1 · · ·Ci,zi+1.

Lemma 1. For any 1 ≤ i1, i2 ≤ n,

prev(x[i1..n]) ≺ prev(x[i2..n]) ⇐⇒ Ci1 ≺ Ci2

Proof. Notice that 0 is the smallest symbol in the two strings, so

prev(x[i1..n]) ≺ prev(x[i2..n])⇔ prev(x[i1..n])0 ≺ prev(x[i2..n])0

⇔ Bi1,1 · · ·Bi1,zi1+1 ≺ Bi2,1 · · ·Bi2,zi2+1.

Also notice that since any block must end with a 0, if two blocks are not identi-
cal, it holds that one cannot be a prefix of the other. Thus, if Bi1,1 · · ·Bi1,zi1+1 ≺
Bi2,1 · · ·Bi2,zi2+1, this implies that there is some block k such that Bi1,j = Bi2,j ,
for all 1 ≤ j < k, and Bi1,k ≺ Bi2,k, where Bi1,k is not a prefix of Bi2,k. By def-
inition, Bi1,k � Bi2,k ⇔ Ci1,k ≤ Ci2,k. Therefore, we have, Bi1,1 · · ·Bi1,zi1+1 ≺
Bi2,1 · · ·Bi2,zi2+1 ⇔ Ci1 ≺ Ci2 . ut

From Lemma 1, the problem of lexicographically sorting the set of strings
{prev(x[1..n]), . . . , prev(x[n..n])} reduces to the problem of lexicographically sort-
ing the set of strings {C1, . . . , Cn}. The latter can be done in O(nπ) time using
radix sort, since the strings are over the alphabet {1, . . . , n} and the total length
of the strings is at most nπ.

What remains is to to compute Ci,j for all i, j in the same time bound. A
problem is that the total length of all Bi,j is Θ(n2), so we cannot afford to
naively process all of them.

Denote by bi,j and ei,j the beginning and end positions of Bi,j with respect
to their (global) position in x. Note that for any 1 ≤ i ≤ n, we have bi,1 = i, and
bi,j = ei,j−1 + 1 for all 2 ≤ j ≤ zi + 1. Our algorithm depends on the following
simple yet crucial lemma.

6 Fujisato et al.

Lemma 2. For any 1 < i ≤ n and 1 ≤ j ≤ zi + 1, we have that either

1. bi,j = ei−1,j + 1, or,
2. bi,j ≥ bi−1,j, ei,j = ei−1,j, and Bi,j is a suffix of Bi−1,j

holds.

Proof. If x[i − 1] ∈ Σ, then, prev(x[i..n]) is a suffix of prev(x[i − 1..n]), i.e.,
prev(x[i..n]) = prev(x[i− 1..n])[2..|n− i+ 2|] and prev(x[i− 1..n])[1] 6= 0. Thus,
Bi,1 is a suffix of Bi−1,1, and Bi,j = Bi−1,j for all 2 ≤ j ≤ zi and the second
case of the claim holds.

If x[i−1] ∈ Π, the values in prev(x[i..n]) are equivalent to the corresponding
values of prev(x[i−1..n])[2..|n− i+2|], except possibly at some (global) position
k ≥ i when there is a second occurrence of the symbol x[i − 1] at x[k] which
becomes the first occurrence in x[i..n]. (In other words, the value corresponding
to x[k] in prev(x[i− 1..n]) is k − i+ 1.) Since there is no previous occurrence of
x[i− 1] in x[i− 1..n], prev(x[i− 1..n])[1] = 0. The situation is depicted in Fig. 2.

i–1

i

k
...prev(x[i–1 ..n])

prev(x[i..n])

0 0 0 0 0

...0 0 0 0 0
Bi,1 Bi,2 Bi,3 Bi,4 Bi,5

Bi–1,2 Bi–1,3 Bi–1,4 Bi–1,5Bi–1,1

Fig. 2. A case in the proof of Lemma 2, where x[i] ∈ Π, and x[k] is the first occurrence
of x[i] in x[i + 1..n]. The value corresponding to (global) position k in prev(x[i..n]),
shown as a shaded box, is k − i, while it is 0 in prev(x[i + 1..n]). All other values in
prev(x[i..n]) and prev(x[i+ 1..n]) at the same (global) position are equivalent.

Let Bi−1,j′ be the block of prev(x[i−1..n]) that contains (global) position k.
Because, as mentioned previously, prev(x[i]..n) and prev(x[i−1..n])[2..|n−i+2|]
are equivalent except for the value corresponding to (global) position k, the
block structure of prev(x[i− 1..n]) is preserved in prev(x[i..n]), except that (1)
the first block Bi−1,1 disappears, and (2) the block Bi−1,j′ is split into two
blocks, corresponding to Bi,j′−1 and Bi,j′ . Therefore, the first case of the claim
is satisfied for 1 ≤ j ≤ j′, since bi,j = bi−1,j+1 = ei−1,j + 1 for any 1 ≤ j < j′.
Also, we can see that the second case of the claim is satisfied for j′ ≤ j ≤ zi,
since Bi,j′ is a suffix of Bi−1,j′ , and Bi,j = Bi−1,j for j′ < j ≤ zi.

Finally, the case when such k does not exist can be considered to be included
above by simply assuming we are looking at a prefix of a longer string and
k > |x|, j′ > zi, since the prev encoding is preserved for prefixes, i.e., the prev
encoding of a prefix of any p-string y is equivalent to the corresponding prefix
of the prev encoding of y. Thus, the lemma holds. ut

Linear Time Parameterized Suffix and LCP Arrays for Constant Alphabets 7

Lemma 2 implies that if we fix some j, we can represent Bi,j for all i, as
suffixes (in the standard sense) of strings of total length O(n).

Corollary 1. For any j, there exists a set of strings Sj with total length n+ 1
over the alphabet Σ ∪ {0, . . . , n− 1} such that Bi,j is a suffix of some string in
Sj for all i ∈ {1, . . . , n}.

Proof. We include Bi,j in Sj , if i = 1, or, if i > 1 and Bi,j satisfies the first case of
Lemma 2. Since the first case implies that the (global) positions [bi−1,j ..ei−1,j]
and [bi,j ...ei,j] are disjoint, the total length of strings in Sj is at most n + 1
(including the 0 appended to Bi,zi+1). On the other hand, if Bi,j satisfies the
second case is, it is a suffix of an already included string. ut

Thus, computing Ci,j for all i can be done by computing the generalized
suffix array for the set Sj . This can be done in O(n) time given Sj [13,14,12]
and thus, for all j, the total is O(nπ) time.

Theorem 1. The parameterized suffix array of a p-string of length n can be
computed in O(nπ) time and O(n) space.

Proof. We compute a forward encoding of x, analogous to the prev encoding,
defined as follows

fwd(x)[i] =


x[i] if x[i] ∈ Σ,

∞ if x[i] ∈ Π and x[i] 6= x[j] for any i < j ≤ n,

j − i if x[i] ∈ Π, x[i] = x[j] and x[i] 6= x[k] for any i < k < j.

This is done once, and can be computed in O(n) time. Next, for any fixed j, we
show how to compute the set Sj in linear time. This is done by using fwd and
Lemma 2. We can first scan prev(x) to obtain B1,j . Suppose for some i ≥ 2, we
know the beginning and end positions bi−1,j , ei−1,j of Bi−1,j . Notice that when
x[i] ∈ Π, k in the proof of Lemma 2 is i+ fwd(x)[i− 1]− 2. Based on this value,
we know that if k < bi−1,j , then Bi,j = Bi−1,j and if bi−1,j ≤ k ≤ ei−1,j Bi,j

is a suffix of Bi−1,j , which corresponds to the second case of Lemma 2. When
k > ei−1,j , this corresponds to the first case of Lemma 2, so we scan prev(x[i..n])
starting from position corresponding to the global position bi,j = ei−1,j + 1 (i.e.,
ei−1,j − i in prev(x[i..n])) until we find the first 0, which gives us Bi,j which we
include in Sj . Since we only scan each position once, the total time for computing
Sj is O(n).

The time complexity follows from arguments for sorting Cj based on radix
sort. Since, for a single step of the radix sort, we only require the values Ci,j

for a fixed j and all 1 ≤ i ≤ n and from Corollary 1, the space complexity is
O(n). ut

3.2 pLCP Construction

Given PSA, we can construct pLCP as follows in O(nπ) time and O(n) space.
We recompute Sj for j = 1, . . . , π, and each time process it for LCE queries, so

8 Fujisato et al.

that the longest common prefix between Bi1,j and Bi2,j for some 1 ≤ i1, i2 ≤ n
can be computed in constant time. This can be done in time linear in the total
length of Sj , so in O(nπ) total time for all j. We compute the longest common
prefix between each adjacent suffix in PSA block by block. Since each block takes
constant time, and there are O(π) blocks for each suffix, the total is O(nπ) time
for all entries of the pLCP array. The space complexity is O(n) since, as for the
case of PSA construction, we only process the jth block at each step.

References

1. Baker, B.S.: A program for identifying duplicated code. Computing Science and
Statistics 24, 49–57 (1992)

2. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci. 52(1), 28–42 (1996). https://doi.org/10.1006/jcss.1996.0003,
https://doi.org/10.1006/jcss.1996.0003

3. Baker, B.S.: Parameterized duplication in strings: Algorithms and an ap-
plication to software maintenance. SIAM J. Comput. 26(5), 1343–1362
(1997). https://doi.org/10.1137/S0097539793246707, https://doi.org/10.1137/
S0097539793246707

4. Beal, R., Adjeroh, D.A.: p-suffix sorting as arithmetic coding. J. Discrete Al-
gorithms 16, 151–169 (2012). https://doi.org/10.1016/j.jda.2012.05.001, https:

//doi.org/10.1016/j.jda.2012.05.001

5. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: Holub, J., Zdárek, J. (eds.) Proceedings of
the Prague Stringology Conference 2008, Prague, Czech Republic, September 1-
3, 2008. pp. 84–94. Prague Stringology Club, Department of Computer Science
and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague (2008), http://www.stringology.org/event/2008/p08.html

6. Diptarama, Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps
for parameterized strings. In: Kärkkäinen, J., Radoszewski, J., Rytter, W. (eds.)
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6,
2017, Warsaw, Poland. LIPIcs, vol. 78, pp. 8:1–8:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.8,
https://doi.org/10.4230/LIPIcs.CPM.2017.8

7. Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S.W.: Position heaps: A sim-
ple and dynamic text indexing data structure. Journal of Discrete Algorithms 9(1),
100 – 121 (2011). https://doi.org/https://doi.org/10.1016/j.jda.2010.12.001, http:
//www.sciencedirect.com/science/article/pii/S1570866710000535, 20th An-
niversary Edition of the Annual Symposium on Combinatorial Pattern Matching
(CPM 2009)

8. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Right-to-left on-
line construction of parameterized position heaps. CoRR abs/1808.01071 (2018),
http://arxiv.org/abs/1808.01071

9. Ganguly, A., Hon, W., Huang, Y., Pissis, S.P., Shah, R., Thankachan, S.V.: Param-
eterized text indexing with one wildcard. In: 2019 Data Compression Conference
(DCC). pp. 152–161 (March 2019). https://doi.org/10.1109/DCC.2019.00023

10. Ganguly, A., Shah, R., Thankachan, S.V.: pbwt: Achieving succinct data struc-
tures for parameterized pattern matching and related problems. In: Klein, P.N.

https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1137/S0097539793246707
https://doi.org/10.1137/S0097539793246707
https://doi.org/10.1137/S0097539793246707
https://doi.org/10.1016/j.jda.2012.05.001
https://doi.org/10.1016/j.jda.2012.05.001
https://doi.org/10.1016/j.jda.2012.05.001
http://www.stringology.org/event/2008/p08.html
https://doi.org/10.4230/LIPIcs.CPM.2017.8
https://doi.org/10.4230/LIPIcs.CPM.2017.8
https://doi.org/https://doi.org/10.1016/j.jda.2010.12.001
http://www.sciencedirect.com/science/article/pii/S1570866710000535
http://www.sciencedirect.com/science/article/pii/S1570866710000535
http://arxiv.org/abs/1808.01071
https://doi.org/10.1109/DCC.2019.00023

Linear Time Parameterized Suffix and LCP Arrays for Constant Alphabets 9

(ed.) Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19.
pp. 397–407. SIAM (2017). https://doi.org/10.1137/1.9781611974782.25, https:

//doi.org/10.1137/1.9781611974782.25

11. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight pa-
rameterized suffix array construction. In: Fiala, J., Kratochv́ıl, J., Miller,
M. (eds.) Combinatorial Algorithms, 20th International Workshop, IWOCA
2009, Hradec nad Moravićı, Czech Republic, June 28-July 2, 2009, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 5874, pp. 312–
323. Springer (2009). https://doi.org/10.1007/978-3-642-10217-2 31, https://

doi.org/10.1007/978-3-642-10217-2_31

12. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006). https://doi.org/10.1145/1217856.1217858, https:
//doi.org/10.1145/1217856.1217858

13. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix ar-
rays in linear time. J. Discrete Algorithms 3(2-4), 126–142 (2005).
https://doi.org/10.1016/j.jda.2004.08.019, https://doi.org/10.1016/j.jda.

2004.08.019

14. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms 3(2-4), 143–156 (2005). https://doi.org/10.1016/j.jda.2004.08.002,
https://doi.org/10.1016/j.jda.2004.08.002

15. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suf-
fix trees (preliminary version). In: 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995. pp. 631–
637. IEEE Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492664,
https://doi.org/10.1109/SFCS.1995.492664

16. Shibuya, T.: Generalization of a suffix tree for rna structural pattern matching.
Algorithmica 39(1), 1–19 (May 2004). https://doi.org/10.1007/s00453-003-1067-9,
https://doi.org/10.1007/s00453-003-1067-9

17. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973.
pp. 1–11. IEEE Computer Society (1973). https://doi.org/10.1109/SWAT.1973.13,
https://doi.org/10.1109/SWAT.1973.13

https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1109/SFCS.1995.492664
https://doi.org/10.1109/SFCS.1995.492664
https://doi.org/10.1007/s00453-003-1067-9
https://doi.org/10.1007/s00453-003-1067-9
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

	Direct Linear Time Construction of Parameterized Suffix and LCP Arrays for Constant Alphabets

