
Algorithmica (2019) 81:47–68
https://doi.org/10.1007/s00453-018-0432-7

On Almost Monge All Scores Matrices

Amir Carmel1 · Dekel Tsur1 ·
Michal Ziv-Ukelson1

Received: 29 October 2016 / Accepted: 19 March 2018 / Published online: 27 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The all scores matrix of a grid graph is a matrix containing the optimal
scores of paths from every vertex on the first row of the graph to every vertex on its
last row. This matrix is commonly used to solve diverse string comparison problems.
All scoresmatrices have theMonge property, and this was exploited by previous works
that used all scores matrices for solving various problems. In this paper, we study an
extension of grid graphs that contain an additional set of edges, called bridges. Our
main result is to show several properties of the all scores matrices of such graphs. We
also apply these properties to obtain an O(r(nm+n2)) time algorithm for constructing
the all scoresmatrix of anm×n grid graphwith r bridges and bounded integerweights.

Keywords Sequence alignment · Longest common subsequences · DIST matrices ·
Monge matrices · All path score computations · Multiple-source shortest-paths

1 Introduction

String comparison is a fundamental problem in computer science that has applications
in computational biology, computer vision, and other areas. String comparison is often

A preliminary version of this work appeared in the proceeding of CPM 2016 conference.

B Amir Carmel
karmela@post.bgu.ac.il

Dekel Tsur
dekelts@cs.bgu.ac.il

Michal Ziv-Ukelson
michaluz@cs.bgu.ac.il

1 Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0432-7&domain=pdf
http://orcid.org/0000-0002-0784-886X
Aaron
All scores matrices have the Monge property

Aaron
bridges

Aaron
r bridges

Aaron
O(r(nm+n2))

48 Algorithmica (2019) 81:47–68

performed using sequence alignment: The characters of two input strings are aligned
to each other, and a scoring function gives a score to the alignment according to pairs
of the aligned characters and unaligned characters. The goal of the string alignment
problem is to seek an alignment that maximizes a similarity score or minimizes a
distance score. Common scoring functions are the edit distance score, and the LCS
(longest common subsequence) score.

All scores matrices were introduced by Apostolico et al. [3] in order to obtain fast
parallel algorithms for LCS computation. The all scores matrix of two strings A and
B is a (|B| + 1) × (|B| + 1) matrix that stores the optimal alignment scores between
A and every substring of B. More precisely, the element at row i and column j in the
matrix is the optimal alignment score between A and B[i.. j]. All scores matrices are
also called DIST matrices [3] or semi-local score matrices [35].

The problem of efficiently constructing the all scores matrix of two strings has
been studied in several papers [2,3,20,22–25,29,33–35]. All scores matrices provide
a very powerful tool that can also be used for solving many problems on strings:
optimal sequence alignment computation [11], approximate tandem repeats [27,33],
approximate non-overlapping repeats [6,18,33], common substring alignment [26,
28], sparse spliced alignment [19,32], alignment of compressed strings [14], fully-
incremental string comparison [17,35], and other problems.

The alignment problemon strings A and B canbe represented byusing an (|A|+1)×
(|B| + 1) grid graph, known as the alignment graph (cf. [33]). Vertical (respectively,
horizontal) edges correspond to alignment of a character in A (respectively, B) with a
gap, and diagonal edges correspond to alignment of two characters in A and B. A path
from the j-th vertex on row i to the j ′-th vertex on row i ′ corresponds to an alignment
of A[i..i ′] and B[j.. j ′]. The all scores matrix is therefore a matrix that contains the
maximum (or minimum) scores of paths from vertices on the first row of the alignment
graph to the vertices on its last row.

For an n×nmatrix D, its densitymatrix [35], denoted by D!, is an (n−1)×(n−1)
matrix, where D![i, j] = D[i − 1, j − 1] + D[i, j] − D[i − 1, j] − D[i, j − 1].
A matrix is called Monge if its density matrix is either non-negative or non-positive,
and unit Monge if every row or column of the density matrix contains at most one
non-zero element, and all the non-zero elements are equal to 1. All scores matrices
of grid graphs are Monge matrices, this follows from the crossing paths property of
the grid graph: If P1 and P2 are two paths from vertices on the first row to vertices on
the last row of the graph, where on the first row the endpoint of P1 appears before the
endpoint of P2, and on the last row the endpoint of P1 appears after the endpoint of
P2, then the paths P1 and P2 must cross. This is illustrated in Fig. 1. An equivalent,
and a more common definition of a Monge matrix, is the condition that either ∆

i, j
i ′, j ′ =

D[i ′, j ′]+D[i, j]−D[i ′, j]−D[i, j ′] is non-negative for every i ′ ≤ i and j ′ ≤ j , or
∆

i, j
i ′, j ′ is non-positive for every i

′ ≤ i and j ′ ≤ j . In the rest of the paper we will make
use of both definitions. The Monge property is crucial for many of the algorithms for
constructing all score matrices and for their applications. When the scoring function
is the LCS score (namely, horizontal and vertical edges have weight 0, and diagonal
edges have weight 1), the all scores matrix is unit Monge [34]. A detailed survey of
LCS scoring can be found in [4].

123

Aaron
parallel algorithms for LCS computation

Aaron
A and B[i..j]

Aaron
All scores matrices are also called DIST matrices [3] or semi-local score matrices [35].

Aaron
crossing paths property

Aaron
density matrix

Aaron
D[i, j] = D[i −1, j −1]+ D[i, j]− D[i −1, j]− D[i, j −1]

Aaron
non-negative or non-positive

Aaron
all scores matrix is unit Monge

Algorithmica (2019) 81:47–68 49

(a) (b)

Fig. 1 The crossing paths property yielding the Monge property in grid graphs. In a, the dark green path is
a maximum-score path from (0, 1) to (4, 5), and the light green path is a maximum-score path from (0, 2)
to (4, 4). These two paths cross at the vertex v. b Shows that a path from (0, 1) to (4, 4) can be obtained by
taking the prefix of the dark green path until v, and the suffix of the light green path from v. Similarly, a path
from (0, 2) to (4, 5) can be obtained by taking the prefix of the light green path until v, and the suffix of the
dark green path from v. The sum of scores of the new paths is equal to the sum of scores of the former paths,
which is equal to D[1, 5]+D[2, 4]. Since the new paths are not necessarily of maximal score, we obtain that
D[1, 4] + D[2, 5] ≥ D[1, 5] + D[2, 4], and thus, D![2, 5] = D[1, 4] + D[2, 5]− D[1, 5]− D[2, 4] ≥ 0
(Color figure online)

The Monge property plays an important role in combinatorial optimization [8]. For
example, if the distance matrix of a travelling salesman problem fulfills the Monge
property, then the problem can be solved in linear time [31]. Moreover, searching
and selecting becomes particularly fast in Monge matrices. Aggarwal et al. [1] pro-
posed a very efficient algorithm for computing all row minima of a Monge matrix.
Recently, Hou and Prékopa [15] showed that Monge matrices can be used for bound-
ing multivariate probability distribution functions and in that way opened a new area
of applications for Monge matrices.

In this paper we extend the grid graphs that are used in sequence alignment to
include an additional set of edges. These additional edges are of form ((i, j), (i ′, j ′))
where i ′ ≥ i and j ′ ≥ j , and either i ′ > i+1 or j ′ > j+1 (see Fig. 2a). We call these
edges bridges. The bridges represent correspondence between pairs of substrings, one
per each input sequence, which could be precomputed using an auxiliary adviser. In
grid graphs enhanced with bridges, the crossing paths property no longer holds, and
so the all scores matrix does not necessarily have the Monge property (see Fig. 2).

Motivating examples of grid graphs enhanced with bridges are found in the domain
of computational biology. Here, bridges are often used to incorporate additional infor-
mation that is known about the function and the physical structure of the aligned
biomolecules and of their components [7,13,30]. One such example is found in a
problem denoted “sequence alignment guided by motifs”. Here, each one of the input
sequences is first subjected to a parsing step in which meaningful substrings within it
are identified and labeled. Substrings sharing the same label could be instantiations of
the same motif shared by members of a protein family [16], particular DNA or RNA
substrings of similar structure or function [5], or conserved molecular binding sites
shared by multiple sequences that are combinatorially regulated in some biological
pathway. Note that two substrings identified as belonging to the same motif family
could be quite diverged in sequence, as it is the function, rather than the exact sequence,
that is conserved in functional motifs. Yet, pairs of substrings sharing the same motif

123

Aaron
Monge property

Aaron
the crossing paths property no longer holds

50 Algorithmica (2019) 81:47–68

label are expected to be highly conserved in their location and order of occurrences
within homologous genomic sequences. To incorporate this information, the align-
ment grid graph is enhanced with bridges reflecting pairs of substrings belonging to
the same motif family, one from each sequence, and weights are assigned to these
additional edges based on some a-priori scoring scheme expressing the importance of
conserving the motifs in the alignment [5,10].

Our Contribution and Roadmap In this paper, we consider grid graphs with bridges,
and we assume that the non-bridge edges have 0/1 weights. We note that grid graphs
that incorporate a string alignment scoring table can be reduced to grid graphs with
0/1 weights [35], and thus we will only consider the 0/1 weights scheme. However,
this reduction is quasi-polynomial: If the weights of non-bridge edges in the original
grid graph are integers between −C and C , then the reduction increases the size of
graph by a factor of Θ(C2).

Our main result is to show the following properties of the non-zero values in the
density matrix of an all scores matrix of a grid graph with r bridges (see Fig. 2 for an
example).

1. All the non-zero values in the density matrix are− 1 or 1, except for O(r2) values.
2. In every row or column, except for r specific rows and r specific columns, the

number of non-zero values is O(r).

In particular, the number of non-zero values in the density matrix is O(rn). Thus, if
r = o(n), the all scores matrix is “almost Monge”. Property 1 is proven in Sect. 2
(Theorem 1). Property 2 is proven in Sect. 3 for the case of a single bridge. Then, in
Sect. 5, the proof is extended to the general case. Finally, in Sect. 6 we show that the
second property above is asymptotically tight by giving a construction of grid graphs
whose density matrices contain Θ(n) rows and columns with Θ(r) non-zero values.

As a consequence of our main result, we obtain an algorithm for computing the all
scores matrix of an m × n grid graphs with r bridges in O(r(nm + n2)) time. This
algorithm is based on Schmidt’s algorithm [33] for grid graphs with no bridges, and
utilizes the properties described above. See below for a comparison of this algorithm
with previous results. The algorithm is given in Sect. 4 (Theorem 3).

Related Work Our algorithm mentioned above computes the optimal scores of paths
from every vertex in a specific set of vertices (the vertices on the first row) to
every vertex in the graph. This problem is called the multiple source shortest paths
(MSSP) problem. Algorithms for solving MSSP were proposed by several previ-
ous works. Schmidt [33] gave an MSSP algorithm for grid graphs with general
weights. This algorithm constructs the all scores matrix in O((mn + n2) log n) time.
For grid graphs with bounded integer weights, Schmidt gave an algorithm that con-
structs the all scores matrix in O(mn) time. Tiskin [35] gave an MSSP algorithm
for grid graphs with bounded integer weights that constructs the all scores matrix
in O(mn(log log n/ log n)2) time. The results on grid graphs have been extended to
general planar graphs. Klein [21] gave an algorithm for MSSP on planar graphs with
general weights. The algorithm constructs the all scores matrix of a grid graph in
O((mn + n2) log(mn)) time. Eisenstat and Klein [12] gave an algorithm for MSSP

123

Aaron
incorporate a string alignment scoring table can be reduced to grid graphs with 0/1 weights

Aaron
類似 quasi

Aaron
Θ(C2)

Aaron
exceptforO(r2)values

Aaron
O(rn)

Aaron
漸進的 asymptotically

Aaron
Schmidt’s algorithm

Aaron
multiple source shortest paths (MSSP) problem.

Aaron
O(mn) time

Aaron
O(mn(log log n/ log n)2) time.

Aaron
O((mn + n2) log(mn)) time

Algorithmica (2019) 81:47–68 51

on undirected planar graphs with bounded integer weights, which constructs the all
scores matrix of a grid graph in O(mn + n2). Cabello et al. [9] extended the result of
Klein to graphs that can be embedded on a surface with genus g. Since a grid graph
with r bridges can be embedded on a surface with genus r , the algorithm of Cabello et
al. constructs the all scores matrix of a grid graphwith r bridges and general weights in
O(rmn log2(mn)+n2 log(mn)) time. Cabello et al. also gave a randomized algorithm
whose running time is O(r log(mn)(mn + n2)) with high probability. Our algorithm
improves upon both of the results of Cabello et al. and constructs the all scores matrix
of a grid graph with r bridges in O(r(mn+ n2)) time for the case of grid graphs with
bridges and bounded integer weights.

2 Preliminaries and Basic Problem Properties

A grid graph with bridges is a directed graph G = (V, E) whose vertex set is V =
{(i, j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}, and whose edge set consists of four types of edges:

1. Horizontal edges: ((i, j), (i, j + 1)) for every pair of indices i, j satisfying 0 ≤
i ≤ m and 0 ≤ j < n.

2. Vertical edges: ((i, j), (i+1, j)) for every pair of indices i, j satisfying 0 ≤ i < m
and 0 ≤ j ≤ n.

3. Diagonal edges: Edges of the form ((i, j), (i + 1, j + 1)).
4. Bridges: Edges of the form ((i, j), (i ′, j ′)) where i ≤ i ′ and j ≤ j ′, and either

i + 1 < i ′ or j + 1 < j ′.

In our framework, the horizontal and vertical edges have weight 0, the diagonal edges
have weight 1, and each bridge has a positive integer weight. The score of a path is the
sum of the weights of its edges. The 0/1 weights of the non-bridge edges correspond
to the LCS scoring scheme for the Sequence Alignment problem.

Let G be a grid graph with bridges f1, . . . , fr . For a path P in G, we say that P
is an s-path, if fs is the first bridge that P passes through. If P does not pass through
bridges, we say that P is a 0-path. Note that we focus on the first bridge of path
P in order to obtain a variant of the crossing paths property which will be given in
Lemma 7.

We define matrices D, D!, and Dfirst as follows (see Fig. 2).

1. For 0 ≤ i ≤ j ≤ n, D[i, j] is the maximum score of a path from (0, i) to (m, j).
For i > j , D[i, j] = j − i . This extension ensures that the properties discussed
in the introduction will hold for the lower triangular part of D as well. The matrix
D is called the all scores matrix of G.

2. For 1 ≤ i, j ≤ n, D![i, j] = (D[i, j] + D[i − 1, j − 1]) − (D[i − 1, j] +
D[i, j − 1]). The matrix D! is called the density matrix of D.

3. Let S = {0, 1, . . . , r} be a set of symbols. For 0 ≤ i, j ≤ n, Dfirst[i, j] is a subset
of S such that for every s ∈ S, s ∈ Dfirst[i, j] if and only if there is an s-path from
(0, i) to (m, j) with score D[i, j].
To illustrate the importance of the Dfirst matrix, consider a region in Dfirst in which

all entries contain the same symbol s. Then, the crossing paths property holds for

123

Aaron
O(mn + n2)

Aaron
O(rmn log2(mn)+n2 log(mn)) time

Aaron
m

Aaron
n

Aaron
A

Aaron
B

Aaron
Bridges

Aaron
bridge has a positive integer weight

Aaron
P is an s-path, if fs is the first bridge that P passes through

Aaron
P is a 0-path

Aaron
D[i, j]

Aaron
(0,i) to (m, j)

Aaron
density matrix

Aaron
對角-反對角

Aaron
s-path

Aaron
subset

52 Algorithmica (2019) 81:47–68

indices in this region (since every path encoded in this region passes through fs), so
we obtain that the Monge property holds inside this region.

Next, we point out the entries in D and in D! that are affected by a bridge inG. We
refer the reader to Fig. 2 for an example of the definitions given below. Henceforth,
a pair (i, j) of integers referring to a matrix entry will be called an index. For some
bridge fk = ((is, js), (ie, je)), we define start(fk) = js and end(fk) = je. We also
define Ek = {(i, j) : 0 ≤ i ≤ start(fk), end(fk) ≤ j ≤ n}. In other words, Ek
contains all indices (i, j) in D such that paths from (0, i) to (m, j) can pass through
fk . The boundary of fk is a set of indices in D!, defined as Bk = {(i, end(fk)) :
1 ≤ i ≤ start(fk)+ 1} ∪ {(start(fk)+ 1, j) : end(fk) ≤ j ≤ n}. The two sets in the
definition of Bk are called the left boundary and bottom boundary of fk , respectively.
We say that an index (i, j) is a boundary index in D! if it is contained in the boundary
of some fk . An index (i, j) is an intersection index if there are k, k′ (possibly k = k′)
such that (i, j) is in the left boundary of fk and in the bottom boundary of fk′ .

In the introduction we gave two properties of the density matrix. We now restate
these properties using the definitions above.

Property 1 Non-zero values other than−1, 1 can appear only at intersection indices
(Theorem 1).

Property 2 In every row or column, the number of−1 values in non-boundary indices
is at most r , and the number of 1 values in non-boundary indices is at most r (Theo-
rem 4).

We will assert Property 2 only for columns. Hence, the lemmas that will follow
will be formulated and proved solely for columns. The same properties can be asserted
symmmetrically for rows as well.

In what follows we achieve preliminary results that we will later utilize in Sect. 3 to
prove Property 2 for the restricted case of a single bridge (Theorem 2), and in Sect. 4
for the purpose of the all scores construction algorithm (Theorem 3). Section 5 is
designated to prove Property 2 for the general case of r bridges (Theorem 4).

In the rest of the paper we implicitly assume that matrix entries (i, j) satisfy i < j .
Note that the two properties stated above are satisfied for (i, j) with i ≥ j due to the
following observations:

– If i > j+1, D![i, j] = (j−i)+((j−1)−(i−1))−(j−(i−1))−((j−1)−i) = 0.
– If i = j+1 then D![i, j] = (j − (j+1))+ ((j −1)− ((j+1)−1))−D[j, j]−
((j − 1) − (j + 1)) = −D[j, j], so in this case D![i, j] = 0 unless there is a
bridge fk with start(fk) = end(fk) = j , in which case (i, j) is an intersection
index.

– Similarly, for i = j , D![i, j] ∈ {0, 1} unless one of the following two cases
occurs: (1) There is a bridge fk with start(fk) = j − 1 and end(fk) = j . (2)
There are bridges fk and fk′ with start(fk) = end(fk) = j − 1 and start(fk′) =
end(fk′) = j . In both cases (i, j) is an intersection index.

We now give a proof for Property 1. To this end, we need the following definition
and lemma.

123

Aaron
every path encoded in this region passes through fs

Aaron
js

Aaron
je

Aaron
Ek contains all indices (i, j) in D

Aaron
boundary of fk

Aaron
left boundary and bottom boundary

Aaron
intersection index

Aaron
boundary index

Aaron
fk : bridge, Ek : Entries, Bk : boundary

Aaron
-1,1 以外的非零值只能出現在交叉點索引處

Aaron
在每一行或列中，非邊界索引中的-1/1值的數量最多為 r

Aaron
斷言 assert

Aaron
開頭 preliminary

Aaron
表明 designated

Aaron

Aaron

Aaron

Aaron

Algorithmica (2019) 81:47–68 53

(a) Grid graph

-1
-1-2

-1-2-3
-1-2-3-4

-1-2-3-4-5
-1-2-3-4-5-6

-1-2-3-4-5-6-7
-1-2-3-4-5-6-7-8

-1-2-3-4-5-6-7-8-9
-1-2-3-4-5-6-7-8-9-10

0 1 2 3 4 7 7 7 7 7 8
0 1 2 3 7 7 7 7 7 7

0 1 2 7 7 7 7 7 7
0 1 2 3 4 5 6 7

0 1 2 4 4 5 6
0 1 4 4 4 5

0 4 4 4 4
0 1 2 3

0 1 2
0 1

0
(b) D

-4

-1

-3

-1
-1

-1

1
1

1
1
1

1 1

1 1 1 1

1
1

(c) D

0
0

0
0

0
0

0
0

0
0

0

0 0 0 00 0,1
0 0 0 1 0,1

0 0 1 1
0 0 0 0

20 0
20

0
0
0

0
00

1 1 1 1
1 1 1 1

1 1 1 0,1
0 0 00,2
0,2 00

2 0,2 0
2 2 2 0,2

(d) Dfirst

Fig. 2 a Contains an example of a grid graph with two bridges. The weight of the bridge f1 =
((1, 2), (9, 5)) is 7, and the weight of the bridge f2 = ((0, 6), (9, 7)) is 4. The matrices D, D!, and
Dfirst of the graph are shown in b–d, respectively. Only the non-zero values of the density matrix are
shown. The boundary indices are marked in gray, and the intersection indices are marked with darker
gray. As stated in the text, each column or row of the density matrix can contain at most two negative
values in non-boundary indices, and these values must be −1. The only pairs of vertices (where one ver-
tex belongs the first row and the other vertex belongs to the last row of the grid graph) that can utilize
the bridge f1, are the pairs composed of the vertices highlighted in gray in (a). Thus, the entries that are
affected by the bridge f1 are E1 = {(i, j) : 0 ≤ i ≤ 2, 5 ≤ j ≤ 10}. The boundary of this region is
B1 = {(1, 5), (2, 5), (3, 5)} ∪ {(3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10)}. Note that the index (3, 5) is an
intersection index and that the value of D![3, 5] is 2 + 2 − 7 − 1 = −4, and these four values in D are
marked in b with a bold rectangle. The cause for the negative value in D![3, 5] is that the cell (2, 5) in D
is the only one of the four corresponding cells that can utilize the bridge f1

Definition 1 A pair of indices (i1, j1), (i2, j2) in the matrix D are said to be bridge
equivalent if for every 1 ≤ k ≤ r , (i1, j1) ∈ Ek if and only if (i2, j2) ∈ Ek . In other
words, (i1, j1), (i2, j2) are bridge equivalent if any bridge that can be visited by a path
from (0, i1) to (m, j1), can also be visited by a path from (0, i2) to (m, j2), and vice
versa.

Lemma 1 For every i, j ,

123

Aaron
a grid graph with two bridges.

Aaron
7

Aaron
0 1 2 3 4 5 6 7 8 9 10

Aaron
0 1 2 3 4 5 6 7 8 9 10

Aaron
0 1 2 3 4 5 6 7 8 9 10

Aaron
1 2 3 4 5 6 7 8 9 10

Aaron
1
2
3

Aaron
4
5
6

Aaron
7
8
9

Aaron
1
2
3

Aaron
4
5
6

Aaron
7
8
9
10

Aaron
1
2
3

Aaron
1
2
3

Aaron
4
5
6

Aaron
4
5
6

Aaron
7
8
9
10

Aaron
7
8
9
10

Aaron
4

Aaron
non-zero

Aaron
-4

Aaron
1 1 1 1 1 0, 1 1 1 1 1 0,

Aaron
1 1 1 0, 1 1 1 0, 0,2 0 0 0 20,20 0 2 20,20

Aaron
1 -4 1 1 1 1 1

Aaron
1 1 1 1 1 -1 1 -1 1 -1 -3 1 1 1

Aaron
7 7 7 7 7 7 7 7 4 5 6 7 4 4 5 6 4 4 4 5 4 4 4 4

Aaron
7 7 7 7 7 7 7 7 7 7 7 7

Aaron
at most two negative

Aaron
f1

Aaron
E1

Aaron
B1

Aaron
D[3, 5] is that the cell (2, 5)

Aaron
only one

Aaron
bridge equivalent

Aaron
都在同一個橋上

Aaron
(0, i1) to (m, j1)

Aaron
灰點是橋等

54 Algorithmica (2019) 81:47–68

Fig. 3 An example of the proof
of Theorem 1. The pair of
indices (i, j − 1), (i, j) are
bridge equivalent (both indices
belong to E2 and not to E1), and
the pair of indices
(i − 1, j − 1), (i − 1, j) are
bridge equivalent (both indices
belong to E1 and to E2)

1. If (i, j−1)and (i, j)are bridge equivalent, D[i, j−1] ≤ D[i, j] ≤ D[i, j−1]+1.
2. If (i −1, j) and (i, j) are bridge equivalent, D[i, j] ≤ D[i −1, j] ≤ D[i, j]+1.

The lemma follows due to the fact that a path from (0, i) to (m, j) can be obtained
by appending the edge ((m, j − 1), (m, j)) to a path from (0, i) to (m, j − 1). Also,
since (i, j−1) and (i, j) are bridge equivalent, there is no bridge fk with end(fk) = j .
Therefore, a path from (0, i) to (m, j − 1) can be obtained by truncating a path from
(0, i) to (m, j). The first part of Lemma 1 is now obtained.

Theorem 1 Non-zero values other than −1 or 1 can appear only at intersection
indices.

Proof If (i, j) is not an intersection index then either (i, j) does not belong to any
left boundary, or (i, j) does not belong to any bottom boundary. Assume without
loss of generality the former case. In this case, (i, j − 1), (i, j) are bridge equivalent
(see Fig. 3). Moreover, either (i, j − 1) does not belong to any left boundary, or
(i −1, j) is the bottom index of some left boundary (namely (i −1, j) = (start(fk)+
1, end(fk)) for some 1 ≤ k ≤ r). In both cases, (i − 1, j − 1), (i − 1, j) are bridge
equivalent. Hence, we can rearrange the terms in the definition of D![i, j] and obtain
that D![i, j] = ∆1 −∆2, where∆1 = D[i, j]−D[i, j −1] and∆2 = D[i −1, j]−
D[i − 1, j − 1]. By Lemma 1, ∆1,∆2 ∈ {0, 1}, and thus D![i, j] ∈ {−1, 0, 1}. ()

Note that in the density matrix, the number of non-zero elements within the bound-
aries can be immediately bounded by O(rn). Hence, in the rest of the paper we will
focus on non-zero elements that are not within the boundaries, and show that the num-
ber of such elements is also O(rn). Therefore, we will obtain that the total number of
non-zero elements in the density matrix is O(rn). Moreover, we will show in Sect. 6
that the O(rn) bound is tight. We next give several lemmas which will be used later
to prove this upper bound in Sects. 3 and 5.

Definition 2 An index (i, j) in D! which is not a boundary index and for which
D![i, j] < 0 (resp. D![i, j] > 0) is called a negative injury (resp. positive injury).
The submatrices D[i − 1..i, j − 1.. j] and Dfirst[i − 1..i, j − 1.. j] are called the
submatrices of D and Dfirst corresponding to the injury, respectively.

123

Aaron
水平

Aaron
垂直

Aaron
edge

Aaron
截斷 truncating

Aaron
left boundary

Aaron
O(rn)

Aaron
a negative injury

Aaron
not a boundary index

Algorithmica (2019) 81:47–68 55

An injury induces a unique structure in the corresponding submatrices D and Dfirst,
which we will characterize next. Due to similarity, we omit the proofs for the positive
injuries. In the next lemmawededuce the structure of a submatrix ofD that corresponds
to an injury.

Lemma 2 – For a negative injury (i, j), D[i−1..i, j−1.. j] =
(
x x+1
x x

)
for some x.

– For a positive injury (i, j), D[i − 1..i, j − 1.. j] =
(x x
x−1 x

)
for some x.

Proof As in the proof of Theorem 1, D![i, j] = ∆1 − ∆2, where ∆1 = D[i, j] −
D[i, j − 1] and ∆2 = D[i − 1, j] − D[i − 1, j − 1]. The lemma follows since
D![i, j] < 0 and ∆1,∆2 ∈ {0, 1}. ()

Corollary 1 If (i, j) is a negative (resp. positive) injury then (i + 1, j) and (i, j + 1)
are not negative (resp. positive) injuries.

The next lemma gives a general property for adjacent cells in Dfirst with regard to
their respective values in the matrix D.

Lemma 3 For every i, j ,

1. If (i, j − 1) and (i, j) are bridge equivalent,
(a) If D[i, j − 1] = D[i, j] then Dfirst[i, j − 1] ⊆ Dfirst[i, j].
(b) If D[i, j − 1] + 1 = D[i, j] then Dfirst[i, j] ⊆ Dfirst[i, j − 1].

2. If (i − 1, j) and (i, j) are bridge equivalent,
(a) If D[i, j] = D[i − 1, j] then Dfirst[i, j] ⊆ Dfirst[i − 1, j].
(b) If D[i, j] + 1 = D[i − 1, j] then Dfirst[i − 1, j] ⊆ Dfirst[i, j].

Proof We first prove 1.(a). Choose a symbol s ∈ Dfirst[i, j−1], and let P be an s-path
from (0, i) to (m, j−1)with score D[i, j−1]. The path P ′ obtained by appending the
vertex (m, j) to P is an s-path from (0, i) to (m, j) with score D[i, j − 1] = D[i, j]
Therefore, s ∈ Dfirst[i, j].

We next prove 1.(b). Let s ∈ Dfirst[i, j], and let P be an s-path from (0, i) to (m, j)
with score D[i, j]. Since (i, j −1),(i, j) are bridge equivalent, P cannot pass through
a bridge f with end(f) > j − 1, so P has vertices on column j − 1. Denote by k the
maximal index such that (k, j − 1) ∈ P . The path P ′ obtained by taking the prefix
of P until (k, j − 1), and appending the vertices (k + 1, j − 1), . . . , (m, j − 1) is
an s-path from (0, i) to (m, j − 1) with score at least D[i, j] − 1 = D[i, j − 1]. It
follows that s ∈ Dfirst[i, j − 1].

The proofs of 2.(a) and 2.(b) are symmetrical to the proofs of the first two parts,
and thus they are omitted. ()

Now let us consider the structure of a submatrix of Dfirst that corresponds to an injury,
denote this as Dfirst[i −1..i, j −1.. j] =

(
γ β
α δ

)
. The following lemma follows directly

from Lemmas 2 and 3.

Lemma 4 For an injury at (i, j)with the corresponding submatrix: Dfirst[i−1..i, j−
1.. j] =

(
γ β
α δ

)
,

1. If (i, j) is a negative injury, then α ⊆ γ ∩ δ and β ⊆ γ ∩ δ.

123

Aaron
x x+1

Aaron
anegativeinjury

Aaron
D[i,j]<0and∆1,∆2∈{0,1}

Aaron
水平關係

Aaron
not

Aaron
水平

Aaron
垂直

Aaron
appending

Aaron
P cannot pass

56 Algorithmica (2019) 81:47–68

2. If (i, j) is a positive injury, then γ ⊆ α ∩ β and δ ⊆ α ∩ β.

In order to restrict values of D in indices for which the corresponding entries in
Dfirst contain the same symbol s, we define a matrix Ds as follows. For a symbol
s ∈ S, let Ds be a matrix in which for every (i, j) ∈ Es , Ds[i, j] is the maximum
score of an s-path from (0, i) to (m, j). For s = 0, Ds is defined as above, except
that Ds[i, j] is defined for every 0 ≤ i, j ≤ n. Note that Ds[i, j] ≤ D[i, j] for every
(i, j) for which Ds[i, j] is defined.
Lemma 5 For every s ∈ S, the matrix Ds has the Monge property.

Proof For s = 0 the lemma is true due to the crossing paths property for grid graphs
with no bridges. For s > 0 we also have the crossing paths property: For every index
(i, j), a maximum score s-path from (0, i − 1) to (m, j)must cross a maximum score
s-path from (0, i) to (m, j−1) as both paths pass through fs . Thus, the lemma follows.

()
Our next goal is to show that every column in the density matrix contains at most

r negative injuries and at most r positive injuries. As the proofs are symmetrical for
these cases, we will just discuss the former case and so from now on we will simply
refer to negative injuries as ‘injuries’. Consider a fixed column, and assume that this
column has k injuries, let Di =

(
γi βi
αi δi

)
be the submatrix of Dfirst corresponding to

the i-th injury, where the injuries are numbered in increasing row indices. Note that
the submatrices Di are disjoint (by Corollary 1). Our approach for proving that k ≤ r
is based on showing properties of the Dfirst matrix. One of our techniques is showing
that there are forbidden structures in Dfirst. For example, Lemma 6 below states that
a structure consisting of a symbol s ∈ βi and s ∈ α j for j ≥ i is forbidden. For
the case of r = 1, applying this lemma with i = j implies that there are only two
possible cases for αi ,βi : either {0}, {1} or {1}, {0}. If we assume conversely that there
are k = 2 injuries, then there are four possible cases for α1,β1,α2,β2. We then use
Lemma 6 and an additional lemma (Lemma 7) that gives another forbidden structure
in Dfirst, and show that each of these four cases cannot occur. This is a contradiction,
and therefore there cannot be two injuries.

Lemma 6 For every 1 ≤ i ≤ j ≤ k, βi ∩ α j = ∅.
Proof Fix i ≤ j , and assume conversely that s ∈ βi∩α j . ByLemma2, the submatrices
of D corresponding to injuries i and j are D′ =

(
x x+1
x x

)
for some x , and D′′ =

(y y+1
y y

)

for some y, respectively (see Fig. 4). Let D′
s and D′′

s be the submatrices of Ds that
correspond to D′ and D′′, respectively. From the assumption s ∈ βi and Lemma 4,
we have that s ∈ γi . Thus, the first row of D′

s is equal to the first row of D′. Similarly,
we have that s ∈ δ j and therefore the last row of D′′

s is equal to the last row of D′′. By
taking the first row of D′

s and the last row of D′′
s , we obtain that Ds contains a submatrix(x x+1

y y
)
and therefore Ds does not have theMongeproperty. This contradictsLemma5.

()
Finally, we give another forbidden structure in Dfirst, based on a variant of the

crossing paths property.

123

Aaron
限定 restrict

Aaron
Ds[i, j] ≤ D[i, j]

Aaron
Ds[i,j]isthemaximum score of an s-path from (0,i) to (m, j)

Aaron
Monge

Aaron
crossing paths property

Aaron
(i, j)

Aaron
γi βi

Aaron
Di are disjoint

Aaron
k injuries

Aaron
k ≤ r

Aaron
forbidden structures

Aaron
反過來說 conversely

Aaron
show that each of these four cases cannot occur.

Aaron
first

Aaron
last

Aaron
否證

Algorithmica (2019) 81:47–68 57

Fig. 4 An illustration of the
proof of Lemma 6. The gray s
symbols in a represent values
that are obtained using
Lemma 4. a Dfirst , b D, and c
Ds

(a) (b) (c)

Fig. 5 An illustration of the
proofs of Lemmas 7 and 12

Definition 3 Let - be a linear order on S = {0, 1, . . . , r} defined as follows. For
every i .= j , i - j if and only if start(fi) ≤ start(f j), where start(f0) = ∞.

Lemma 7 Let di , d j , d' be subsets on rows i, j, ' of some column i ′ of Dfirst, where
i < j < '. Then, there are no s, t ∈ S such that s - t , s ∈ di ∩ d', t /∈ di ∪ d', and
t ∈ d j .

Proof Assume conversely that there are s, t ∈ S such that s - t , s ∈ di∩d', t /∈ di∪d',
and t ∈ d j . Note that s .= 0 since by definition, 0 ! t .

Let Pi , P' be maximum score s-paths from (0, i) and (0, ') to (m, i ′), respectively.
Let Pj be a maximum score t-path from (0, j) to (m, i ′). Since fs is the first bridge in
Pi , P' and ft is the first bridge in Pj , and also s - t , then, in the subgraph of G that
contains the vertices above and to the left of the start vertex of fs , the paths Pi , Pj , P'

do not pass through bridges (see Fig. 5). Thus, Pj must cross one of the paths Pi and
P'. Assume without loss of generality that Pj crosses P'.

Let P1
j , P

1
' denote the prefixes of Pj , P' until the crossing point, and let P2

j , P
2
'

denote the suffixes of Pj , P' from the crossing point. Let y, z denote the scores of
the paths Pj , P', respectively, and let a, b denote the score of the paths P1

j , P
1
' ,

respectively.
We have that the path P1

' ∪ P2
j is a t-path from (0, ') to (m, i ′). Since t /∈ d',

we conclude that b + (y − a) < z. Furthermore, due to the path P1
j ∪ P2

' we have
a + (z − b) ≤ y. Summing the two inequalities above we obtain y + z < y + z, a
contradiction. ()

123

Aaron
linear order

Aaron
start(fi)≤start(fj)

Aaron
否證

Aaron
t h e r e a r e n o s , t

Aaron
s ≼ t

Aaron
fs is the first bridge

Aaron
ft isthefirstbridge

Aaron
do not pass through bridges

Aaron
b + (y − a) < z

Aaron
pl1+(pj-pj1) < pl

Aaron
(l)

58 Algorithmica (2019) 81:47–68

Fig. 6 The four cases for two
injuries in the proof of
Theorem 2. The gray 0 in a
represents a value that is
obtained using Lemma 4

(a) (b) (c) (d)

3 Properties of the One Bridge Case

In this section we assume the grid graph has a single bridge, f = ((istart, jstart), (iend,
jend)), and show that there is at most one injury in every column of D!. As discussed
in the previous section, this corresponds to O(n) non-zero elements in D!.

Theorem 2 In the case of a single bridge, there is at most one injury in every column
of D!.

Proof Fix some column of D!, and suppose conversely that there are at least two
injuries in this column. Recall that Di =

(
γi βi
αi δi

)
is the submatrix of Dfirst corre-

sponding to the i-th injury. By Lemma 6, αi ∩ βi = ∅, and since αi and βi are non
empty subsets of S = {0, 1}, it follows that either Di is of the form

(· 1
0 ·

)
or Di is of

the form
(· 0
1 ·

)
. Considering the first two injuries, there are four possible cases (see

Fig. 6):

1. D1, D2 are of the form
(· 1
0 ·

)
.

2. D1, D2 are of the form
(· 0
1 ·

)
.

3. D1 is of the form
(· 1
0 ·

)
and D2 is of the form

(· 0
1 ·

)
.

4. D1 is of the form
(· 0
1 ·

)
and D2 is of the form

(· 1
0 ·

)
.

We now show that each of the cases above yields a contradiction. In Case 1, we have
from Lemma 4 that 0 ∈ δ1. Note that by Corollary 1, D1 and D2 are disjoint. Thus,
we can apply Lemma 7 on β1, δ1,β2 and obtain a contradiction (taking s = 1 and
t = 0). Case 2 yields a contradiction using similar arguments. In Cases 3 and 4,
we have 1 ∈ β1 ∩ α2 and 0 ∈ β1 ∩ α2, respectively, which is a contradiction to
Lemma 6. ()

4 Algorithm for Constructing All-Scores Matrices

In this section we give an algorithm for computing the all scores matrix of a grid graph
with bridges. Our algorithm is an extension of the algorithm of Schmidt for a grid
graph without bridges [33]. We follow the presentation of Schmidt’s algorithm which
was given in Matarazzo et al. [29]. For clarity of presentation, we will first describe
an algorithm for the case of a single bridge, and we will later handle the case of r > 1
bridges.

Let f = ((istart, jstart), (iend, jend)) be the single bridge of the grid graph, and let
W f denote its weight.

123

Aaron
a single bridge

Aaron
at most one

Aaron
O(n) non-zero

Aaron
atmostoneinjury

Aaron
column of D.

Aaron
否證

Aaron
αi ∩ βi = ∅

Algorithmica (2019) 81:47–68 59

Let G0, . . . ,Gm be grid graphs, where Gi is the subgraph of G induced by all the
vertices (i ′, j) with 0 ≤ i ′ ≤ i and 0 ≤ j ≤ n. Let D0, . . . , Dm be the all scores
matrices of G0, . . . ,Gm , respectively.

For 0 ≤ k ≤ n, define:

DiffCi, j (k) = Di [k, j + 1] − Di [k, j] and DiffRi, j (k) = Di+1[k, j] − Di [k, j].

The following lemma follows from the definition above.

Lemma 8 For i ≤ m, if all DiffCi, j (k) values are known for all j and k, then the
matrix Di can be constructed in O(n2) time.

Proof Construct the columns of Di from left to right. The (j + 1)-th column is
constructed in O(n) time from the j-th column and the values of DiffCi, j . ()
Our algorithm for constructing the all-scores matrix ofG computes allDiffCm, j func-
tions and then applies Lemma 8. The algorithm is based on the following observations
on the DiffCi, j and DiffRi, j functions.

1. MostDiffCi, j andDiffRi, j functions have compact representations of size O(1).
2. The compact representations of DiffCi+1, j and DiffRi, j+1 can be computed effi-

ciently from the compact representations of DiffCi, j and DiffRi, j .

The first observation is shown in Lemma 9 and the second observation is shown in
Lemma 10. Similar properties were used in the algorithm of Schmidt for grid graphs
with no bridges. In that case, all the DiffCi, j and DiffRi, j functions have compact
representations, and the size of each representation is exactly 1. In the case of a grid
graphwith a single bridge,weneed additional steps to handle theDiffCi, j andDiffRi, j
functions that do not have compact representations.

We now give a compact representation for the DiffRi, j and DiffCi, j functions.
An index k for which DiffCi, j (k − 1) .= DiffCi, j (k) will be called a step index of
DiffCi, j . For i .= iend − 1, the compact representation SCi, j of DiffCi, j is an array
whose first element is DiffCi, j (0) and the rest of its elements are the step indices of
DiffCi, j in increasing order. For i = iend − 1, SCi, j is an array containing the values
DiffCi, j (k) for 0 ≤ k ≤ n. We say that SCiend−1, j is non-compact. The arrays SRi, j
are defined similarly.

Lemma 9 For every i .= iend − 1 and j .= jend − 1, the arrays SCi, j and SRi, j have
O(1) elements each. Moreover, the functions DiffCi, j and DiffRi, j can be computed
from the arrays SCi, j and SRi, j in O(n) time, respectively.

Proof We first prove the lemma for the DiffCi, j functions. By definition,

DiffCi, j (k) = DiffCi, j (0)+
k∑

l=1

D!
i [l, j + 1].

Thus, an index k is a step index ofDiffCi, j if and only if D!
i [k, j+1] .= 0. Therefore,

by Property 2, the size of DiffCi, j is O(1).

123

Aaron
水平 col

Aaron
垂直 row

Aaron
size O(1)

Aaron
壓縮

Aaron
更新

Aaron
exactly 1

Aaron
no bridges

Aaron
not have compact

Aaron
k

Aaron
step index

Aaron
compact representation SCi, j

Aaron
O(1)

Aaron
O(n) time

Aaron
k is a step index

Aaron
Di[k, j +1] ̸= 0.

60 Algorithmica (2019) 81:47–68

By definition, if k1 and k2 are consecutive step indices then DiffCi, j is constant
on the range [k1, k2 − 1]. By Lemma 1, DiffCi, j (k) ∈ {0, 1} for all k. Therefore, the
step indices of DiffCi, j partition the range [0, n] into regions such that the value of
DiffCi, j is constant in each region and alternates between 0 and 1. The second part
of the lemma follows.

To prove the lemma for the SRi, j functions, we use the equality:

DiffRi, j (k) = DiffRi, j (0)+
k∑

l=1

D
!
j [l, i + 1],

where D j is amatrix inwhich D j [k, i] is themaximum score path from (0, k) to (i, j).
Thematrix D j satisfies Property 1 and Property 2. This can be shown by constructing a
new grid graphwhose densitymatrix contains D j as a submatrix (cf. [35], Chapter 4.3,
Definition 4.8). The claims of the lemma on DiffRi, j now follow using the same
arguments used to prove the lemma on DiffCi, j . ()

In the following lemma we show that SCi+1, j and SRi, j+1 can be computed effi-
ciently from SCi, j and SRi, j . For every (i, j) .= (iend − 1, jend − 1) and k ≤ j , the
optimal path from (0, k) to (i + 1, j + 1) passes through either (i + 1, j), (i, j), or
(i, j + 1). Thus,

Di+1[k, j + 1] = max{Di+1[k, j], Di [k, j] +Wi, j , Di [k, j + 1]},

where Wi, j = 1 if there is a diagonal edge entering (i, j) and Wi, j = 0 otherwise.
From the equality above, the following formulas for DiffCi+1, j and DiffRi, j+1 are
obtained (see [29], Lemma 4).

Lemma 10 Let (i, j) .= (iend − 1, jend − 1) and 0 ≤ k ≤ j . If Wi, j = 1 then
DiffCi+1, j (k) = 1 − DiffRi, j (k) and DiffRi, j+1(k) = 1 − DiffCi, j (k). Other-
wise, DiffCi+1, j (k) = max(0,DiffCi, j (k) − DiffRi, j (k)) and DiffRi, j+1(k) =
max(0,DiffRi, j (k) − DiffCi, j (k)).

Our algorithm for computing the arrays SCm, j , traverses every i, j and computes
SCi+1, j and SRi, j+1 from SCi, j and SRi, j using Lemma 10. When i /∈ {iend −1, iend}
and j /∈ { jend−1, jend}, this computation takes O(1) time by Lemma 9. There are two
cases which require a special treatment. The first case is (i, j) = (iend−1, jend−1). In
this case Lemma 10 cannot be applied and thus SCi+1, j and SRi, j+1 must be computed
differently. Here we compute Di+1[k, j], Di [k, j + 1], and Di+1[k, j + 1], for every
0 ≤ k ≤ n. Then,we use these values to computeDiffCi+1, j (k) andDiffRi, j+1(k) for
all k, and finally we compute SCi+1, j and SRi, j+1 from DiffCi+1, j and DiffRi, j+1.
The values Di+1[k, j] for all k are computed in O(n2) time by computing the j
leftmost columns of Di+1 as in Lemma 8 (note that we already computedDiffCi+1, j ′

for all j ′ < j). Similarly, the values Di [k, j + 1] for all k are computed in O(n2)
time. To compute the Di+1[k, j + 1] values, we use the equality

Di+1[k, j + 1] = max{Di [k, j + 1], Di [k, j] +Wi, j ,

Di+1[k, j], Distart [k, jstart] +W f }.

123

Aaron
D j

Aaron
(0, k) to (i, j)

Aaron
Lemma10

Aaron
O (1) time by Lemma 9.

Aaron
O(n2) time

Aaron
Distart [k, jstart] + W f }

Algorithmica (2019) 81:47–68 61

The second special case occurs when i ∈ {iend − 1, iend} or j ∈ { jend − 1, jend}. In
this case Lemma 9 does not apply. Therefore, we can only bound the time to compute
SCi+1, j and SRi, j+1 by O(n). Since there are O(n+m) pairs i, j for which this case
occurs, the total contribution of this case to the time complexity of the algorithm is
O(n2 + nm).

Extension to r Bridges The algorithm presented above can be extended to the case
of r > 1 bridges. Denote the k’th bridge by fk = ((i kstart, j

k
start), (i

k
end, j

k
end)) for

1 ≤ k ≤ r . In this case, Property 2 implies that for every pair i and j such that
i .= i kend − 1 and j .= j kend − 1 for all 1 ≤ k ≤ r , DiffCi, j and DiffRi, j have O(r)
step indices. Therefore, the computation of SCi, j ,SRi, j for indices i and j , such that
i /∈ {i kend − 1, i kend} and j /∈ { j kend − 1, j kend}, for all 1 ≤ k ≤ r , takes O(rnm) time. As
for the pairs i, j that require special treatment, the technique remains as in the case of
one bridge, only that now there are at most r end-points (for which SCi, j and SRi, j
have to be computed exhaustively) and at most r(n + m) such indices. Summing the
above, the following theorem is obtained.

Theorem 3 The all scores matrix for an m × n grid graph with r bridges can be
constructed in O(r(nm + n2)) time.

5 Properties of the r Bridges Case

In this section we assume that the grid graph G has r bridges f1, . . . , fr and show
that each column of D! has at most r injuries. Recall that in Sect. 2, Lemmas 6 and 7
gave forbidden structures in Dfirst. The following lemmas, Lemmas 11 and 12, are
analogous to Lemmas 6 and 7, but give different forbidden structures in Dfirst. In what
follows we consider a fixed column in D! and assume that this column has k injuries
numbered in increasing row indices.

Lemma 11 For every 1 ≤ i ≤ j ≤ k, there is no s ∈ S such that s ∈ βi ∩ γ j and
s /∈ β j .

Proof Fix i ≤ j , and assume conversely that there is s ∈ S such that s ∈ βi ∩ γ j and
s /∈ β j . We use the same notations as in the proof of Lemma 6. the submatrices of D
corresponding to injuries i and j are D′ =

(
x x+1
x x

)
for some x , and D′′ =

(y y+1
y y

)

for some y, respectively. Let D′
s and D′′

s be the submatrices of Ds that correspond to
D′ and D′′, respectively. As in the proof of Lemma 6, we have that the first row of D′

s
is equal to the first row of D′. Now consider the first row of D′′

s . The first element of
this row is equal to the first element in the first row of D′′ since s ∈ γ j . Furthermore,
s /∈ β j , so the second element of this row is less than the second element of the first
row of D′′. Since each row of Ds is monotonically non-decreasing, we conclude that
the first row of D′′

s is (y y). We obtain that Ds contains a submatrix
(x x+1
y y

)
and

therefore Ds does not have the Monge property, a contradiction. ()
Lemma 12 Let di , d j , d' be the values on rows i, j, ' of some column i ′ of Dfirst,
where i < j < '. Then, there are no s, t ∈ S such that s - t , s ∈ di ∩ d', s /∈ d j , and
t ∈ d j .

123

Aaron
O(n)

Aaron
O(n + m) pairs i, j

Aaron
O(r(nm + n2)) time.

Aaron
takesO(rnm)time

Aaron
r end-points

Aaron
Lemmas 6 and 7 gave forbidden structures in Dfirst

Aaron
否證

62 Algorithmica (2019) 81:47–68

Fig. 7 An illustration of the
proof of Lemma 13. The gray
symbols represent values that are
obtained using Lemmas 4 and 6

Proof Using the same notation as in the proof of Lemma 7 (see also Fig. 5), we have
that the path P1

' ∪ P2
j is a path from (0, ') to (m, i ′), and therefore the score of this

path is less than or equal to the maximum score of a path between these vertices.
Therefore, b + (y − a) ≤ z. Moreover, the path P1

j ∪ P2
' is an s-path from (0, j) to

(m, i ′). Since s /∈ d j , the score of this path is strictly less than the maximum score
of a path between these vertices, so a + (z − b) < y. Summing the two inequalities
above, we obtain y + z < y + z, a contradiction. ()

In Lemma 13, Corollary 2 and Lemma 14, we use the former lemmas to show
additional, more complex, forbidden structures in Dfirst.

Let α[i, j] = ⋃ j
l=i αl , β[i, j] =

⋃ j
l=i βl , and αβ[i, j] = α[i, j] ∪ β[i, j].

Lemma 13 For every 1 ≤ i ≤ j ≤ k,

1. There are no s, t ∈ S such that s - t , s ∈ βi ∩ β j , and t ∈ α[i, j − 1].
2. There are no s, t ∈ S such that s - t , s ∈ αi ∩ α j , and t ∈ β[i + 1, j].

Proof To prove the first part of the lemma, take s ∈ βi ∩ β j and t in some αl , where
i ≤ l ≤ j − 1 (see Fig. 7). We have that (1) s ∈ γi and s ∈ γ j (from Lemma 4), (2)
s /∈ αl (from Lemma 6), (3) t ∈ αl . Therefore, by Lemma 12, s ! t .

Theproof of the secondpart is symmetric to the proof of thefirs part. Take s ∈ αi∩α j
and t in some βl , where i + 1 ≤ l ≤ j . Now, (1) s ∈ δi and s ∈ δ j (from Lemma 4),
(2) s /∈ βl (from Lemma 6), (3) t ∈ βl . Thus, s ! t . ()

Corollary 2 1. There are no indices i ′ < i ≤ j ′ < j such that αi ′ ∩ α j ′ .= ∅ and
βi ∩ β j .= ∅.

2. There are no indices i ′ ≤ i < j ′ ≤ j such that βi ′ ∩ β j ′ .= ∅ and αi ∩ α j .= ∅.

Proof To prove the first part, assume conversely that there are such indices. Arbitrarily
select u ∈ αi ′ ∩α j ′ and v ∈ βi ∩β j . From Lemma 13 (part 1) applied on v ∈ βi ∩β j ,
v ! u, and from Lemma 13 (part 2) applied on u ∈ αi ′ ∩ α j ′ , u ! v. The conditions
of Lemma 13 hold since i < i ′ and j ′ < j . The second part is proved using the same
arguments. ()

Lemma 14 For every 1 ≤ i ≤ j ≤ k,

123

Algorithmica (2019) 81:47–68 63

Fig. 8 An illustration of the
proof of Lemma 14. The black s
and !s symbols are due to the
conditions of case 1 of the
lemma. The black t symbols are
due to the assumption that there
is a symbol
t ∈ α[1, j − 1] ∩ αβ[j + 1, k].
The gray symbols represent
values that are obtained using
Lemmas 4, 6, and 11

1. If s ∈ βi ∩ β j and s /∈ β[j + 1, k] then α[i, j − 1] ∩ αβ[j + 1, k] = ∅.
2. If s ∈ αi ∩ α j and s /∈ α[1, i − 1] then β[i + 1, j] ∩ αβ[1, i − 1] = ∅.

Proof The proofs for the two parts of the lemma are similar, so we will prove only the
first part. Assume conversely that the first part is not true, and pick t ∈ α[i, j − 1] ∩
αβ[j + 1, k]. Let p ∈ [i, j − 1] and q ∈ [j + 1, k] be the indices such that t ∈ αp
and t ∈ αq ∪ βq (see Fig. 8). We will show a contradiction by showing that s ! t and
t ! s.

From Lemma 13 (part 1), s ! t (since t ∈ αp and i ≤ p ≤ j − 1). We next show
that t ! s using Lemma 7 on αp, γ j , γq . We have t ∈ αp (by the definition of p),
s /∈ αp (by Lemma 6), s ∈ γ j (by Lemma 4), t ∈ γq (by Lemma 4), and s /∈ γq (by
Lemma 11 applied on injuries j and q). Therefore, t ! s. ()

The following Lemmas 15 and 16 use our previous results in order to show that k
injuries in a column of D! impose a certain constraint in Dfirst, that is, there are k+ 1
distinct symbols of S. Since |S| = r + 1, this implies that k ≤ r , thus proving our
main result of this section, Theorem 4.

Lemma 15 For every 1 ≤ i ≤ j ≤ k,

1. If s ∈ βi ∩ β j and s /∈ β[j + 1, k] then there is a set T ⊆ α[i, j − 1] ∪ β[i, j]
such that |T | = j − i + 1 and T ∩ αβ[j + 1, k] = ∅.

2. If s ∈ αi ∩ α j and s /∈ α[1, i − 1] then there is a set T ⊆ α[i, j] ∪ β[i + 1, j]
such that |T | = j − i + 1 and T ∩ αβ[1, i − 1] = ∅.

Proof We will prove only the first part of the lemma, as the second part is similar.
The proof is done using induction on j − i . The main idea is to partition the interval
[i, j] into disjoint intervals, and then apply the induction hypothesis on each of these
intervals to obtain sets T1, . . . , Tp.Wewill then show that the set T = {s}∪T1∪· · ·∪Tp
satisfies the requirement stated in the lemma.

Consider the base case of the induction, namely j − i = 0. Let T = {s}. We have
s /∈ α[j + 1, k] (from Lemma 6 and from the condition s ∈ β j of the lemma) and
s /∈ β[j + 1, k]. Therefore, T ∩ αβ[j + 1, k] = ∅.

We next prove the induction step. Assume the correctness of the Lemma for
0 ≤ j − i ≤ q, and consider i, j satisfying j − i = q + 1. Construct a partition

123

Aaron
β[j+1,k]

Aaron
α[1,i−1]

Aaron
數學歸納法

Aaron
j − i = q + 1

64 Algorithmica (2019) 81:47–68

[j ′1, j1], [j ′2, j2], . . . , [j ′p, jp] of [i, j − 1] as follows (see Fig. 9a). Let j1 = j − 1,
and let j ′1 be the minimum index such that i ≤ j ′1 ≤ j1 and α j ′1

∩ α j1 .= ∅. Con-
tinue with this process on [i, j ′1 − 1]. For every 1 ≤ p̃ ≤ p, pick arbitrarily an
element t p̃ ∈ α j ′p̃

∩ α j p̃ . Note that for every p̃, the conditions of the second part of the

lemma are satisfied for the symbol t p̃ and injuries j ′p̃, j p̃, since (1) t p̃ ∈ α j ′p̃
∩ α j p̃ , (2)

t p̃ /∈ α[i, j ′p̃ − 1] (by the definition of j ′p̃), and (3) t p̃ /∈ α[1, i − 1] [by Corollary 2
(part 1) applied on injuries l, i, j p̃, j for every l ∈ [1, i − 1], as shown in Fig. 9b].
Thus, we can use the induction hypothesis on every t p̃ and obtain sets T1, . . . , Tp such
that for every 1 ≤ p̃ ≤ p, Tp̃ ⊆ α[j ′p̃, j p̃] ∪ β[j ′p̃ + 1, j p̃], |Tp̃| ≥ j p̃ − j ′p̃ + 1, and
Tp̃ ∩ αβ[1, j ′p̃ − 1] = ∅. The sets T1, . . . , Tp are disjoint, since for every p̃1 < p̃2 we
have Tp̃1 ∩αβ[1, j ′p̃1 −1] = ∅, Tp̃2 ⊆ α[j ′p̃2 , j p̃2]∪β[j ′p̃2 +1, j p̃2], and j p̃2 ≤ j ′p̃1 −1.

Define T ′ = ∪p
p̃=1Tp̃. Since T1, . . . , Tp are disjoint, |T ′| = ∑p

p̃=1 |Tp̃| =
∑p

p̃=1(j p̃ − j ′p̃ + 1) = j − i . Note that s /∈ T ′, since for every 1 ≤ p̃ ≤ p, (1)
s /∈ α[j ′p̃, j p̃] (by Lemma 6), (2) s /∈ β[j ′p̃ + 1, j p̃] [if j ′p̃ = j p̃ this property is trivial,
and otherwise it follows from Corollary 2 (part 1) applied on the injuries j ′p̃, l, j p̃, j
for every l ∈ [j ′p̃+1, j p̃], as shown in Fig. 9c]. Thus, for T = T ′∪{s}, |T | = j−i+1.
It remains to prove that T ∩ αβ[j + 1, k] = ∅.

Take x ∈ T . If x = s then we already shown that s /∈ αβ[j + 1, k] in the proof
of the base case of the induction. Otherwise (x .= s), let p̃ be the index such that
x ∈ Tp̃. There are two cases: either x ∈ α[j ′p̃, j p̃] or x ∈ β[j ′p̃ + 1, j p̃]. In the
former case, from Lemma 14 (part 1) we have α[i, j − 1]∩ αβ[j + 1, k] = ∅, and in
particular, x /∈ αβ[j + 1, k]. In the latter case, let l ∈ [j ′p̃ + 1, j p̃] be the index such
that x ∈ βl . From Lemma 6, x /∈ α[j + 1, k]. From Corollary 2 (part 1) applied on
injuries j ′p̃, l, j p̃, l

′ for every l ′ ∈ [j + 1, k], x /∈ β[j + 1, k] (see Fig. 9d). Therefore,
x /∈ αβ[j + 1, k]. Since this is true for every x , we obtain that T ∩ αβ[j + 1, k] = ∅.

()

Lemma 16 |αβ[1, k]| ≥ k + 1.

Proof We prove the lemma using induction on k. If k = 1 then since α1 ∩ β1 = ∅ (by
Lemma 6), we get |αβ[1, 1]| = |α1| + |β1| ≥ 2. We now assume that k > 1. Let i be
the maximum index such that β1 ∩ βi .= ∅ and let s ∈ β1 ∩ βi .

There are two cases. The first case is when i = k. Choose t ∈ αk . From Lemma 6,
t /∈ β[1, k] and from Corollary 2 (part 2), t /∈ α[1, k − 1]. From the induction
hypothesis |αβ[1, k − 1]| ≥ k, and since t /∈ αβ[1, k − 1] we get |αβ[1, k]| ≥ k + 1.

In the second case i < k. We apply Lemma 15 (part 1) and obtain a set T ⊆
α[1, i − 1] ∪ β[1, i] of size i . Let k′ = |αβ[i + 1, k]|. From the induction hypothesis
k′ ≥ k− i+1, and since T ∩αβ[i+1, k] = ∅, we conclude that |αβ[1, k]| = i+k′ ≥
k + 1. ()

Using Lemma 16 we obtain our main theorem.

Theorem 4 There are at most r injuries in every column of D!.

123

Aaron
j1 = j − 1

Aaron
T′ = ∪p Tp ̃

Aaron
x ∈ α[j′ , jp ̃]

Aaron
x ∈ β[j′ + 1, jp ̃]

Aaron
數學歸納法

Aaron
i = k

Aaron
i < k

Algorithmica (2019) 81:47–68 65

(a) (b) (c) (d)

Fig. 9 An illustration of the proof of Lemma 15. a Shows an example for the induction step. Suppose that
i = 1 and j = 6. In this example, we partition [i, j − 1] = [1, 5] into two intervals: [ĵ1, j1] = [3, 5]
and [ĵ2, j2] = [1, 2] and pick t1 ∈ α3 ∩ α5 and t2 ∈ α1 ∩ α2. We then use induction to obtain sets
T1 = {a, b, c} ⊆ α[3, 5]∪β[4, 5] and T2 = {d, e} ⊆ α[1, 2]∪β[2, 2]. b–d Show the different applications
of Corollary 2 in the proof

Proof If there are more than r injuries, then by Lemma 16, |αβ[1, r + 1]| ≥ r + 2.
However, αβ[1, r + 1] is a subset of S, and |S| = r + 1. It follows that there are at
most r injuries. ()

6 Lower Bound

In this section we give a construction of grid graphs with r bridges in which the
corresponding density matrices have Θ(n) rows and columns, each containing Θ(r)
1 values and Θ(r) -1 values. Such rows and columns will be called saturated. This
construction shows that Property 2 is asymptotically tight.

For given r, n, with r ≤ n, we build a graph TGr,n as follows (see Fig. 10). The
vertex set of the graph is {(i, j) : 0 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2n − 1}, and the set

123

Aaron
t w o

Aaron
i = 1 a n d j = 6

Aaron
1

Aaron
6

Aaron
4

Aaron
3

Aaron
2

Aaron
5

Aaron
Θ(n) rows and columns

Aaron
Θ(r) 1 values and Θ(r) -1 values

Aaron
saturated

66 Algorithmica (2019) 81:47–68

(a)

-1
-1-2

-1-2-3
-1-2-3-4

-1-2-3-4-5
-1-2-3-4-5-6

-1-2-3-4-5-6-7

0 0 0
0 0

0 8 8 8 8
4 5 6 7
0 1 2 3

0 1 2
0 1

0

16 16 16 16
12 13 14 15

0
0
0
0

(b)

-4
-4 -1 -1 -1
-4
-3

1 1 11
1

1 1 1 1

(c)D DGrid graph

Fig. 10 An example showing the grid graph TG4,4, its all scores matrix D, and the density matrix D!.
The gray region in D! consists of rows of ones and rows of minus ones

of diagonal edges is {(k, k + 1) : n ≤ k < 2n − 1}. The bridges of the graph are
f0, f1, . . . , fr−1 where fk = ((0, k), (2n−1, n)) if k is even and fk = ((0, k), (n, n))
if k is odd. The weight of the bridge fk is W fk = n2 − kn.

Consider some grid graph TGr,n and let D be its all scores matrix. We next show
that the density matrix D! has Θ(n) saturated columns.

Fix i < r and j ≥ n, and note that: (1) For every k < k′, W fk − W fk′ = (k′ −
k)n ≥ n, (2) The number of diagonal edges is n − 1, (3) For every k, W fk ≥ n − 1.
Thus, the optimal path from (0, i) to (2n − 1, j) utilizes the bridge fi . Therefore,
D[i, j] = n2 − in if i is even and D[i, j] = n2 − in+ (j − n) if i is odd, (since in the
latter case, the bridge’s endpoint is (n, n), and thus diagonal edges can be utilized).
Finally, we have that D[i, j+1]−D[i, j] = 0 if i is even and D[i, j+1]−D[i, j] = 1
if i is odd. We conclude that for every i < r and j > n, D![i, j] = 1 if i is odd and
D![i, j] = −1 if i is even.

Consider the graph TG2
r,n that is obtained by reversing the edges of TGr,n and

mapping vertex (i, j) to (2n − 1 − j, 2n − 1 − i). Row k in the all scores matrix of
TG2

r,n is equal to column 2n − 1 − k in the all scores matrix of TGr,n . Therefore, the
density matrix of TG2

r,n hasΘ(n) saturated rows. Consider now the graph TG3
r,n that is

obtained by concatenating the graph TG2
r,n to the right of TGr,n , and denote by D3 its

all scoresmatrix. The submatrices D3[0..2n−1, 0..2n−1], D3[2n..4n−1, 2n..4n−1]
are equal to the all scores matrices of TGr,n,TG2

r,n , respectively. Thus we have that
TG3

r,n has Θ(n) saturated rows and Θ(n) saturated columns.

7 Conclusions

We considered all scores matrices of grid graphs extended with a set of r additional
edges, and studied their combinatorial implications on all scores matrices, focusing
on the Monge property of such graphs. Our main observation is that the number of
non-zero values in a density matrix corresponding to such graph is O(rn). Thus, if
r = o(n), the all scores matrix is “almost Monge”. Furthermore, we showed that

123

Aaron
r additional edges

Aaron
r = o(n), the all scores matrix is “almost Monge”

Aaron
D has Θ(n) saturated columns.

Aaron
D[i, j] = 1 if i is odd and D[i, j] = −1 if i is even.

Algorithmica (2019) 81:47–68 67

all the non-zero values in the density matrix are confined to −1 or 1, except for the
values in O(r2) specific locations in the matrix. Based on this analysis, we gave an
algorithm for computing the all scores matrix, for grid graphs extended with r bridges,
in O(r(n2 + nm)) time.

We note that in some applications, the all scores matrix also includes the optimal
alignment scores between every suffix of A and every prefix of B, and between every
prefix of A and every suffix of B. Our results generalize to these applications as well.

An interesting challenge would be to extend our analysis and approaches to other
applicative problem domains where “almost Monge” matrices can be identified.

Acknowledgements We thank the anonymous reviewers, that helped us improve the readability of the
paper through their many helpful suggestions. The research of A.C and D.T was partially supported by ISF
Grant No. 981/11. The research of A.C and M.Z-U was partially supported by ISF Grant 179/14.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-
searching algorithm. Algorithmica 2(1–4), 195–208 (1987)

2. Alves, C.E.R., Cáceres, E.N., Song, S.W.: An all-substrings common subsequence algorithm. Discrete
Appl. Math. 156(7), 1025–1035 (2008)

3. Apostolico, A., Atallah, M.J., Larmore, L.L., McFaddin, S.: Efficient parallel algorithms for string
editing and related problems. SIAM J. Comput. 19(5), 968–988 (1990)

4. Apostolico, A.: String editing and longest common subsequences. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 361–398. Springer (1997)

5. Arslan, A.N.: Sequence alignment guided by common motifs described by context free grammars. In:
Biotechnology and Bioinformatics Symposium (BIOT-2007). Colorado Springs, CO (2007)

6. Benson, G.: A space efficient algorithm for finding the best nonoverlapping alignment score. Theor.
Comput. Sci. 145(1&2), 357–369 (1995)

7. Bodlaender, H.L., Fellows, M.R., Evans, P.A.: Finite-state computability of annotations of strings and
trees. In: Proceedings of the 7th Symposium on Combinatorial Pattern Matching (CPM), pp. 384–391.
Springer (1996)

8. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of monge properties in optimization. Discrete Appl.
Math. 70(2), 95–161 (1996)

9. Cabello, S., Chambers, E.W., Erickson, J.: Multiple-source shortest paths in embedded graphs. SIAM
J. Comput. 42(4), 1542–1571 (2013)

10. Comet, J.-P., Henry, J.: Pairwise sequence alignment using a prosite pattern-derived similarity score.
Comput. Chem. 26(5), 421–436 (2002)

11. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for
unrestricted cost matrices. SIAM J. Comput. 32(5), 1654–1673 (2003)

12. Eisenstat, D., Klein, P.N.: Linear-time algorithms for max flow and multiple-source shortest paths in
unit-weight planar graphs. In: Proceedings of the 45th ACM Symposium on Theory of Computing
(STOC), pp. 735–744 (2013)

13. Evans, P.A.: Algorithms and Complexity for Annotated Sequence Analysis. Ph.D. thesis, Citeseer
(1999)

14. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for accelerating edit-
distance computation via text-compression. In: Proceedings of the 26th Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 529–540 (2009)

15. Hou, X., Prékopa, A.: Monge property and bounding multivariate probability distribution functions
with given marginals and covariances. SIAM J. Optim. 18(1), 138–155 (2007)

16. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Pagni, M.,
Sigrist, C.: The prosite database. Nucleic Acids Res. 34(suppl 1), D227–D230 (2006)

17. Ishida, Y., Inenaga, S., Shinohara, A., Takeda,M.: Fully incremental LCS computation. In: Proceedings
of the 15th Symposium on Fundamentals of Computation Theory (FCT), pp. 563–574 (2005)

123

Aaron
Efficient parallel algorithms for string editing and related problems

68 Algorithmica (2019) 81:47–68

18. Kannan, S., Myers, E.W.: An algorithm for locating nonoverlapping regions of maximum alignment
score. SIAM J. Comput. 25(3), 648–662 (1996)

19. Kent, C., Landau, G.M., Ziv-Ukelson, M.: On the complexity of sparse exon assembly. J. Comput.
Biol. 13(5), 1013–1027 (2006)

20. Kim, S.-R., Park, K.: A dynamic edit distance table. J. Discrete Algorithms 2(2), 303–312 (2004)
21. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Proceedings of the 16th Symposium

on Discrete Algorithms (SODA), vol. 5, pp. 146–155 (2005)
22. Krusche, P., Tiskin, A.: String comparison by transposition networks, In: Proceedings of the of London

Algorithmics, Workshop, pp. 184–204 (2008)
23. Krusche, P., Tiskin, A.: New algorithms for efficient parallel string comparison. In: Proceedings of the

22nd Symposium on Parallel Algorithms and Architectures (SPAA), pp. 209–216 (2010)
24. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM J. Comput. 27(2),

557–582 (1998)
25. Landau, G.M., Myers, E.W., Ziv-Ukelson, M.: Two algorithms for LCS consecutive suffix alignment.

J. Comput. Syst. Sci. 73(7), 1095–1117 (2007)
26. Landau, G.M., Schieber, B., Ziv-Ukelson, M.: Sparse LCS common substring alignment. Inf. Process.

Lett. 88(6), 259–270 (2003)
27. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem repeats. J. Comput.

Biol. 8(1), 1–18 (2001)
28. Landau, G.M., Ziv-Ukelson, M.: On the common substring alignment problem. J. Algorithms 41(2),

338–359 (2001)
29. Matarazzo, U., Tsur, D., Ziv-Ukelson, M.: Efficient all path score computations on grid graphs. Theor.

Comput. Sci. 525, 138–149 (2014)
30. Mozes, S., Tsur, D., Weimann, O., Ziv-Ukelson, M.: Fast algorithms for computing tree lcs. Theor.

Comput. Sci. 410(43), 4303–4314 (2009)
31. Park, J.K.: A special case of the n-vertex traveling-salesman problem that can be solved in o (n) time.

Inf. Process. Lett. 40(5), 247–254 (1991)
32. Sakai, Y.: An almost quadratic time algorithm for sparse spliced alignment. Theory Comput. Syst.

48(1), 189–210 (2011)
33. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their application to finding all

approximate repeats in strings. SIAM J. Comput. 27(4), 972–992 (1998)
34. Tiskin, A.: Semi-local longest common subsequences in subquadratic time. J. Discrete Algorithms

6(4), 570–581 (2008)
35. Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications. Math. Comput. Sci.

1(4), 571–603 (2008)

123

Aaron
All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings

	On Almost Monge All Scores Matrices
	Abstract
	1 Introduction
	2 Preliminaries and Basic Problem Properties
	3 Properties of the One Bridge Case
	4 Algorithm for Constructing All-Scores Matrices
	5 Properties of the r Bridges Case
	6 Lower Bound
	7 Conclusions
	Acknowledgements
	References

