
Theoretical Computer Science 395 (2008) 255–267
www.elsevier.com/locate/tcs

Algorithms for computing variants of the longest common
subsequence problemI

Costas S. Iliopoulos∗, M. Sohel Rahman1

Algorithm Design Group, Department of Computer Science, King’s College London, Strand, London WC2R 2LS, England, United Kingdom

Abstract

The longest common subsequence (LCS) problem is one of the classical and well-studied problems in computer science. The
computation of the LCS is a frequent task in DNA sequence analysis, and has applications to genetics and molecular biology. In
this paper we introduce new variants of LCS problem and present efficient algorithms to solve them. In particular we introduce
the notion of gap constraints in the LCS problems. For the LCS problem with fixed gap, we first present a naive algorithm runs in
O(n2

+R(K + 1)2) time, where R is the total number of ordered pairs of positions at which the two strings match and K is the
fixed gap constraint. We then improve the running time to O(n2

+RK +R log log n) using some novel techniques. Furthermore,
we present an algorithm that is independent of K and runs in O(n2

+R log log n) time. Using these techniques, we also present a
new O(n2) algorithm to solve the original LCS problem. Additionally, we modify our algorithms to handle elastic and rigid gaps.
We also apply the notion of rigidness to the original LCS problem and modify the traditional dynamic programming solution to
handle the rigidness presenting a O(n2) algorithm to solve the problem. Finally, we also improve the solution to Rigid Fixed Gap
LCS to O(n2). Notably, in all of the above cases, we assume that the two given strings are of equal length i.e. n. But our results
can be easily extended to handle two strings of different length.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Longest common subsequence; Strings

1. Introduction

The longest common subsequence (LCS) problem is one of the classical and well-studied problems in computer
science which has extensive applications in diverse areas ranging from spelling error corrections to molecular biology:
a spelling error correction program tries to find the dictionary entry which resembles most a given word; in a file
archive we want to store several versions of a source program compactly by storing only the original version and
construct all other versions from the differences to the previous one; in Molecular Biology [30,3] we want to compare

I Preliminary version [M. Sohel Rahman, Costas S. Iliopoulos, Algorithms for computing variants of the longest common subsequence problem,
in: T. Asano (Ed.), ISAAC, in: Lecture Notes in Computer Science, vol. 4288, Springer, 2006, pp. 399–408] was presented in ISAAC 2006.

∗ Corresponding author.
E-mail addresses: csi@dcs.kcl.ac.uk (C.S. Iliopoulos), sohel@dcs.kcl.ac.uk (M. Sohel Rahman).
URLs: http://www.dcs.kcl.ac.uk/staff/csi (C.S. Iliopoulos), http://www.dcs.kcl.ac.uk/pg/sohel (M. Sohel Rahman).

1 On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.

0304-3975/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.01.009

http://www.elsevier.com/locate/tcs
mailto:csi@dcs.kcl.ac.uk
mailto:sohel@dcs.kcl.ac.uk
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/staff/csi
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://www.dcs.kcl.ac.uk/pg/sohel
http://dx.doi.org/10.1016/j.tcs.2008.01.009

256 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

DNA or protein sequences to learn how similar they are. All these cases can be seen as an investigation for the
‘closeness’ among strings. And an obvious measure for the closeness of strings is to find the maximum number of
identical symbols in them preserving the order of the symbols. This, by definition, is the longest common subsequence
of the strings.

Perhaps, the strongest motivation for the LCS problem and variants thereof, to this date, comes from Computational
Molecular Biology. The LCS problem is a common task in DNA sequence analysis, and has applications to genetics
and molecular biology. Variants of LCS problem have been used to study similarity in RNA secondary structure [10,
20,13,23]. Very recently, Bereg and Zhu in [8], presented a new model for RNA multiple sequence structural alignment
based on the longest common subsequence. The Constrained LCS problem, where the solution to the problem must
also be a subsequence of a third string (given), also finds motivation from bioinformatics [33,6,5]. We, however, are
interested in applying another type of constraint on the LCS problem. We introduce the notion of gap constraints
in LCS. Our versions of LCS, on one hand, offers the possibility to handle gap constraints between the consecutive
matches among the sequences. On the other hand, they provide us with the tool to handle motif finding problems
where not all positions of the motif are important [24]. For example, by examining nine different protein sequences
that bind to the SH3 domain, a consensus sequence, R P L P ∗ ∗P , was revealed as the SH3 domain binding motif [2].
The symbol ∗ in the sequence is a wildcard that can match any amino acids, which indicates that the amino acids
at the two ∗-positions are not important to the biochemical function of the motif. Such a consensus sequence can be
obtained by applying gap constraints between the appropriate positions.

Another motivation of our work comes from the problem of extracting long multiple repeats in DNA sequences.
One approach to solve this problem efficiently is to apply ‘lossless’ filters [1,32] where filters apply a necessary
condition that sequences must meet to be part of repeats. One way to improve the computational time and the
sensitivity of the filters is to compute Longest Common Subsequences between the ordered sequences of exact k-
mers used in the filtering technique. However in the case of the filter, the LCS that needs to be computed has bounded
span [31] which, again, can be obtained by applying the gap constraints in LCS.

The rest of the paper is organized as follows. In Section 2, we present all the definitions and notations to introduce
the new concepts of gap constraints in LCS as well as the new variants that we wish to handle in this paper. In
Section 3, we present a brief literature review. In Section 4, we review the traditional dynamic programming technique
to solve the original LCS problem. In Sections 5 to 9, we present new algorithms for all the variants discussed in this
paper. In particular, we first present a naive algorithm for the problem with fixed gap, in Section 5, that runs in
O(n2

+R(K + 1)2) time and then improve the running time to O(n2
+RK +R log log n) in Section 6. In Section 7,

we present another algorithm for the same problem which runs in O(n2
+R log log n) time and hence independent

of the parameter K . Using these techniques, we also present a new O(n2
+ R log log n) time algorithm to solve

the original LCS problem in this section. In Sections 8 and 9, we modify these algorithms to handle, respectively,
the elastic gaps and rigid gaps. Also in Section 8, we modify the traditional solution to LCS to handle the notion
of rigidness in the context of the original LCS problem. Note that this particular variant of the problem has been
previously studied in [24]. Finally, we discuss some applications in Section 10 before concluding in Section 11.

2. Preliminaries

Suppose that we are given two strings X [1..n] = X [1] X [2] . . . X [n] and Y [1..n] = Y [1] Y [2] . . . Y [n]. A
subsequence S[1..r] = S[1] S[2] ...S[r] of X is obtained by deleting [0, n − r] symbols from X . A common
subsequence of two strings X and Y , denoted cs(X, Y), is a subsequence common to both X and Y . The longest
common subsequence of X and Y , denoted lcs(X, Y) or LC S(X, Y), is a common subsequence of maximum length.
We denote the length of lcs(X, Y) by r(X, Y).

Problem 1 (“LCS”). Given 2 strings X and Y , we want to find out the Longest Common Subsequence of X and Y .

In this paper we are interested in several variants of LCS Problem. In the rest of this section we formally define the
new variants and give some examples. In what follows we assume that the two given strings are of equal length. But
our results can be easily extended to handle two strings of different length.

Definition 1 (“Correspondence Sequence”). Given a string X [1..n] and a subsequence S[1..r] of X , we define the
correspondence sequence of X and S, C(X, S) = C[1] C[2] . . . C[r] to be the strictly increasing sequence of integers

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 257

Fig. 1. Correspondence sequences for Example 1.

taken from [1, n] such that S[i] = X [C[i]] for all 1 ≤ i ≤ r . When it is clear from the context we simply use C
instead of C(X, S).

Note that, given X and one of its subsequences S, the C(X, S) may not be unique.

Example 1. Suppose that X = AGT ACG. S = ACG is a subsequence of X . As is evident from Fig. 1, here we have
two different Correspondence Sequences of X and S namely, C1 = 1 5 6 and C2 = 4 5 6.

Definition 2 (“Fixed Gapped Correspondence Sequence”). A correspondence sequence of a string X of length n and
one of its subsequences S of length r is said to be a Fixed Gapped Correspondence Sequence with respect to a given
integer K if and only if we have C[i] − C[i − 1] ≤ K + 1 for all 2 ≤ i ≤ r . We sometimes use CFG(K) to denote a
Fixed Gapped Correspondence Sequence with respect to K .

Definition 3 (“Elastic Gapped Correspondence Sequence”). A correspondence sequence of a string X of length n
and one of its subsequences S of length r is said to be an Elastic Gapped Correspondence Sequence with respect to a
given integer K1 and K2, K2 > K1 if and only if we have K1 < C[i] − C[i − 1] ≤ K2 + 1 for all 2 ≤ i ≤ r . We
sometimes use CEG(K1,K2) to denote an Elastic Gapped Correspondence Sequence with respect to K1 and K2.

Example 2. Suppose that K = 2. Then in Example 1, C2(X, S) is a Fixed Gapped Correspondence Sequence
but C1(X, S) is not because C1[2] − C1[1] = 4 6< K . However, for K = 5 both C1 and C2 are Fixed Gapped
Correspondence Sequences.

Definition 4 (“Fixed Gapped Common Subsequence and Elastic Gapped Common Subsequence”). Suppose that we
are given two strings X [1..n] and Y [1..n] and an integer K . A common subsequence S[1..r] of X and Y is a
Fixed Gapped Common Subsequence, if there exist Fixed Gapped Correspondence Sequences CFG(K)(X, S) and
CFG(K)(Y, S). Elastic Gapped Common Subsequences can be defined analogously.

Definition 5 (“Rigid Fixed Gapped Common Subsequence and Rigid Elastic Gapped Common Subsequence”).
Suppose that we are given two strings X [1..n] and Y [1..n] and an integer K . A common subsequence S[1..r] of
X and Y is a Rigid Fixed Gapped Common Subsequence, if there exists Fixed Gapped Correspondence Sequences
CFG(K)(X, S) and CFG(K)(Y, S) such that for all 2 ≤ i ≤ r

CFG(K)(X, S)[i] − CFG(K)(X, S)[i − 1] = CFG(K)(Y, S)[i] − CFG(K)(Y, S)[i − 1].

Rigid Elastic Gapped Common Subsequences can be defined analogously.

Problem 2. “FIG” (LCS Problem with Fixed Gap). Given 2 strings X and Y , and an integer K , we want to find out
the Fixed Gapped Common Subsequence of X and Y having maximum length.

Problem 3. “ELAG” (LCS Problem with Elastic Gap). Given 2 strings X and Y , and integers K1 and K2, we want to
find out the Elastic Gapped Common Subsequence of X and Y having maximum length.

Problem 4. “RIFIG” (LCS Problem with Rigid Fixed Gap). Given 2 strings X and Y , and an integer K , we want to
find out the Rigid Fixed Gapped Common Subsequence of X and Y having maximum length.

Problem 5. “RELAG” (LCS Problem with Rigid Elastic Gap). Given 2 strings X and Y , and integers K1 and K2, we
want to find out the Rigid Elastic Gapped Common Subsequence of X and Y having maximum length.

258 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

Example 3. Suppose that X = ABCC DE FG AC D and Y = AFCG FC AB D. A solution to LCS problem would
be the subsequence S1 = AC F AD which is of length 5. Similarly, S2 = ACG AD is another solution to LCS
problem. However, if we consider FIG with K = 1, none of the above sequences can be a solution as explained below.
For S1 we have two C(X, S1), namely C1(X, S1) = 1 3 7 9 11 and C2(X, S1) = 1 4 7 9 11. In both the cases the
gap constraint (K = 1) is violated because, for example, C1(X, S1)[3] − C1(X, S1)[2] = 4 > K + 1. In fact it turns
out that the length of the solution to FIG is only 3 for K = 1, a solution being S3 = F AD. Another solution to
FIG with K = 1 is S4 = FGC . Interestingly enough, assuming K = 2, S1 is a solution to FIG but S2 is not. This
is because in both C1(X, S2) = 1 3 8 9 11 and C2(X, S2) = 1 4 8 9 11 the gap constraint is violated as follows:
C1(X, S2)[3] − C1(X, S2)[2] = 5 > K + 1 and C2(X, S2)[3] − C2(X, S2)[2] = 4 > K + 1.
Let us now consider ELAG for K1 = 1 and K2 = 3. In this case it is easy to see that S1 is a solution. However, S2
is not a solution because we have a violation of the gap constraint due to K1 in C(Y, S2) = 1 3 4 7 9 as follows:
C(Y, S2)[3] − C(Y, S2)[2] = 1 ≯ K1.
Considering RIFIG, with K = 1, it is easy to see that S3 is a solution. S4 however is not a solution because it does
not preserve the rigidness as shown below. We have C(X, S4) = 7 8 10 and C(Y, S4) = 2 4 6. As we can see
C(X, S4)[2] − C(X, S4)[1] = 1 6= C(Y, S4)[2] − C(X, S4)[1] = 2, which violates the required rigidness.

In this paper we use the following notions. We say that a pair (i, j), 1 ≤ i, j ≤ n defines a match, if X [i] = Y [j].
The set of all matches,M, is defined as follows:

M = {(i, j)|X [i] = Y [j], 1 ≤ i, j ≤ n}.

We define |M| = R.

3. Literature review

The longest common subsequence problem for k strings (k > 2) was first shown to be NP-hard [25] and later
proved to be hard to be approximated [19]. The restricted but probably the more studied problem that deals with two
strings has been studied extensively [28,35,29,27,26,18,17,16]. The classic dynamic programming solution to LCS
problem, invented by Wagner and Fischer [35], has O(n2) worst case running time. Masek and Paterson [26] improved
this algorithm using the “Four-Russians” technique [4] to reduce the worst case running time to O(n2/ log n).2 Since
then not much improvement in terms of n can be found in the literature. However, several algorithms exist with
complexities depending on other parameters. For example Myers in [27] and Nakatsu et al. in [29] presented an
O(nD) algorithm where the parameter D is the simple Levenshtein distance between the two given strings [22].
Another interesting and perhaps more relevant parameter for this problem is R. Hunt and Szymanski [18] presented
an algorithm running in O((R + n) log n). They have also cited applications where R ∼ n and thereby claimed that
for these applications the algorithm would run in O(n log n) time. For a comprehensive comparison of the well-known
algorithms for LCS problem and study of their behaviour in various application environments the readers are referred
to [9].

4. LCS algorithms

We start with a brief review of the traditional dynamic programming technique employed to solve LCS [35]. Here
the idea is to determine the longest common subsequences for all possible prefix combinations of the input string. The
recurrence relation for extending the length of LCS for each prefix pair (X [1..i], Y [1.. j]), i.e. r(X [1..i], Y [1.. j]), is
as follows [35]:

T [i, j] =


0 if i = 0 or j = 0,

T [i − 1, j − 1] + 1 if X [i] = Y [j],

max(T [i − 1, j], T [i, j − 1]) if X [i] 6= Y [j].

(1)

2 Employing different techniques, the same worst case bound was achieved in [12]. In particular, for most texts, the achieved time complexity
in [12] is O(hn2/ log n), where h ≤ 1 is the entropy of the text.

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 259

Here we have used the tabular notion T [i, j] (also denoted by T [i][j]) to denote r(X [1..i], Y [1.. j]). After the table
has been filled, r(X, Y) can be found in T [n, n] and lcs(X, Y) can be found by backtracking from T [n, n] (for detail
please refer to [35] or any textbook on algorithms, e.g. [11]).

5. An algorithm for FIG

In this section we first present a naive algorithm for FIG. In subsequent sections, we show how to improve this
algorithm with some non-trivial modifications. Note that, in FIG, due to the gap constraint, a continuing common
sequence may have to stop at an arbitrary T [i, j] because the next match is not within the gap constraint.

Example 4. Consider X and Y as defined in Example 3. Now consider the match X [7] = Y [2] = F . Considering LCS
problem, this match would give us a subsequence, S = AF , of length 2 (note that we already have X [1] = Y [1] = A)
common to both X [1..7] and Y [1..2]. So Eq. (1) would give us T [2, 7] = 2. But now consider FIG with K = 4. In this
case we cannot continue the subsequence between X [1..7] and Y [1..2] after the first match, i.e. X [1] = Y [1] = A,
because C(X [1..7], S)[2] − C(X [1..7], S)[1] = 6 > K + 1, which would violate the gap constraint. So, with K = 4,
we would have a start of a new common subsequence at T [2, 7] as opposed to getting a continuing subsequence
reaching length 2.

In order to cope with this situation what we do is as follows. For each tabular entry T [i, j], (i, j) ∈ M we
calculate and store two values namely Tlocal[i, j], Tglobal[i, j]. For all other (i, j), Tlocal[i, j] is irrelevant and, hence,
is undefined. The recurrence relations are defined below:

Tlocal[i, j] =


Undefined if (i, j) /∈M,

max i−1−K≤`i <i
j−1−K≤` j < j

(`i ,` j)∈M

(Tlocal[`i , ` j]) + 1 if (i, j) ∈M. (2)

Remark 1. The max operation in Eq. (2) returns 0, when there is no (`i , ` j) ∈M, i − 1 − K ≤ `i < i, j − 1 − K ≤

` j < j.

Tglobal[i, j] =


0 if i = 0 or j = 0,

max(Tglobal[i − 1, j], Tglobal[i, j − 1]) if (i, j) /∈M,

max(Tglobal[i − 1, j], Tglobal[i, j − 1], Tlocal[i, j]) if (i, j) ∈M.

(3)

It is easy to see that Tglobal[i, j] is used to store the information of the LCS so far, i.e. the ‘global’ LCS, on other
hand Tlocal[i, j] tracks any ‘local’ LCS in growth. As soon as a local LCS becomes the global one the value of the
corresponding Tglobal changes. What will be the running time of this algorithm? Since, for each (i, j) ∈ M, we have
to check a (K + 1)2 area to find the maximum of Tlocal in that area, the total running time is O(n2

+R(K + 1)2). The
space requirement is θ(n2). Also note that by keeping appropriate pointer information or by examining the calculation
of the two recurrences we can easily construct lcs(X, Y) as can be done in the case of the traditional solution of LCS
problem.

Theorem 1. Problem FIG can be solved in O(n2
+R(K + 1)2) time using θ(n2) space.

Remark 2. Unfortunately, this strategy, if used for the LCS problem, would lead to an inefficient algorithm with
O(n2

+
∑

(i, j)∈M(i − 1)(j − 1)) worst case running time.

As in the case of the traditional solution of LCS problem the complete tabular information is required for our
algorithm, basically, to provide the solution for the subproblems if required. If that is not required, we can get rid
of Tglobal altogether by keeping a variable to keep track of the current global LCS. As soon as a local LCS becomes
a global one we just change this variable. In this case, instead of considering each (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n,
we only need to consider each (i, j) ∈ M. It is easy to see that this would give us a running time of O(R(K + 1)2)

provided we have a pre-processing step to construct the setM in sorted order according to their position they would be
considered in the algorithm. This pre-processing step is as follows. We construct for each symbol a ∈ Σ two separate
lists, L X [a] and LY [a]. For each a ∈ Σ , L X [a] (LY [a]) stores, in sorted order, the positions of a in X (Y), if any. We

260 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

now use an elegant data structure invented by van Emde Boas [34] that allows us to maintain a sorted list of integers
in the range [1..n] in O(log log n) time per insertion and deletion. In addition to that it can return next (i) (successor
element of i in the list) and prev(i) (predecessor element of i in the list) in constant time. In the rest of this paper,
we refer to this data structure as vEB data structure. We construct a vEB data structure EP where we insert each pair
(i, j), i ∈ L X [a], j ∈ LY [a], a ∈ Σ . In this case the order of the elements in EP is maintained according to the value
(i ∗(n −1)+ j). Note that these values are within the range [1..n2

] and hence the cost is O(log log n2) = O(log log n)

per insertion and deletion. The pre-processing steps are formally stated in Algorithm 1. It is easy to verify that, using
EP , we can get all the pairs in the correct order to process them in row-by-row manner. We now analyze the running
time of this pre-processing step. The 2 ∗ |Σ | lists can be constructed in O(n) by simply scanning X and Y in turn.
Since there are in totalR elements inM, the construction of EP requires O(R log log n) time. The space requirement
is O(R). We note, however, that for the complete algorithm, we still need the θ(n2) space to guaranty a linear time
search for the highest Tlocal in the (K + 1)2 area.

Theorem 2. Given a pre-processing time of O(R log log n), Problem FIG can be solved in O(R(K + 1)2) time.

Algorithm 1 Pre-processing Step to getM in the prescribed order

1: for a ∈ Σ do
2: Insert the positions of a in X in L X [a] in sorted order
3: Insert the positions of a in Y in LY [a] in sorted order
4: end for
5: EP = ε {initializing a vEB data structure}
6: for a ∈ Σ do
7: for i ∈ L X [a] do
8: for j ∈ LY [a] do
9: insert (i, j) in EP according to (i ∗ (n − 1) + j).

10: end for
11: end for
12: end for
13: return E

6. An improved algorithm for FIG

In this section we try to improve the running time of the algorithm presented in Section 5. Ideally, we would like
to reduce the quadratic term (K + 1)2 to linear. Note that we can easily improve the running time of the algorithm to
the LCS problem reported in Remark 2 using the following interesting facts.

Fact 6. Suppose that (i, j) ∈ M. Then for all (i ′, j), i ′ > i ((i, j ′), j ′ > j), we must have T [i ′, j] ≥ T [i, j]
(T [i, j ′] ≥ T [i, j]), where T is the table filled up by the traditional dynamic programming algorithm using Eq. (1).

Fact 7. The calculation of a T [i, j], (i, j) ∈ M, 1 ≤ i, j ≤ n is independent of any T [`, q], (`, q) ∈ M, ` = i, 1 ≤

q ≤ n.

The idea is to avoid checking the (i − 1)(j − 1) entries and check only (j − 1) (or (i − 1)) entries instead. We
maintain an array H of length n where, for T [i, j] we have, H [`] = max1<k<i,(i,`)∈M(T [k, `]), 1 ≤ ` ≤ n. The
‘max’ operation, here, returns 0 if there exists no (i, `) ∈ M within the range. Given the updated array H , we can
easily perform the task by checking only the (j − 1) entries of H . And Fact 6 makes it easy to maintain the array
H on the fly as we proceed as follows. As usual, we proceed in a row-by-row manner. We use another array S, of
length n, as a temporary storage. When we find an (i, j) ∈ M, after calculating T [i, j] we store S[j] = T [i, j]. We
continue to store in this way as long as we are in the same row. As soon as we find an (i ′, j) ∈M, i ′ > i , i.e. we start
processing a new row, we update H with new values from S.

往右下遞增

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 261

The correctness of the above procedure3 follows from Facts 6 and 7. But this idea does not work for FIG because
Fact 6 does not hold when we consider FIG. This is because due to the gap constraint a new local LCS may start which
would surely have lesser T -value than another previous local LCS. We, however, use the similar idea to improve our
previous running time. But we need to do something more than just maintaining an array. In the rest of this section,
we present a novel technique to present the improved algorithm. The basic idea depends on the following fact which
is, basically, an extension of Fact 7.

Fact 8. The calculation of a Tlocal[i, j], (i, j) ∈M, 1 ≤ i, j ≤ n is independent of any Tlocal[`, q], (`, q) ∈M, (` =

i or ` < i − K − 1), 1 ≤ q ≤ n.

We maintain n vEB data structures Ei , 1 ≤ i ≤ n, one for each column. We also need to maintain one insert list,
I and one delete list, D. Recall that we proceed in a row-by-row manner. Suppose that we are starting to process
row i + K + 2 i.e. we are considering the ‘first’ match in this row, namely, (i + K + 2, j) ∈ M. So we need to
calculate Tlocal[i + K + 2, j] and Tglobal[i + K + 2, j]. At this instant the delete list D contains all (i, `) such that
1 ≤ ` ≤ n, (i, `) ∈ M and the insert list I contains all (i + K + 1, `) such that 1 ≤ ` ≤ n, (i + K + 1, `) ∈ M.
In other words, when we consider the first match in row (i + K + 2), D contains all the matches in row i and I
contains all the matches in row i + K + 1. For each (p, `) ∈ D we delete (p, `) from E` and for each (p, `) ∈ I
we insert (p, `) in E`. Note that the sorted order in E` is maintained according to the value Tlocal[p, `]. We then
calculate Tlocal[i + K + 2, j] for all 1 ≤ j ≤ n such that (i + K + 2, j) ∈M. It should be clear that we can calculate
Tlocal[i + K + 2, j] as follows in O(K) time:

Tlocal[i + K + 1, j] = max
j−K−1≤`≤ j−1

(value(max(E`))) + 1. (4)

Note that value(max(E`)) = Tlocal[m, n] when max(E`) = (m, n). The running time of O(K) follows from the fact
that we can find the maximum of each E` in constant time. And the correctness follows from Fact 8.

What should be the running time of this algorithm? It is clear that we spend O(n2
+RK) time in computing the

LCS for FIG. But this improved time comes at the cost of maintaining n vEB data structure Ei , 1 ≤ i ≤ n. It is easy
to verify that the total time to maintain Ei , 1 ≤ i ≤ n is O(R log log n) because we never insert nor delete more than
R elements in total from/to Ei , 1 ≤ i ≤ n. Note that the values to be inserted is always within the range [1..n] since
no subsequence can be of length greater than n.

Theorem 3. Problem FIG can be solved in O(n2
+RK +R log log n) time using θ(n2) space.

If the solutions for the subproblems are not required we need only compute Tlocal[i, j], (i, j) ∈ M. We, however,
would need to use a variable to finally report r(X, Y) and use appropriate pointers to construct lcs(X, Y). Therefore,
we get the following theorem (The corresponding algorithm is formally stated in the form of Algorithm 2.)

Theorem 4. Problem FIG can be solved in O(RK +R log log n) time using θ(R) space.

7. A K -independent algorithm for FIG

In this section we try to devise an algorithm for FIG that is independent of K . As we shall see later that this would
give us an efficient algorithm for Problem LCS as well. We make use of a classical problem in computer science,
namely, Range Maxima Query Problem.

Problem 9 (“RMAX” (Range Maxima Query Problem)). Suppose that we are given a sequence A = a1a2...an . A
Range Maxima (minima) Query specifies an interval I = (is, ie), 1 ≤ is ≤ ie ≤ n and the goal is to find the index `

with maximum (minimum) value a` for ` ∈ I .

Theorem 5 ([14,7]). The RMAX problem can be solved in O(n) pre-processing time and O(1) time per query.

3 Although we do not still achieve a good running time for Problem LCS in the worst case.

262 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

Algorithm 2

1: Construct the setM using Algorithm 1. LetMi = (i, j) ∈M, 1 ≤ j ≤ n.
2: for i = j to n do
3: E j = ε {Initialize the n vEB structure one for each column}

4: end for
5: globalLCS.Instance = ε

6: globalLCS.Value = ε

7: for i = 1 to n do
8: Insert (i − 1, j) ∈Mi−1 in E j , 1 ≤ j ≤ n {If i − 1 ≤ 0 then insert nothing}

9: Delete (i − K − 2, j) ∈Mi−K−2 in E j , 1 ≤ j ≤ n {If i − K − 2 ≤ 0 then delete nothing}

10: for each (i, j) ∈Mi do
11: maxresult = max(j−K−1)≤`≤(j−1)(max(E`))

12: T .V alue[i, j] = maxresult.V alue + 1
13: T .Prev[i, j] = maxresult.I nstance
14: if globalLCS.Value < T .Value[i, j] then
15: globalLCS.Value = T .V alue[i, j]
16: globalLCS.Instance = (i, j)
17: end if
18: end for
19: end for
20: return globalLCS

With Theorem 5 in our hand we can modify Algorithm 2 as follows. We want to implement Step 11 in constant time
so that we can avoid the dependency on K completely. Before we start processing a particular row, just after Step 9,
we create an array of length n, A = max(E j), 1 ≤ j ≤ n. Now we simply replace the Step 11 with an appropriate
Range Maxima Query. It is easy to see that, due to Fact 8, this will work correctly. Since we have a constant time
implementation for Step 11, we now can escape the dependency on K . However there is a pre-processing time of O(n)

in case any E j gets updated. But since this pre-processing is needed once per row (due to Fact 8), the computational
effort added is O(n2) in total.

Theorem 6. Problem FIG can be solved in O(n2
+R log log n) time using θ(max(R, n)) space.

Finally, it is easy to see that this algorithm can be easily used to solve LCS problem, virtually, without any
modification. We, however, can do better using Fact 6 and the subsequent discussion in Section 6. We can get rid
of the vEB data structures altogether and use a simple array (array H in Section 6) instead. So we get the following
theorem.

Theorem 7. Problem LCS can be solved in O(n2
+R log log n) time using θ(max(R, n)) space.

We can shave off the log log n term from the running time of Theorem 7 at the cost of using θ(n2) space. This can be
achieved if we do not use Algorithm 1 as a pre-processing step. In this case, however, we need to process each entry
of T [i, j], 1 ≤ i ≤ n, 1 ≤ j ≤ n, instead of processing only each (i, j) ∈M. Notably, however, we perform ‘useful’
computation only for each (i, j) ∈ M. As a result the running time would be O(n2

+R). Since R can be n2 in the
worst case, this running time matches that of the classic solution to LCS problem.

Theorem 8. Problem LCS can be solved in O(n2) time using θ(n2) space.

8. Algorithm for elastic gapped LCS

In this section we modify the algorithms in Sections 5–7 to solve ELAG. Recall that, in ELAG, we have two
parameters, namely K1 and K2 and the consecutive letters in the common subsequence must exist within distance
K2 in both X and Y like FIG. But unlike FIG, here, the other parameter K1, applies the added constraint that the
consecutive letters in the common subsequence must not exist within distance K1 in both X and Y . So FIG can be

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 263

thought of as a special case of ELAG when K1 = 0 and K2 = K . The obvious modification to Eq. (2) in Section 5 to
solve ELAG is as follows:

Tlocal[i, j] =


Undefined if (i, j) /∈M,

max
i−1−K2≤`i <i−K1
j−1−K2≤` j < j−K1

(`i ,` j)∈M

(Tlocal[`i , ` j]) + 1 if (i, j) ∈M. (5)

Theorem 9. Problem ELAG can be solved in O(n2
+R(K + 1)2) time using θ(n2) space where K = K2 − K1.

For Algorithm 2, described in Section 6, the only modification that is needed to solve ELAG, is in Step 8, 9 and 11.
The modified statements are as follows:
Modified Step 8: Insert (i − 1 − K1, j) ∈Mi−1 in E j , 1 ≤ j ≤ n
Modified Step 9: Delete (i − K2 − 2, j) ∈Mi−K2−2 in E j , 1 ≤ j ≤ n
Modified Step 11: maxresult = max(j−K2−1)≤`≤(j−K1)(max(E`)).

Theorem 10. Problem ELAG can be solved in O(RK + R log log n) time, using θ(max(R, n)) space, where
K = K2 − K1.

The following result holds if we need the solutions to the subproblems.

Theorem 11. Problem ELAG can be solved in O(n2
+ RK + R log log n) time, using θ(n2) space, where K =

K2 − K1.

Finally, it should be clear that in the algorithm in Section 7, virtually, there is no modification at all except for that we
have to adjust the Range Maxima Query to incorporate the elastic gap constraint.

Theorem 12. Problem ELAG can be solved in O(n2
+R log log n) time, using θ(max(R, n)) space.

9. Algorithms for rigid gapped LCS

This section is dedicated to solve Problem RIFIG and Problem RELAG. RIFIG, by nature, is a bit more restricted
because, in addition to the K -gap constraint, the consecutive characters in the common subsequence must have the
same distance between them (rigidness) both in X and Y . Interestingly enough, this restriction makes this problem
rather easier to solve. And in fact we will see that we can modify the algorithm in Section 5 easily to solve RIFIG
and this slight modification would even improve the running time of the algorithm. The key idea lies in the fact that to
calculate a Tlocal[i, j] we just need to check the K + 1 diagonal entries before it. This is true because of the required
rigidness. The modified version of Eq. (2) to handle RIFIG is given below.

Tlocal[i, j] =


Undefined if (i, j) /∈M,

max
(`i ,` j)∈{(i−1, j−1),(i−2, j−2)

...(i−1−K , j−1−K)}
(`i ,` j)∈M

(Tlocal[`i , ` j]) + 1 if (i, j) ∈M. (6)

Also we can easily modify Eq. (6) to solve RELAG. So we get the following theorems.

Theorem 13. Problem RIFIG can be solved in O(n2
+RK) time using θ(n2) space.

Theorem 14. Problem RELAG can be solved in O(n2
+R(K2 − K1)) time using θ(n2) space.

In the rest of this section we will try to achieve better solutions for RIFIG. We first introduce a variant of RIFIG where
the gap constraint is withdrawn. In other words we can say that in this variant we have K = n.

Problem 10 (“RLCS” (Rigid LCS Problem)4). Given two strings X and Y , each of length n, we want to find out a
Rigid Common Subsequence of the maximum length. A Rigid Common Subsequence of X and Y is a subsequence
S[1..r] = S[1] S[2] ...S[r] of both X and Y such that C(X, S)[i] − C(X, S)[i − 1] = C(Y, S)[i] − C(Y, S)[i − 1] for
all 2 ≤ i ≤ r .

264 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

It is easy to see that using Eq. (6) we can easily solve Problem RLCS by assuming K = n. But this will not give us a
very good running time at all. On the other hand, it turns out that we can achieve a better running time by appropriate
modification to Eq. (1). To solve RLCS, however, for each tabular entry T [i, j] we calculate and store two values
namely Tlocal[i, j], Tglobal[i, j]. The recurrence relations are defined below:

Tlocal[i, j] =


0 if i = 0 or j = 0,

Tlocal[i − 1, j − 1] + 1 if X [i] = Y [j],

Tlocal[i − 1, j − 1] if X [i] 6= Y [j].

(7)

Tglobal[i, j] =


0 if i = 0 or j = 0,

max(Tglobal[i − 1, j], Tglobal[i, j − 1]) if (i, j) /∈M,

max(Tglobal[i − 1, j], Tglobal[i, j − 1], Tlocal[i, j] if (i, j) ∈M.

(8)

It is easy to see that Eq. (7) preserves the rigidness of the subsequence. Note that, Eq. (8) is required to keep track
of the global solution.

Theorem 15. Problem RLCS can be solved in O(n2) time using θ(n2) space.

Inspired by the idea of the above solution to RLCS in the rest of this section we try to devise an algorithm to solve
RIFIG in O(n2) time. The idea is to some how propagate the constraint information up through the diagonal entries
as soon as we find a match and whenever a match is found check this information. What we plan to do is as follows.
For the calculation of Tlocal we apply K -modulo arithmetic. The actual length of LCS would be dTlocal[n, n]/K e.

Tlocal[i, j] =



0 if i = 0 or j = 0,

0 if X [i] 6= Y [j] and

Tlocal[i − 1, j − 1] mod K = 1,

dTlocal[i − 1, j − 1]/K e ∗ K + K if X [i] = Y [j],

Tlocal[i − 1, j − 1] − 1 if X [i] 6= Y [j] and

Tlocal[i − 1, j − 1] > 0,

0 if X [i] 6= Y [j] and

Tlocal[i − 1, j − 1] = 0.

(9)

Tglobal[i, j] =


Tglobal[i, j] if i = 1 or j = 1,

max(Tglobal[i − 1, j], Tglobal[i, j − 1]) if (i, j) /∈M,

max(Tglobal[i − 1, j], Tglobal[i, j − 1], Tlocal[i, j] if (i, j) ∈M.

(10)

Theorem 16. Problem RIFIG can be solved in O(n2) time using θ(n2) space.

For both Problem RIFIG and RLCS, the space complexity can be improved to linear using a different approach as
follows. It is easy to realize that, due to the rigidity, the solution in each case, is always the meet of two suffixes. So, we
can superimpose one string to the other in all its 2n − 1 ways and then check all matches in linear time. This results in
a different algorithm for both the problems, exhibiting linear space requirement with the same running time. Further,
it seems to be possible to reduce the running time to linear, combining careful algorithmic design with techniques
similar to generalized suffix tree [15].

10. Applications

In this section we discuss extensions of some interesting problems in stringology and show how they can be
solved using the algorithms described in this paper. In particular we present some problems motivated by biological
applications and discuss efficient solutions for them. We first show how we can tackle the degenerate strings in
biological applications, for e.g., using a technique invented by Lee et al. [21]. This gives us the opportunity to handle

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 265

degenerate strings in all the variants of the LCS problem we discuss in this paper. Moreover we show how we can
solve the Longest Common Substring problem for degenerate strings, a very common problem in molecular biology.
We start with the definition of degenerate strings.

Definition 6 (Degenerate String). A string X is said to be degenerate, if it is built over the potential 2|Σ |
− 1 non-

empty sets of letters belonging to Σ .

Example 5. Suppose that we are considering DNA alphabet i.e. Σ = ΣDNA = {A, C, T, G}. Then we have 15 non-
empty sets of letters belonging to ΣDNA. In what follows, the set containing A and T will be denoted by [AT] and the
singleton [C] will be simply denoted by C for ease of reading. The set containing all the letters, namely [ACT G], is
known as the do not care character in the literature.

Definition 7 (Degenerate Equality/Matching). For degenerate strings the notion of matching/equality between two
letters is extended in the following way. Given two degenerate strings X and Y each of length n, we say that X [i]
matches Y [j], 1 ≤ i, j ≤ n, denoted by X [i] =d Y [j] if X [i] ∩ Y [j] 6= ∅.

Example 6. Suppose that we have degenerate strings X = AC[CT G]T G[AC]C and Y = T C[AT][AT]T T C . Here
we have X [3] =d Y [3] because X [3] = [CT G] ∩ Y [3] = [AT] = T 6= ∅. Similarly we have, X [3] =d Y [1], and
also X [3] =d Y [2] etc.

With the definitions of degenerate strings and the extended notion of degenerate equality it is easy to extend the
definitions of our problems for degenerate strings. To handle the degenerate strings we first present a clever technique
presented in [21] where the authors applied a bit masking technique exploiting the property of bitwise ‘and’ operations
as follows. Assuming a predefined order among the letters of the alphabet, each letter of the alphabet is encoded using
|Σ | bits where a ‘1’ in a bit position indicates the presence of that letter. For example if we consider DNA alphabet
ΣDNA = {A, C, T, G} in the given order, then the codes for A, C, G, and T would be, respectively, 1000, 0100, 0010,

and 0001. Sets of characters are also encoded in the same way. For example, [AC] and [CTG] would be encoded,
respectively, as 1100 and 0111. Interestingly enough, this simple but clever encoding works perfectly with the notion
of degenerate equality/matching. The idea is to perform bitwise ‘and’ operations among the degenerate letters. If the
‘and’ operation returns 0, it means no match; otherwise we have a match.

Example 7. Suppose that we have degenerate strings of Example 6. Then the encoding of the two strings would be as
follows.

X ′
= 1000 0100 0111 0010 0001 1100 0100

Y ′
= 0010 0100 1010 1010 0010 0010 0100.

Here we have X [3] =d Y [3] because X [3](= 0111) and Y [3](= 1010) = 0010 6= 0. However X [6] 6=d Y [1] because
X [6](= 1100) and Y [1](= 0010) = 0000 = 0.

Hence it is easy to see that we can pre-process the two input strings X = X [1]X [2]...X [n] and Y = Y [1]Y [2]...Y [n]

using the technique of [21] to get X ′ and Y ′ and then employ a modified version of our algorithms on X ′ and Y ′. The
only modification that need to be done is to use bitwise ‘and’ operation between X ′

[(i −1)∗|Σ |+1..(i −1)∗|Σ |+|Σ |]

and Y ′
[(j − 1) ∗ |Σ | + 1..(j − 1) ∗ |Σ | + |Σ |] and to check whether the result is 0 or not instead of ‘normal’

equality checking between X [i] and Y [j]. What would be the complexity of the modified algorithm? It seems that the
traditional LCSP dynamic programming algorithm would require O(|Σ |n2) time. For DNA and protein alphabet this
running time is not very high at all because |ΣDNA| = 4 and |ΣProtein| = 20. However, we can do better. As we can
do the ‘and’ operations letter by letter using word-by-word ‘and’ operation. So, as long as the word size of the target
machine, w, is greater than or equal to |Σ | (which is almost always the case for biological applications) we would
still have O(n2) running time to handle the degenerate strings with the traditional Dynamic Programming algorithm
to solve LCSP. In other words, as long as w ≥ |Σ |, we can solve LCSP for degenerate strings with the same running
time that is needed to solve LCSP for ‘normal’ strings. It is also easy to see that this fact is also applicable for all the
variants of LCSP we have discussed in this paper.

We note however that the algorithms exploiting the pre-processing steps of Algorithm 1, are excluded from the
above discussion. This is because, when we use Algorithm 1 as a pre-processing step to construct the set M, we
do not need to use any equality checking later. As a result, in these cases, in order to handle degenerate strings, we

266 C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267

just need to modify Algorithm 1. It is easy to see that the only modification that need be done is in Step 2, Step 3
of Algorithm 1. The idea is to ensure that for set of character at X [i] (Y [i]) we must add i in L X [a] (LY [a]) for all
a ∈ X [i] (a ∈ Y [i]). This can be done O(|Σ |n) time as opposed to O(n) in Algorithm 1 because a set of character
can be of at most of |Σ | cardinality. Again, we emphasize that, due to very small size of |Σ | in biological applications,
this would not affect the asymptotic behavior of the algorithms.

Finally we conclude this section considering another interesting problem, again motivated by computational
biology, namely, Longest Common Substring problem for degenerate string.

Definition 8 (Substring). Given a string X = X [1]X [2]...X [n], a substring of X , denoted by X [i.. j] is the string
X [i]X [i + 1]...X [j], 1 ≤ i ≤ j ≤ n.

Problem 11 (Longest Common Substring). Given two strings X and Y each of length n we want to find out a
substring of maximum length common to both X and Y .

The longest common substring problem can easily be solved in linear time, for e.g. with the help of generalized suffix
tree. However, to the best of our knowledge there has been no algorithms in the literature for solving the same problem
for degenerate strings. Fortunately we can solve this problem using our algorithms for FIG. This is because, as can be
easily seen, if K = 0, then FIG reduces to the longest common substring problem. We note however that this would
not be a linear algorithm.

11. Conclusion

In this paper we have introduced several new variants of the LCS problem and presented efficient algorithms to
solve them. In particular, we introduced the idea of gap constraint in LCS and defined a new set of problems. For
the LCS problem with fixed gap (Problem FIG), we first presented a naive algorithm runs in O(n2

+ R(K + 1)2)

time and then improved the running time to O(n2
+RK +R log log n) using some novel techniques. Furthermore,

we presented an algorithm that is independent of K and runs in O(n2
+R log log n) time. These techniques lead to

a new O(n2
+ R log log n) algorithm to solve the original LCS problem. Then we modify our algorithms to handle

elastic (Problem ELAG) and rigid gaps (Problem RIFIG and RELAG). We also apply the notion of rigidness to the
original LCS problem and modify the traditional dynamic programming solution to handle the rigidness (Problem
RLCS) presenting an O(n2) algorithm to solve the problem. Inspired by the solution of the Problem RLCS, we also
improve the solution to Problem RIFIG to O(n2).

We also show that our algorithms can be used to solve some other interesting problems in bioinformatics. We have
shown how we can tackle efficiently the degenerate strings in biological applications. This gives us the opportunity to
handle degenerate strings in all the variants of the LCS problem, discussed in this paper, virtually without any increase
in the asymptotic running time. Moreover we can solve the Longest Common Substring problem for degenerate strings,
a very common problem in molecular biology simply by setting K = 0 in the Problem FIG. To the best of our
knowledge there does not exist any algorithm to solve this problem for degenerate strings.

Acknowledgements

The first author was supported by EPSRC and Royal Society grants. The second author was supported by the
Commonwealth Scholarship Commission in the UK under the Commonwealth Scholarship and Fellowship Plan
(CSFP).

References

[1] ED’NIMBUS. http://igm.univ-mlv.fr/peterlon/officiel/ednimbus/.
[2] Identification of a src SH3 domain binding motif by screening a random phage display library, J. Biol. Chem. 269 (1994) 24034–24039.
[3] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Meyers, David J. Lipman, Basic local alignment search tool, J. Molecular Biol.

215 (3) (1990) 403–410.
[4] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, I.A. Faradzev, On economic construction of the transitive closure of a directed graph, Soviet Math.

Dokl. 11 (1975) 1209–1210. (English translation).
[5] Abdullah N. Arslan, Ömer Egecioglu, Algorithms for the constrained longest common subsequence problems, in: Milan Simánek, Jan Holub

(Eds.), The Prague Stringology Conference, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University, 2004, pp. 24–32.

http://igm.univ-mlv.fr/peterlon/officiel/ednimbus/

C.S. Iliopoulos, M. Sohel Rahman / Theoretical Computer Science 395 (2008) 255–267 267

[6] Abdullah N. Arslan, Ömer Egecioglu, Algorithms for the constrained longest common subsequence problems, Int. J. Found. Comput. Sci. 16
(6) (2005) 1099–1109.

[7] Michael A. Bender, Martin Farach-Colton, The lca problem revisited, in: Gaston H. Gonnet, Daniel Panario, Alfredo Viola (Eds.), Latin
American Theoretical INformatics, LATIN, in: Lecture Notes in Computer Science, vol. 1776, Springer, 2000, pp. 88–94.

[8] Sergey Bereg, Binhai Zhu, RNA multiple structural alignment with longest common subsequences, in: Lusheng Wang (Ed.), Computing and
Combinatorics (COCOON), in: Lecture Notes in Computer Science, vol. 3595, Springer, 2005, pp. 32–41.

[9] Lasse Bergroth, Harri Hakonen, Timo Raita, A survey of longest common subsequence algorithms, in: String Processing and Information
Retrieval (SPIRE), IEEE Computer Society, 2000, pp. 39–48.

[10] Guillaume Blin, Guillaume Fertin, Romeo Rizzi, Stéphane Vialette, What makes the arc-preserving subsequence problem hard? in: Vaidy
S. Sunderam, G. Dick van Albada, Peter M.A. Sloot, Jack Dongarra (Eds.), International Conference on Computational Science, in: Lecture
Notes in Computer Science, vol. 3515, Springer, 2005, pp. 860–868.

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to Algorithms, The MIT Press and McGraw-Hill Book Company,
1989.

[12] Maxime Crochemore, Gad M. Landau, Michal Ziv-Ukelson, A sub-quadratic sequence alignment algorithm for unrestricted cost matrices, in:
Symposium of Discrete Algorithms (SODA), 2002, pp. 679–688.

[13] P.A. Evans, Algorithms and complexity for annotated sequence analysis, Ph.D. Thesis, University of Victoria, 1999.
[14] H. Gabow, J. Bentley, R. Tarjan, Scaling and related techniques for geometry problems, in: Symposium on the Theory of Computing, STOC,

ACM Press, New York, NY, USA, 1984, pp. 135–143. Chairman-Richard DeMillo.
[15] Dan Gusfield, Algorithms on Strings, Trees, and Sequences — Computer Science and Computational Biology, Cambridge University Press,

1997.
[16] F. Hadlock, Minimum detour methods for string or sequence comparison, Congr. Numer. 61 (1988) 263–274.
[17] Daniel S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.
[18] James W. Hunt, Thomas G. Szymanski, A fast algorithm for computing longest subsequences, Commun. ACM 20 (5) (1977) 350–353.
[19] Tao Jiang, Ming Li, On the approximation of shortest common supersequences and longest common subsequences, SIAM J. Comput. 24 (5)

(1995) 1122–1139.
[20] Tao Jiang, Guohui Lin, Bin Ma, Kaizhong Zhang, The longest common subsequence problem for arc-annotated sequences,

in: Raffaele Giancarlo, David Sankoff (Eds.), Combinatorial Pattern Matching (CPM), in: Lecture Notes in Computer Science, vol. 1848,
Springer, 2000, pp. 154–165.

[21] I. Lee, A. Apostolico, C.S. Iliopoulos, K. Park, Finding approximate occurrence of a pattern that contains gaps, in: M. Miller, K. Park (Eds.),
Australasian Workshop on Combinatorial Algorithms, AWOCA, 2003, pp. 89–100.

[22] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals, Probl. Inf. Transm. 1 (1965) 8–17.
[23] Guo-Hui Lin, Zhi-Zhong Chen, Tao Jiang, Jianjun Wen, The longest common subsequence problem for sequences with nested arc annotations,

J. Comput. Syst. Sci. 65 (3) (2002) 465–480.
[24] Bin Ma, Kaizhong Zhang, On the longest common rigid subsequence problem, in: Alberto Apostolico, Maxime Crochemore, Kunsoo Park

(Eds.), CPM, in: Lecture Notes in Computer Science, vol. 3537, Springer, 2005, pp. 11–20.
[25] David Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (2) (1978) 322–336.
[26] William J. Masek, Mike Paterson, A faster algorithm computing string edit distances, J. Comput. Syst. Sci. 20 (1) (1980) 18–31.
[27] Eugene W. Myers, An O(ND) difference algorithm and its variations, Algorithmica 1 (2) (1986) 251–266.
[28] Veli Mkinen, Gonzalo Navarro, Esko Ukkonen, Transposition invariant string matching, J. Algorithms 56 (2005) 124–153.
[29] Narao Nakatsu, Yahiko Kambayashi, Shuzo Yajima, A longest common subsequence algorithm suitable for similar text strings, Acta Inf. 18

(1982) 171–179.
[30] W.R. Pearson, D.J. Lipman, Improved tools for biological sequence comparison, Proc. Natl. Acad. Sci. USA 85 (1988) 2444–2448.
[31] Pierre Peterlongo, Private communication.
[32] Pierre Peterlongo, Nadia Pisanti, Frédéric Boyer, Marie-France Sagot, Lossless filter for finding long multiple approximate repetitions using

a new data structure, the bi-factor array, in: Mariano P. Consens, Gonzalo Navarro (Eds.), SPIRE, in: Lecture Notes in Computer Science, vol.
3772, Springer, 2005, pp. 179–190.

[33] Yin-Te Tsai, The constrained longest common subsequence problem, Inform. Process. Lett. 88 (4) (2003) 173–176.
[34] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Inform. Process. Lett. 6 (1977) 80–82.
[35] Robert A. Wagner, Michael J. Fischer, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.

	Algorithms for computing variants of the longest common subsequence problem
	Introduction
	Preliminaries
	Literature review
	LCS algorithms
	An algorithm for FIG
	An improved algorithm for FIG
	A K-independent algorithm for FIG
	Algorithm for elastic gapped LCS
	Algorithms for rigid gapped LCS
	Applications
	Conclusion
	Acknowledgements
	References

