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Abstract Service-oriented computing has enabled a
new method of service provisioning based on utility
computing models, in which users consume services
based on their Quality of Service (QoS) requirements.
In such pay-per-use models, users are charged for
services based on their usage and on the fulfilment
of QoS constraints; execution time and cost are two
common QoS requirements. Therefore, to produce
effective scheduling maps, service pricing must be
considered while optimising execution performance.
In this paper, we propose a Heterogeneous Budget
Constrained Scheduling (HBCS) algorithm that guar-
antees an execution cost within the user’s specified
budget and that minimises the execution time of the
user’s application. The results presented show that our
algorithm achieves lower makespans, with a guaran-
teed cost per application and with a lower time com-
plexity than other budget-constrained state-of-the-art
algorithms. The improvements are particularly high
for more heterogeneous systems, in which a reduc-
tion of 30 % in execution time was achieved while
maintaining the same budget level.
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1 Introduction

Utility computing is a service provisioning model that
provides computing resources and infrastructure man-
agement to customers as they need them, as well as
a payment model that charges for usage. Recently,
service-oriented grid and cloud computing, which
supply frameworks that allow users to consume util-
ity services in a secure, shared, scalable, and standard
network environment, have become the basis for pro-
viding these services.

Computational grids have been used by researchers
from various areas of science to execute complex sci-
entific applications. Recently, utility computing has
been rapidly moving towards a pay-as-you-go model,
in which computational resources or services have dif-
ferent prices with different performance and Quality
of Service (QoS) levels [3]. In this computing model,
users consume services and resources when they need
them and pay only for what they use. Cost and time
have become the two most important user concerns.
Thus, the cost/time trade-off problem for schedul-
ing workflow applications has become challenging.
Scheduling consists of defining an assignment and
mapping of the workflow tasks onto resources. In gen-
eral, the scheduling problem belongs to a class of
problems known as NP-complete [8].

mailto:jbarbosa@fe.up.pt
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Many complex applications in e-science and e-
business can be modelled as workflows [9]. A pop-
ular representation of a workflow application is the
Directed Acyclic Graph (DAG), in which nodes rep-
resent individual application tasks, and the directed
edges represent inter-task data dependencies. Many
workflow scheduling algorithms have been developed
to execute workflow applications. Some typical work-
flow scheduling algorithms were introduced in [24].
Most of these algorithms have a single objective, such
as minimising execution time (makespan). However,
additional objectives can be considered when schedul-
ing workflows onto grids, based on the user’s QoS
requirements. If we consider multiple QoS parame-
ters, such as budgets and deadlines, then the problem
becomes more challenging.

The contributions of this paper are as follows: a) a
new low time complexity algorithm that obtains higher
performance than state-of-the-art algorithms of the
same class for the two set-ups considered here, namely
i) minimising the makespan for a given budget and ii)
budget-deadline constrained scheduling; b) a realistic
simulation that considers a bounded multi-port model
in which bandwidth is shared by concurrent communi-
cations; and c) results for randomly generated graphs,
as well as for real-world applications.

The remainder of the paper is organised as fol-
lows. Section 2 describes the system model, including
the application model, the utility computing model,
and the objective function. Section 3 discusses related
work on budget-constrained workflow scheduling.
The proposed scheduling algorithm (HBCS) is pre-
sented in Section 4. Experimental details and sim-
ulation results are presented in Section 5. Finally,
Section 6 concludes the paper.

2 Problem Definition and System Model

A typical workflow application can be represented by
a Directed Acyclic Graph (DAG), which is a directed
graph with no cycles. In a DAG, an individual task
and its dependencies are represented by a node and
its edges, respectively. A dependency ensures that a
child node cannot be executed before all of its par-
ent tasks finish successfully and transfer the input
data required by the child. The task computation times
and communication times are modelled by assigning
weights to nodes and edges respectively. A DAG can

be modelled by a tuple G(N,E), where N is the set
of n nodes, each node ni ∈ N represents an appli-
cation task, and E is the set of communication edges
between tasks. Each edge e(i, j) ∈ E represents a
task-dependency constraint such that task ni should
complete its execution before task nj can start.

In a given DAG, a task with no predecessors is
called an entry task, and a task with no successors
is called an exit task. We assume that the DAG has
exactly one entry task nentry and one exit task nexit . If
a DAG has multiple entry or exit tasks, a dummy entry
or exit task with zero weight and zero communication
edges is added to the graph.

The target utility computing platform is composed
of a set of clusters; each cluster has homogeneous pro-
cessors that have a given capability and cost to execute
tasks of a given application. The collection of clusters
forms a heterogeneous system. Processors are priced,
with the most powerful processor having the highest
cost. To normalise diverse price units for the hetero-
geneous processors, as defined in [27], the price of a
processor pj is assumed to be Price(pj ) = αpj

(
1 +

αpj
)
/2, where αpj is the ratio of pj processing capac-

ity to that of the fastest processor. The price will be
in the range of ]0 . . . 1], where the fastest proces-
sors, with the highest power, have a price value equal
to 1.

For each task ni , wi,j gives the estimated time to
execute task ni on processor pj , and Cost (ni , pj ) =
wi,j .P rice(pj ) represents the cost of executing task
ni on processor pj . After assigning a specific pro-
cessor to execute the task ni , AC(ni) is defined as
Assigned Cost of task ni . The overall cost for exe-
cuting an application is defined as T otalCost =∑

ni∈N AC(ni).
The edges of the DAG represent a communica-

tion cost in terms of time, but they are considered to
have zero monetary cost because they occur inside a
given site. The schedule length of a DAG, also called
Makespan, denotes the finish time of the last task in
the scheduled DAG, and is defined by:

makespan = max{AFT (nexit )} (1)

where AFT (nexit ) denotes the Actual Finish Time of
the exit node. In cases in which there is more than
one exit node, and no redundant node is added, the
makespan is the maximum actual finish time of all of
the exit tasks.
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The objective of the scheduling problem is to deter-
mine an assignment of tasks of a given DAG to
processors such that the Makespan is minimised, sub-
ject to the budget limitation imposed by the user, as
expressed in (2):
∑

ni∈N
AC(ni) ≤ BUDGET (2)

The user specifies the budget within the range
provided by the system, as shown by (3):

BUDGET = CheapestCost

+ kBudget
(
HighestCost − CheapestCost

)

(3)

where HighestCost and CheapestCost are the costs of
the assignments produced by an algorithm that guar-
antees the minimum processing time, such as HEFT
[19], and the least expensive scheduling, respectively.
The least expensive assignment is obtained by select-
ing the least expensive processor to execute each of the
workflow tasks. The algorithm HEFT is used here as
one algorithm that produces the minimum Makespans
for a DAG in a heterogeneous system with complexity
O(v2.p) [5]. Therefore, the lower bound of the execu-
tion cost is the minimum cost that can be achieved in
the target platform, obtained by the cheapest assign-
ment; the upper bound is the cost of the schedule
that produces the minimum Makespan. Finally, the
budget range feasible on the selected platform is pre-
sented to the user; he/she selects a budget inside that
range, represented by kBudget in the range of [0 . . . 1].
This budget definition was first introduced by [15].
The least expensive assignment guarantees that it is
always feasible to obtain valid mapping within the
user budget, although without guaranteeing the min-
imisation of the makespan. If the user can afford to
pay the highest cost or is limited to the least expensive
cost, then the schedule is defined by the HEFT or by
the least expensive assignment, respectively. Between
these limits, the algorithm we propose here can be
used to produce the assignment.

In conclusion, the scheduling problem described in
this paper is a single objective function, in which only
processing time is optimised, and cost is a problem
constraint, the value of which must be guaranteed by
the scheduler. This feature is very relevant for users
within the context of the utility computing model,
and it is a distinguishing feature compared to other
algorithms that optimise cost without guaranteeing a

user-defined upper bound, as described in the next
section.

3 Related Work

Generally, the related research in this area can be
classified into two main categories: QoS optimisation
scheduling and QoS constrained scheduling. In the
first category, the algorithm must find a schedule map
that optimises all of the QoS parameters to provide a
suitable balance between them for time and cost, as
in [10, 16–18]. In the second category, the algorithm
makes a scheduling decision to optimise for some QoS
parameter while subjected to some user-specified con-
straint values. For example, considering budget and
makespan as the QoS parameters, an algorithm in
the first category attempts to find a task-to-processor
map that best balances between budget and makespan,
while an algorithm of the second category takes user-
defined values for the budget as an upper bound and
defines a mapping that optimises the makespan. The
first category of algorithms can produce schedules
with shorter makespans, but the costs of which can-
not be limited by the user when submitting the work.
Next, we present a review of the second class of
algorithms.

The Hybrid Cloud Optimised Cost scheduling algo-
rithm (HCOC), proposed in [2], and a cost-based
workflow scheduling algorithm called Deadline-MDP
(Markov Decision Process), proposed in [25], address
the problem of minimising cost while constrained by
a deadline. Although these models could have appli-
cability in a utility computing paradigm, we do not
consider such a paradigm in this paper.

An Ant Colony Optimisation (ACO) algorithm to
schedule large-scale workflows with QoS parameters
was proposed by [7]. Reliability, time, and cost are
three different QoS parameters that are considered in
the algorithm. Users are allowed to define QoS con-
straints to guarantee the quality of the schedule. In
[14, 21], the Dynamic Constraint Algorithm (DCA)
was proposed as an extension of the Multiple-Choice
Knapsack Problem (MCKP), to optimise two inde-
pendent generic criteria for workflows, e.g., execution
time and cost. In [22], a budget constraint workflow
scheduling approach was proposed that used genetic
algorithms to optimise workflow execution time while
meeting the users budget. This solution was extended
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in [23] by introducing a genetic algorithm approach
for constraint-based, two-criteria scheduling (deadline
and budget). In [4], the Balanced Time Scheduling
(BTS) algorithm was proposed, which estimates the
minimum resource capacity needed to execute a work-
flow by a given deadline. The algorithm has some
limitations, such as homogeneity in resource type and
a fixed number of computing hosts.

All of the previous algorithms apply guided random
searches or local search techniques, which require sig-
nificantly higher planning costs and thus are naturally
time-consuming. Next, we consider algorithms that
were proposed for contexts similar to that considered
here, which are heuristic-based and have lower time
complexity than the algorithms referred to above and
which are used in the Results section for comparison
purposes.

In [15] LOSS and GAIN algorithms were pro-
posed to construct a schedule optimising time and
constraining cost. Both algorithms use initial assign-
ments made by other heuristic algorithms to meet
the time optimisation objective; a reassignment strat-
egy is then implemented to reduce cost and meet the
second objective, the users budget. In the reassign-
ment step, LOSS attempts to reduce the cost, and
GAIN attempts to achieve a lower makespan while
attending to the user’s budget limitations. In the initial
assignment, LOSS has lower makespans with higher
costs, and GAIN has higher makespans with lower
costs. The authors proposed three versions of LOSS
and GAIN that differ in the calculation of the tasks
weights. The LOSS algorithms obtained better perfor-
mance than the GAIN algorithms, and among the three
different types of LOSS strategy, we used LOSS1 to
compare to our proposed algorithm. All of the versions
of the LOSS and GAIN algorithms use a search-based
strategy for reassignments; to obtain their goals, the
number of iterations needed tends to be high for lower
budgets in LOSS strategies and for higher budgets in
GAIN strategies.

The algorithms LOSS and GAIN differ from our
approach because they start with a schedule, and then
changes are made iteratively to the schedule until the
user budget is guaranteed. We do not consider any
initial schedule, and in contrast to those algorithms,
ours is not iterative; the time to produce a schedule is
constant for a given workflow and platform.

A budget-constrained scheduling heuristic called
greedy time-cost distribution (GreedyTimeCD) was

proposed by [26]. The algorithm distributes the overall
user-defined budget to the tasks, based on the esti-
mated tasks average execution costs. The actual costs
of allocated tasks and their planned costs are also
computed successively at runtime. This is a different
approach, which optimises task scheduling individu-
ally. First, a maximum allowed budget is specified
for each task, and a processor is then selected that
minimises time within the task budget.

In [27, 28] the Budget-constrained Heterogeneous
Earliest Finish Time (BHEFT) was proposed, which
is an extension of the HEFT algorithm [19]. The con-
text of execution is an environment of multiple and
heterogeneous service providers; BHEFT defines a
suitable plan by minimising the makespan so that the
user’s budget and deadline constraints are met, while
accounting for the load on each provider. An ade-
quate solution is one that satisfies both constraints
(i.e., budget and deadline); if no plan can be defined,
it is considered a mapping failure. Therefore, the met-
ric used by the authors was the planning success rate:
the percentage of problems for which a plan was
found. The BHEFT approach consists of minimis-
ing the execution time of a workflow (HEFT based)
but within the budget constraints. Our approach is
also one of minimising execution time while being
constrained to a user-defined budget; therefore, we
compare our proposed algorithm to BHEFT in terms
of execution time versus budget. Additionally, we
compare them in terms of plan success rate, where
a deadline is specified for that purpose, similar to
[27, 28].

Our algorithm differs from BHEFT in two impor-
tant aspects: first, we allow more processors to be
considered as affordable and, therefore, selected; and
second, we do not necessarily select the processor
that guarantees the earliest finish time, as BHEFT
does. Instead, we compute a worthiness value, pro-
posed in this paper, which combines the time and
cost factors to decide on the processor for the current
task.

GreedyTimeCD and BHEFT have time complex-
ity of O(v2.p) for a workflow of v nodes and a
platform with p processors. Next, we present our
proposed scheduling algorithm, which minimises pro-
cessing time while constrained to a user-defined bud-
get and with low time complexity and which obtains
better schedules then other state-of-the-art algorithms,
namely LOSS1, GreedyTimeCD, and BHEFT.
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4 Proposed Budget Constrained Scheduling
Algorithm

In this section, we present the Heterogeneous Bud-
get Constrained Scheduling (HBCS) algorithm, which
minimises execution time while constrained to a user-
defined budget. The algorithm starts by computing
two schedules for the DAG: a schedule that corre-
sponds to the minimum execution time that the sched-
uler can offer (e.g., produced with HEFT) and the
highest cost; and another schedule that corresponds
to the least expensive schedule cost on the target
machines (CheapestCost ), as explained in Section 2.
With the least expensive assignment, the user knows
the minimum cost and corresponding deadline to exe-
cute the job; with the highest cost assignment, the user
knows the minimum deadline that can be expected for
the job and the maximum cost that should be spent to
run the job. With this information, the user is able to
verify whether the platform can execute the job before
the required deadline and within the associated cost
range. If these parameters satisfy the users expecta-
tions, he/she specifies the required budget according
to (3). HBCS is shown in Algorithm 1.

Like most list-based algorithms [12], HBCS con-
sists of two phases, namely a task selection phase and
a processor selection phase.

4.1 Task Selection

Tasks are selected according to their priorities. To
assign a priority to a task in the DAG, the upward
rank (ranku) [19] is computed. This rank represents
the length of the longest path from task ni to the exit
node, including the computational time of ni , and it is
given by (4):

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj )} (4)

where wi is the average execution time of task ni over
all of the machines, ci,j is the average communication
time of an edge e(i, j) that connects task ni to nj over
all types of network links in the network, and succ(ni)

is the set of immediate successor tasks to task ni . To
prioritise tasks, it is common to consider average val-
ues because they must be assigned a priority before
the location where they will run is known.

4.2 Processor Selection

The processor selection phase is guided by the fol-
lowing quantities related to cost. We define the
Remaining Cheapest Budget (RCB) as the remaining
CheapestCost for unscheduled tasks, excluding the
current task, and the Remaining Budget (RB) as the
actual remaining budget. RCB is updated at each step
before executing the processor selection block for the
current task, using (5) (line 9), which represents the
lowest possible cost of the remaining tasks:

Algorithm 1 HBCS algorithm

Require: DAG and user defined BUDGET

1: Schedule DAG with HEFT and Cheapest algo-
rithm

2: Set task priorities with ranku
3: if HEFTcost < BUDGET

4: return Schedule Map assignment by HEFT
5: end if
6: RB = BUDGET and RCB = CheapestCost

7: while there is an unscheduled task do
8: ni = the next ready task with highest ranku

value
9: Update the Remaining Cheapest Budget

(RCB) as defined in Eq.5
10: for all Processor pi ∈ P do
11: calculate FT (ni, pj ) and Cost (ni , pj )

12: end for
13: Compute CostCoeff as defined in Eq.7
14: for all Processor pi ∈ P do
15: calculate worthiness(ni , pi) as defined

in Eq.10
16: end for
17: Psel = Processor pi with highest worthiness

value
18: Assign Task ni to Processor Psel

19: Update the Remaining Budget (RB) as
defined in Eq.6

20: end while
21: return Schedule Map

RCB = RCB − Costlowest (5)

where Costlowest is the lowest cost for the current
task among all of the processors. The initial value
for the Remaining Budget is the user budget (RB =
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BUDGET ), and it is updated with (6) after the pro-
cessor selection phase for the current task (line 19).
RB represents the budget available for the remaining
unscheduled tasks:

RB = RB − Cost (ni , Psel) (6)

where Psel is the processor selected to run the current
task (line 17 of the algorithm), and Cost (ni , Psel) is
the cost of running task ni on processor Psel .

The quantity Cost Coefficient (CostCoeff ), defined
by (7), is the ratio between RCB and RB , and it
provides a measurement of the least expensive assign-
ment cost relative to the remaining budget available.
If CostCoeff is near one, it means that the available
budget only allows for selecting the least expensive
processors:

CostCoeff = RCB

RB
(7)

HBCS minimises execution time. Therefore, the
finish time of the current task (ni ) is computed for
all of the processors (FT (ni, pj )) at lines 10 and
11, and they constitute one set of factors for proces-
sor selection. The other set of factors consists of the
costs of executing the task on each processor, that
is Cost (ni , pj ). The variables pbest and pworst are
defined as the processors with shortest and longest
finish times for the current task, respectively.

Processor selection is based on the combination
of two factors: time and cost. Therefore, we define
two relative quantities, namely Time rate (T imer ) and
Cost rate (Costr ), for the current task ni on each pro-
cessor pj ∈ P , shown in (8) and (9), respectively:

T imer(ni, pj ) = FTworst − FT (ni, pj )

FTworst − FTbest
(8)

Costr (ni , pj ) = Costbest − Cost (ni , pj )

Costhighest − Costlowest

(9)

where FTbest and Costbest are the finish time and
cost of the current task on processor pbest , respec-
tively. FTworst is the finish time on processor pworst ,
and Costhighest and Costlowest are the highest and the
lowest cost assignments for the current task among all
of the available processors, respectively. T imer mea-
sures how much shorter than the worst finish time
(FTworst) the finish time is of the current task on pro-
cessor pj . Similarly, Costr measures how much less
the actual cost on pj is than the cost on the processor
that results in the earliest finish time. Both variables
are normalised to their highest ranges.

Finally, to select the processor for the current task
ni , the worthiness value for each processor pj ∈ P is
computed as shown in (10):

worthiness(ni , pi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∞ if Cost (ni , pj ) > Costbest

−∞ if Cost (ni , pj ) > RB − RCB

Costr (ni , pj )

.CostCoeff

+T imer(ni, pj ) otherwise

(10)

The first two statements guarantee that if the cost of
task ni on processor pj is higher than the cost on the
processor that gives the minimum FT and if that cost is
higher than the available budget for task ni , then pro-
cessor pj cannot be selected. With these statements,
the resulting schedule does not exceed the user budget
and is guaranteed to be valid. In the third statement,
the worthiness value depends on the available budget
and on the time during which a processor can finish

the task. If the remaining budget (RB) is high, then
T imer has more influence, and a processor with the
greater difference in FT compared to the worst pro-
cessor will have higher worthiness. In contrast, if the
remaining budget is smaller, then the cost factor will
increase the worthiness of the processors with lower
cost to run task ni . After testing all of the processors,
the one with highest worthiness value is selected, and
the remaining budget is updated according to (6).
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The two phases, task selection and processor selec-
tion, are repeated until there are no more tasks remain-
ing to schedule. In terms of time complexity, the
HBCS requires the computation of HEFT and the least
expensive schedule, which are used as pre-requisites
to calculate several variables in the HBCS algorithm;
these are O(v2.p) and O(v2.p∗), respectively, where
p∗ is the number of cheapest processors. In our plat-
form with heterogeneous clusters of homogeneous
processors, there is more than one processor with the
cheapest cost. The least expensive strategy attempts to
assign each task to the least expensive processor; con-
sidering insertion policy to calculate the Earliest Fin-
ish Time (EFT) among all of the cheapest processors,
the complexity of the cheapest algorithm is O(v2.p∗).
The complexities of the two phases of HBCS are of
the same order as the HEFT algorithm: O(v2.p). In
conclusion, the total time is O(v2.p+ v2.p∗ + v2.p),
which results in time complexity of the orderO(v2.p).

5 Experimental Results

This section presents performance comparisons of the
HBCS algorithm with the LOSS1 [15], GreedyTime-
CD [26], BHEFT [28], and Cheapest scheduling algo-
rithms. We consider synthetic randomly generated and
Real Application workflows to evaluate a broader
range of loads. The results presented were produced
with SimGrid [6], which is one of the best-known sim-
ulators for distributed computing and which allows for
a realistic description of the infrastructure parameters.

5.1 Workflow Structure

To evaluate the relative performances of the algo-
rithms, both the randomly generated and real-world
application workflows were used, namely LIGO and
Epigenomics [1]. The randomly generated workflows
were created by the synthetic DAG generation pro-
gram.1 The computational complexity of a task was
modelled as one of the three following forms, which
are representative of many common applications: a.d
(e.g., image processing of a

√
d.
√
d image), a.dlogd

(e.g., sorting an array of d elements), and d3/2 (e.g.,
multiplication of

√
d.
√
d matrices), where a is cho-

sen randomly between 26 and 29. As a result, different

1https://github.com/frs69wq/daggen

tasks exhibit different communication/computation
ratios.

The DAG generator program defines the DAG
shape based on four parameters: width, regularity,
density, and jumps. The width determines the maxi-
mum number of tasks that can be executed concur-
rently. A small value will lead to a thin DAG, similar
to a chain, with low task parallelism; a large value
induces a fat DAG, similar to a fork-join, with a high
degree of parallelism. The regularity indicates the uni-
formity of the number of tasks in each level. A low
value indicates that the levels contain very dissimilar
numbers of tasks, whereas a high value indicates that
all of the levels contain similar numbers of tasks. The
density denotes the number of edges between two lev-
els of the DAG, where a low value indicates few edges,
and a large value indicates many edges. A jump indi-
cates that an edge can go from level l to level l+jump.
A jump of one is an ordinary connection between two
consecutive levels.

In our experiment, for random DAG generation,
we used as the number of tasks n = [10...60],
jump = [1, 2, 3], regularity = [0.2, 0.4, 0.8],
f at = [0.2, 0.4, 0.8], and density = [0.2, 0.4, 0.8].
With these parameters, each DAG was created by
choosing the value for each parameter randomly from
the parameter data set. The total number of DAGs
generated in our simulation was 1000.

5.2 Simulation Platform

We resorted to simulation to evaluate the algorithms
discussed in the previous sections. Simulation allows
us to perform a statistically significant number of
experiments for a wide range of application config-
urations in a reasonable amount of time. We used
the SimGrid toolkit2 [6] as the basis for our sim-
ulator. SimGrid provides the required fundamental
abstractions for the discrete-event simulation of par-
allel applications in distributed environments. It was
specifically designed for the evaluation of schedul-
ing algorithms. Relying on a well-established simu-
lation toolkit allows us to leverage sound models of
a heterogeneous computing system, such as the grid
platform considered in this work. In many research
papers on scheduling, the authors have assumed a
contention-free network model, in which processors

2http://simgrid.gforge.inria.fr

https://github.com/frs69wq/daggen
http://simgrid.gforge.inria.fr
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Table 1 Description of the
Grid5000 clusters from
which the platforms used in
the experiments were
derived

Site Cluster #CPUT otal #CPUused Power(GFlop/s) σ

Lille chicon 26 2 4 9 8.9618

chimint 20 2 4 7 23.531 0.69

chinqchint 46 4 8 16 22.270

Sophia helios 56 3 6 12 7.7318

sol 50 3 5 10 8.9388 0.90

suno 45 2 5 10 23.530

can simultaneously send data to or receive data from
as many processors as possible, without experienc-
ing any performance degradation. Unfortunately, that
model, the multi-port model, is not representative of
actual network infrastructures. Conversely, the net-
work model provided by SimGrid corresponds to a
theoretical bounded multi-port model. In this model,

a processor can communicate with several other pro-
cessors simultaneously, but each communication flow
is limited by the bandwidth of the traversed route, and
communications using a common network link must
share bandwidth. This scheme corresponds well to the
behaviour of TCP connections on a LAN. The validity
of this network model was demonstrated by [20].

Fig. 1 Normalized
Makespan for Random
workflows with CPUused=8
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We consider two sites that comprise multiple
clusters. Table 1 provides the name of each clus-
ter, along with its number of processors, processing
speed expressed in GFlop/s, and the standard devia-
tion (σ ) of CPU capacity as a heterogeneity factor.
Column #CPUused shows the number of processors
used from each cluster for 8-, 16- and 32-processor
configurations.

5.3 Budget-Deadline Constrained Scheduling

Budget-deadline constrained scheduling was intro-
duced in [27, 28], in which the BHEFT algorithm
was presented. Its aim is to produce mappings of
tasks to resources that meet the deadline and bud-
get constraints imposed by the user. Although BHEFT

considers the load of the providers, the algorithm can
be evaluated by attending exclusively to the dead-
line and budget constraints and ignoring the providers
loads, as also presented in [27, 28]. This process
allows for evaluating and comparing the algorithms,
without the additional random variables that are the
providers loads. The budget factor is considered here,
as defined by (3). The deadline constraint is defined
by (11), which specifies a deadline value for a given
workflow, based on the mapping obtained by HEFT:

DeadLine = LBdeadline

+ kDeadline

(
UBdeadline − LBdeadline

)

(11)
where LBdeadline is equal to HEFTMakespan, the
makespan obtained with HEFT, and UBdeadline is

Fig. 2 Normalized
Makespan for Random
workflows with
CPUused=32
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3.HEFTMakespan. The range of values for kDeadline

is [0 . . .1]. HEFTMakespan is the minimum time that
the user is allowed to choose to obtain a valid sched-
ule. We restrict the upper bound deadline as the cube
of HEFTMakespan to evince the quality of the algo-
rithms in generating valid mappings.

5.4 Performance Metrics

To evaluate and compare our algorithm with other
approaches, we consider the metric Normalised
Makespan (NM), defined by (12). NM normalises the
makespan of a given workflow to the lower bound,
which is the workflow execution time obtained with
HEFT:

NM = schedule makespan

HEFTMakespan

(12)

To evaluate the algorithms using the budget-
deadline constrained methodology, we consider the
Planning Success Rate (PSR), as expressed by (13)
and defined in [27, 28]. This metric provides the
percentage of valid schedules obtained in a given
experiment.

PSR = 100 × Successful Planning

Total Number in experiment
(13)

5.5 Results and Discussion

Among all of the algorithms mentioned above
in the related work section, we selected LOSS1,
GreedyTimeCD, BHEFT, and Cheapest scheduling
algorithms; these match our goal and conditions, but
we have made some modifications in their original

Fig. 3 Planning Success
Rate for Random workflows
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strategies. The original implementation of the LOSS
scheduling algorithm assumed that all of the pro-
cessors had different costs, and therefore, there was
no conflict in selecting a processor based on the
cost parameter. In our grid environment, each clus-
ter was homogeneous and was based only on the cost
parameter, so there could be more than one processor
candidate. In this case, we tested all of the possible
processors and selected that which achieved the small-
est makespan. The same procedure was applied to the
least expensive scheduling strategy, which attempts
to schedule each task on the service with the lower
execution cost.

To evaluate the performance of each algorithm, we
computed the makespan for each DAG and normalised
it using (12). The results presented next were obtained
by SimGrid with the bounded multi-port model, and
they are presented for two data sets: randomly gener-
ated workflows and real applications.

5.5.1 Results for Randomly Generated Workflows

For random DAG generation, as stated previously,
we model the computational complexity of common
applications tasks, such as image processing, array
sorting, and matrix multiplication. Figures 1 and 2
show the Normalised Makespan values obtained on
two CPU configurations per site, namely, 8 and 32
processors. We can see that the HBCS algorithm
obtains significant performance improvements over
the other algorithms for most of the user-defined bud-
get values and configurations. For 8 processors on the
Lille site, the improvement of HBCS over BHEFT is
2.0 % for k = 0.1, and it increases to 19.7 % for
k = 0.9. On the Sophia site, the improvement is 0 %
for k = 0.1, and it increases to 29.4 % for k = 0.9.
For k ≥ 0.7, the second-best algorithm is LOSS1, and
the improvements of HBCS over LOSS1 are 24.7 %
and 18.2 % for k = 0.7 and k = 0.9, respectively.

Fig. 4 Normalized
Makespan for Epigenomics
workflows on GRID5000
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Fig. 5 Normalized
Makespan for LIGO
workflows on GRID5000

For 32 processors, the same pattern of results is
obtained on the Lille and Sophia sites but with greater
differences for lower k values. On the Lille site, the
improvement of HBCS over BHEFT is 5.4 %, 13.4 %
and 18.8 % for k values of 0.1, 0.2, and 0.3, respec-
tively. The performance of BHEFT and GreedyTime-
CD are very similar for all of the ranges of k on both
sites. For k ≥ 0.7, the second best algorithm is again
LOSS1.

In conclusion, HBCS outperforms all of the other
algorithms, indicating that HBCS can achieve lower
makespans for any given budget.

The results of the evaluation made with the budget-
deadline constrained methodology are shown in Fig. 3,
where the deadline and budget factors assume the val-
ues of 0.2, 0.5, and 0.8. The figures present the average
values for 8, 16 and 32 processors for each site. HBCS
yielded higher PSR values for all of the cases. The
PSR obtained by HBCS for shorter deadline factors is
significantly higher than the PSR values obtained with
the other algorithms. On both sites, for deadline and

budget factors of 0.2 and 0.8, respectively, the HBCS
PSR is greater than 80 %, while for the remaining
algorithms, the PSR is less than 30 %. We can con-
clude that HBCS obtains the highest Planning Success
Rates for the two levels of heterogeneity considered
here.

5.5.2 Results for Real World Applications

To evaluate the algorithms on a standard and real set
of workflow applications, synthetic workflows were
generated using the code developed in [13]. Two well-
known structures were chosen [11], namely Epige-
nomics,3 for mapping the epigenetic state of human
DNA, and LIGO.4 The Epigenomics workflow is a
highly pipelined application with multiple pipelines
operating on independent chunks of data in parallel. In

3USC Epigenome Center, http://epigenome.usc.edu
4http://www.advancedligo.mit.edu

http://epigenome.usc.edu
http://www.advancedligo.mit.edu
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these two real applications, most of the jobs have high
CPU utilisation and relatively low I/O, so they can be
classified as CPU-bound workflows.

Workflows with 24 and 30 tasks were created
for both Epigenomics and LIGO. For each workflow
size, 300 different workflow instances were generated,
obtaining a total collection of 600 workflows for each
type of application.

For Normalised Makespan, Figs. 4 and 5 show that
HBCS achieves better performance for most of the
budget factor values. The improvements increase with
the budget factor and the site heterogeneity. Similar
behaviour is obtained for the LIGO application.

Figures 6 and 7 show the Planning Success Rate
for the Epigenomics and LIGO workflows. For each
site, the average PSRs for 8, 16, and 32 CPUs are
presented. These results are consistent with those
obtained for the randomly generated workflows. It
is also observed that for some cases, particularly for

Epigenomics, only HBCS obtained valid schedules
and significant success rates.

6 Conclusions and Future Work

In this paper, we have presented the Heterogeneous
Budget Constrained Scheduling algorithm, which
maps a workflow to a heterogeneous system and
minimises the execution time constrained to a user-
defined budget. The algorithm was compared with
other state-of-the-art algorithms and was shown to
achieve lower makespans for all of the budget fac-
tors in higher heterogeneity platforms; that is, HBCS
can produce shorter makespans for the same budget.
A reduction of up to 30 % in execution time was
achieved while maintaining the same budget level.
Considering Budget-Deadline constrained scheduling,
HBCS achieves a higher planning success rate for

Fig. 6 Planning Success
Rate for Epigenomics
workflows
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Fig. 7 Planning Success
Rate for LIGO workflows

more heterogeneous systems. In some particular cases,
the PSR obtained with HBCS is considerably higher
than the PSRs obtained with the other algorithms. For
example, for the budget and deadline factors of 0.8
and 0.2, respectively, on the Lille and Sophia sites,
the PSR of HBCS is greater than 80 %, while all of
the other algorithms achieve PSRs less than 30 %. On
these sites, HBCS performs significantly better than
the other algorithms for the more restricted deadline
factors of 0.2 and 0.5.

The results achieved for two real applications,
namely LIGO and Epigenomics, are consistent with
the randomly generated workflows for both metrics.

Concerning time complexity, HBCS has the same
complexity as GreedyTimeCD and BHEFT, having a
constant running time for all ranges of budget fac-
tors for a given workflow and platform, because it
has bounded complexity. In contrast, the LOSS algo-
rithms have a search-based step, and their running
time therefore depends on the number of iterations to

find a solution, where for lower budgets, the number
of iterations is significantly greater.

In conclusion, we have presented the HBCS algo-
rithm for budget constrained scheduling, which has
proved to achieve better performance with lower time
complexity than other state-of-the-art algorithms. The
results were obtained in a simulation with a realis-
tic model of the computing platform and with shared
links, as occurs in a common grid infrastructure.

In future work, we intend to extend the algorithm
to consider the dynamic concurrent DAG scheduling
problem. This consideration will allow users to exe-
cute concurrent workflows that might not be able to
start together but that can share resources so that the
total cost for the user can be minimised.
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