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Given a positive constant c, a sequence S = 〈s1, s2, . . . , sk〉 of k numbers is said to be 
almost increasing if and only if si > max

1≤ j<i
s j − c for all 1 < i ≤ k. A longest common 

almost-increasing subsequence (LCaIS) between two input sequences is a longest common 
subsequence that is also an almost increasing sequence. We found out that the existing 
algorithm proposed by Moosa et al. [1] to find an LCaIS of two sequences without repeated 
elements gives an incorrect result for some instances. In this work, we present a dynamic 
programming algorithm that can correctly compute an LCaIS between any two sequences 
with repeated elements in O (nml) time and O (nm) space, where n and m are the lengths 
of two input sequences and l is the length of the output LCaIS.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Longest common subsequence (LCS) is a commonly used metric to measure the similarity of two sequences [2–5]. Given 
a sequence S = 〈s1, s2, . . . , sk〉 of k numbers, S is an increasing sequence if si > si−1 for all 1 < i ≤ k. By applying the 
increasing condition to LCS, Yang et al. [6] designed a dynamic programming algorithm to find a longest common increasing 
subsequence (LCIS) between two comparable sequences in O (nm) time and space, where n and m are the lengths of two 
input sequences. In fact, the LCIS problem can be applied to compute the alignment of two large-scale genomes [7,8] and is 
an extension of the well-known longest increasing subsequence (LIS) problem that can be solved in optimal time O (n log n)

[9–11], where n is the length of the original sequence.
Recently, Elmasry [12] introduced the concept of an almost-increasing subsequence. That is, given a constant c > 0, a 

sequence S = 〈s1, s2, . . . , sk〉 is said to be almost increasing if and only if si > max
1≤ j<i

s j − c for all 1 < i ≤ k. Elmasry used this 

concept to introduce the problem of finding a longest almost-increasing subsequence (LaIS) in a given sequence of length n, 
which can be considered as a relaxed version of LIS problem when the elements of the input sequence have a small amount 
of noise. In addition, Elmasry [12] designed an optimal algorithm that solves the LaIS problem in O (n log l) time, where l
is the length of the output subsequence. Later, Moosa et al. [1] studied the problem of finding a longest common almost-
increasing subsequence (LCaIS) between two sequences. Formally, given two sequences of numbers A = 〈a1, a2, . . . , an〉 and 
B = 〈b1, b2, . . . , bm〉 and a constant c > 0, a common almost-increasing subsequence of A and B is a common sequence C =
〈ai1 = b j1 , ai2 = b j2 , . . . , aik = b jk 〉, where 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m, such that C itself is 
an almost increasing sequence. A longest common almost-increasing subsequence of A and B is a common almost-increasing 
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subsequence having the maximum length. Note that the LCaIS problem considered by Moosa et al. [1] requires no repeated 
elements in each input sequence, i.e., ai �= au and b j �= bv for all i �= u and j �= v . In [1], Moosa et al. finally gave a dynamic 
programming algorithm that uses O (n2) space and runs in O (n(n + c2)) time to find an LCaIS between two sequences of 
equal length n.

We have found, however, that the algorithm proposed by Moosa et al. [1] gives an incorrect result for the following 
simple instance. Consider two sequences A = 〈11, 7, 9, 8, 6〉 and B = 〈9, 8, 11, 7, 6〉 and a constant c = 5. Their algorithm 
outputs 〈7, 6〉 of length 2 as an LCaIS, but it can be easily verified that the sequence 〈9, 8, 6〉 of length 3 is a common 
almost-increasing subsequence of A and B and clearly 〈7, 6〉 is not an LCaIS between A and B . The flaw in this algorithm 
is that when constructing common almost-increasing subsequences of 〈11, 7, 9, 8〉 and 〈9, 8, 11, 7〉, there are four maximal 
common almost-increasing sequences, namely 〈9〉 and 〈11〉 of length 1 as well as 〈9, 8〉 and 〈11, 7〉 of length 2. The algo-
rithm only keeps the sequence of the smallest ending value among sequences having the same length (i.e., 〈9〉 and 〈11, 7〉
in this case) for later computation. Since the sequence 〈9, 8〉 is removed, the algorithm cannot produce a common almost-
increasing subsequence 〈9, 8, 6〉 of length 3. The reason why removing the sequence of larger ending value when there exist 
more than one sequence of equal length was not strictly proved in [1]. This motivates us to devise a correct algorithm to 
solve the LCaIS problem in this work.

In this study, we present a dynamic programming algorithm for computing an LCaIS of two input sequences of lengths n
and m and its time and space complexities are O (nml) and O (nm), respectively, where l is the length of the output LCaIS. 
Note that computing just the length of the LCaIS can be done using less space (i.e., O (l min(m, n))) by our algorithm. It is 
worth mentioning that the LCaIS problem we consider in this work allows repeated elements in the input sequences, while 
the LCaIS problem studied by Moosa et al. [1] does not.

The rest of the paper is organized as follows. In Section 2, we provide some notations to facilitate the presentation of 
our algorithm. Next, we discuss the main algorithm and analyze its time and space complexities in Section 3. Finally, we 
give a brief conclusion in Section 4.

2. Preliminaries

For a sequence of n numbers S = 〈s1, s2, . . . , sn〉, we use |S| = n to denote the length of S and Si, j = 〈si, si+1, . . . , s j〉 to 
denote a substring of S from the i-th to the j-th element, where 1 ≤ i ≤ j ≤ n. We define the representative of S , written as 
γ (S), to be the last maximum element in S . For example, if S = 〈5, 3, 5, 1〉, then γ (S) is s3 even though both s1 and s3 are 
maxima in S . The representative of a sequence is written in bold style in all examples given in this work.

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 be two sequences. We call a pair (i, j) as a matched pair if and only 
if ai = b j , where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Otherwise, it is called a mismatched pair. For a matched pair (i, j), we utilize 
α(i, j) to indicate either ai or b j , i.e., α(i, j) = ai = b j . With these two sequences A and B , we also create an n × m
two-dimensional table T , called matching table, in which T (i, j) = ‘∗’ if ai = b j ; otherwise T (i, j) = ε, where ε denotes 
the empty character. Note that a star entry T (i, j) corresponds to a matched pair (i, j) and we say that α(i, j) is the 
value of T (i, j). Basically, a common almost increasing subsequence (CaIS) of length k between two sequences A and B
corresponds to an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) consisting of star entries in T with 1 ≤ i1 <

i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m. Conversely, an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk)

in T yields a unique CaIS of A and B , denoted as β(P ), by concatenating the values of star entries in P , i.e., β(P ) =
〈α(i1, j1), α(i2, j2), . . . , α(ik, jk)〉. Therefore, our problem is equivalent to finding a longest almost increasing path in the 
matching table T of two input sequences A and B . Given an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) in 
T , we call the star entry T (ih, jh) in P as the representative entry (or point) of P if α(ih, jh) is the representative of β(P )

for some 1 ≤ h ≤ k. We use ω(P ) to denote the value of the representative point in P and |P | to indicate its length, i.e., 
ω(P ) = α(ih, jh) and |P | = k. Actually, ω(P ) is the maximum value of the sequence β(P ). For convenience, we use Ti, j to 
denote a sub-table of T whose top-left entry is T (1, 1) and bottom-right entry is T (i, j). Note that Ti, j is an empty table 
if i = 0 or j = 0. For each star entry T (u, v) in Ti, j , we utilize L P i

j(u, v) to indicate a longest almost increasing path in 
Ti, j such that T (u, v) is its representative point. For example, consider A = 〈3, 2, 1, 3, 2〉 and B = 〈1, 3, 3, 2〉. When c = 2, 
we have L P 5

4(4, 3) = T (1, 2), T (4, 3), T (5, 4) and β(L P 5
4(4, 3)) = 〈α(1, 2), α(4, 3), α(5, 4)〉 = 〈3, 3, 2〉 as illustrated in Fig. 1. 

Actually, it can be verified that P = T (3, 1), T (4, 3), T (5, 4) is another longest almost increasing path in T5,4 such that 
T (4, 3) is the representative point of P as well.

3. Our dynamic programming algorithm for solving the LCaIS problem

We use L(i, j) to denote the set of L P i
j(u, v) for all star entries T (u, v) in Ti, j , i.e., L(i, j) = {L P i

j(u, v) : T (u, v) =‘∗’, 1 ≤
u ≤ i and 1 ≤ v ≤ j}. In fact, if we can compute L(i, j) for all i = 1, 2, . . . , n and j = 1, 2, . . . , m, then the longest path in 
L(n, m) will yield an LCaIS of A and B . By definition, L(i, j) =∅ if i = 0 or j = 0. Now, suppose that L(i −1, j −1), L(i −1, j)
and L(i, j − 1) are already known. Then we can construct L(i, j) from these sets according to the approaches described in 
the following two cases.

Case 1: T (i, j) is an empty entry. For each star entry T (u, v) in Ti, j , we add the longest path among all paths in 
L(i − 1, j) ∪ L(i, j − 1) such that their representative points are T (u, v) into L(i, j).
45
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Fig. 1. Matching table T of A = 〈3, 2, 1, 3, 2〉 and B = 〈1, 3, 3, 2〉. When c = 2, we have L P 5
4(4, 3) = T (1, 2), T (4, 3), T (5, 4) and its yielded CaIS 

〈α(1, 2), α(4, 3), α(5, 4)〉 = 〈3, 3, 2〉.

i\ j 3 4

3

β(L P 3
4(1,2)) = 〈3,2〉

β(L P 3
4(1,3)) = 〈3,2〉

β(L P 3
4(2,4)) = 〈2〉

β(L P 3
4(3,1)) = 〈1〉

4

β(L P 4
3(1,2)) = 〈3〉 β(L P 4

4(1,2)) = 〈3,2〉
β(L P 4

3(1,3)) = 〈3〉 β(L P 4
4(1,3)) = 〈3,2〉

β(L P 4
3(3,1)) = 〈1〉 β(L P 4

4(2,4)) = 〈2〉
β(L P 4

3(4,2)) = 〈1,3〉 β(L P 4
4(3,1)) = 〈1〉

β(L P 4
3(4,3)) = 〈3,3〉 β(L P 4

4(4,2)) = 〈1,3〉
β(L P 4

4(4,3)) = 〈3,3〉

Fig. 2. L(4,4) is obtained from L(4,3) and L(3,4), where (4,4) is a mismatched pair.

Case 2: T (i, j) is a star entry. First, we construct L P i
j(i, j) by searching for the longest path P in L(i − 1, j − 1) such 

that ω(P ) ≤ α(i, j) and then appending T (i, j) to P . Second, we append T (i, j) to every path P in L(i − 1, j − 1) satisfying 
α(i, j) < ω(P ) < α(i, j) + c. Now, let L′(i, j) denote the set of all paths obtained in the above two steps. Finally, for each 
star entry T (u, v) in Ti, j , we add the longest path among all paths in L(i − 1, j) ∪ L(i, j − 1) ∪ L′(i, j) such that their 
representative points are T (u, v) into L(i, j).

For example, consider two sequences A, B and constant c as given in Fig. 1. Then the computations of L(4, 4) (respec-
tively, L(5, 4)) is briefly illustrated in Fig. 2 (respectively, Fig. 3) using the method described in the aforementioned Case 1 
(respectively, Case 2), where for each almost increasing path P , we only write down its yielded CaIS β(P ) for simplicity.

In the following, we discuss how to efficiently implement the basic idea mentioned above to solve the LCaIS problem.

Definition 1. Let P and Q be two almost increasing paths in a sub-table Ti, j . We say that P dominates Q if and only if 
ω(P ) ≤ ω(Q ) and |P | > |Q |.

Below, we simplify L(i, j) by removing those paths that are useless to find the optimal solution of the LCaIS problem. 
First, we remove all dominated paths in L(i, j). Next, if the resulting L(i, j) contains k > 1 paths L P i

j(u1, v1), L P i
j(u2, v2), 

. . ., L P i
j(uk, vk) of the same length with α(u1, v1) ≤ α(u2, v2) ≤ . . . ≤ α(uk, vk), then we retain L P i

j(u1, v1) and remove 
k − 1 remaining paths from L(i, j). For convenience, we call these k − 1 removed paths as redundant paths in L(i, j). Finally, 
we replace each L P i

j(u, v) in L(i, j) by a 3-tuple (u, v, |L P i
j(u, v)|) and call the final L(i, j) as a simplified L(i, j). Fig. 4

shows an example of simplifying L(4, 3) as shown in Fig. 3 according to the above discussion. It is not hard to see that a 
3-tuple with the maximum length in the simplified L(n, m) corresponds to a longest almost increasing path in the matching 
table T that yields an LCaIS of the input sequences A and B . It can also be observed that every two 3-tuples (u, v, k) and 
(u′, v ′, k′) in a simplified L(i, j) satisfy the conditions k �= k′ and α(u, v) < α(u′, v ′) if and only if k < k′ . This means that 
the cardinal number of a simplified L(i, j) is at most l, where l denotes the length of the output for the LCaIS problem.

In Procedure 1, we describe an algorithm to compute simplified L′(i, j) directly from simplified L(i − 1, j − 1).
For simplicity, in the rest of this section, we assume that L(i, j), as well as L′(i, j), is already simplified for any 1 ≤ i ≤ n

and 1 ≤ j ≤ m when we mention it.
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i\ j 3 4

4

β(L P 4
3(1,2)) = 〈3〉 β(L P 4

4(1,2)) = 〈3,2〉
β(L P 4

3(1,3)) = 〈3〉 β(L P 4
4(1,3)) = 〈3,2〉

β(L P 4
3(3,1)) = 〈1〉 β(L P 4

4(2,4)) = 〈2〉
β(L P 4

3(4,2)) = 〈1,3〉 β(L P 4
4(3,1)) = 〈1〉

β(L P 4
3(4,3)) = 〈3,3〉 β(L P 4

4(4,2)) = 〈1,3〉
β(L P 4

4(4,3)) = 〈3,3〉

5

β(L P 5
3(1,2)) = 〈3〉 Step 1:

β(L P 5
3(1,3)) = 〈3〉 β(L P 5

4(5,4)) = 〈1,2〉
β(L P 5

3(3,1)) = 〈1〉 Step 2:

β(L P 5
3(4,2)) = 〈1,3〉 β(L P 5

4(1,2)) = 〈3,2〉
β(L P 5

3(4,3)) = 〈3,3〉 β(L P 5
4(1,3)) = 〈3,2〉

β(L P 5
4(4,2)) = 〈1,3,2〉

β(L P 5
4(4,3)) = 〈3,3,2〉

Step 3:

β(L P 5
4(1,2)) = 〈3,2〉

β(L P 5
4(1,3)) = 〈3,2〉

β(L P 5
4(2,4)) = 〈2〉

β(L P 5
4(3,1)) = 〈1〉

β(L P 5
4(4,2)) = 〈1,3,2〉

β(L P 5
4(4,3)) = 〈3,3,2〉

β(L P 5
4(5,4)) = 〈1,2〉

Fig. 3. Three steps for constructing L(5,4), where (5,4) is a matched pair.

β(L P 4
3(1, 2)) = 〈3〉

β(L P 4
3(1, 3)) = 〈3〉

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

β(L P 4
3(4, 3)) = 〈3, 3〉

(a)

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

β(L P 4
3(4, 3)) = 〈3, 3〉

(b)

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

(c)

(3, 1, 1)

(4, 2, 2)

(d)

Fig. 4. (a) Original L(4, 3), (b) temporary L(4, 3) after removing dominated paths L P 4
3(1, 2) and L P 4

3(1, 3), (c) temporary L(4, 3) after removing a redundant 
path L P 4

3(4, 3) and (d) simplified L(4, 3).

Definition 2. Given any two sets of 3-tuples L(i1, j1) and L(i2, j2), where 1 ≤ i1, i2 ≤ n and 1 ≤ j1, j2 ≤ m, the merging
operation ⊕ is defined by L(i1, j1) ⊕ L(i2, j2) that equals to the set obtained by first uniting L(i1, j1) and L(i2, j2) and then 
removing all the dominated and redundant 3-tuples.

In the following lemma, we derive a simpler recursive formula for more efficiently computing L(i, j). The intuition behind 
this lemma is that if T (i, j) is a star entry, then every path in L(i − 1, j) ∪ L(i, j − 1) is either dominated by some path in 
L(i − 1, j − 1) ∪ L′(i, j) or redundant when compared with some path in L(i − 1, j − 1) ∪ L′(i, j).

Lemma 1. If (i, j) is a matched pair, then L(i, j) = L(i − 1, j − 1) ⊕ L′(i, j); otherwise L(i, j) = L(i, j − 1) ⊕ L(i − 1, j). In other 
words, we have

L(i, j) =
{

L(i − 1, j − 1) ⊕ L′(i, j), if T (i, j) = ‘∗’

L(i, j − 1) ⊕ L(i − 1, j), otherwise.
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Procedure 1 Append1(L(i − 1, j − 1), c).
Input: Simplified L(i − 1, j − 1) and constant c > 0.
Output: Simplified L′(i, j).

1: L′(i, j) =∅; lmax = 0;
2: for each (u, v, k) in L(i − 1, j − 1) do
3: if α(u, v) ≤ α(i, j) and lmax < k then
4: lmax = k;
5: end if
6: if α(i, j) < α(u, v) < α(i, j) + c then
7: L′(i, j) = L′(i, j) ∪ {(u, v, k + 1)};
8: end if
9: end for

10: L′(i, j) = L′(i, j) ∪ {(i, j, lmax + 1)};
11: return L′(i, j);

Proof. To prove the correctness of Lemma 1, it is sufficient to show that for any non-dominated path P in the sub-table 
Ti, j , there exists a 3-tuple (u, v, k) in L(i, j) such that α(u, v) ≤ ω(P ) and k = |P |, where L(i, j) is computed by the formula 
stated in Lemma 1 and L′(i, j) is obtained by Procedure 1. Below we prove it by induction on i and j.

Basis step (i = 0 or j = 0): The claim clearly holds since L(i, j) = ∅ when i = 0 or j = 0 and there is no path in the 
empty table Ti, j .

Induction step (i > 0 and j > 0): It can be verified that for each 3-tuple in L′(i, j) obtained by Procedure 1, there exists 
a corresponding almost increasing path in Ti, j . Let P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) be a non-dominated path in Ti, j . It 
should be noted that a non-dominated path in Ti, j can be a redundant path. If (i, j) is a matched pair, then we prove the 
claim according to two possible locations of the matched pair (ik, jk).

Case 1: (ik, jk) = (i, j). Let P ′ = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1). We show below that P ′ is actually a non-dominated 
path in Ti−1, j−1. Suppose that P ′ is dominated by another almost increasing path Q ′ in Ti−1, j−1, i.e., ω(Q ′) ≤ ω(P ′) and 
|Q ′| > |P ′|. Let R be the path obtained by appending star entry T (i, j) into Q ′ . Then R is an almost increasing path in 
Ti, j with ω(R) = max{ω(Q ′), α(i, j)} ≤ max{ω(P ′), α(i, j)} = ω(P ) but |R| = |Q ′| + 1 > |P ′| + 1 = k = |P |. As a result, R
dominates P in Ti, j , a contradiction. Hence, we can conclude that P ′ is a non-dominated path in Ti−1, j−1. By induction 
hypothesis, there exists a 3-tuple (u, v, k − 1) in L(i − 1, j − 1) such that α(u, v) ≤ ω(P ′) and k − 1 = |P ′|. This also indicates 
that α(i, j) > ω(P ′) − c ≥ α(u, v) − c.

Case 1.1: α(i, j) < α(u, v). Then (u, v, k) ∈ L′(i, j) by line 7 in Procedure 1 and the representative point of P ′ is identical 
to that of P , i.e., ω(P ) = ω(P ′) = α(u, v). Since P is a non-dominated path in Ti, j , the 3-tuple (u, v, k) cannot be dominated 
by other tuples in L′(i, j) or L(i − 1, j − 1). Therefore, there is a tuple (x, y, k) in L(i, j), which is obtained by performing 
L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(u, v) = ω(P ) and k = |P |.

Case 1.2: α(i, j) ≥ α(u, v). Then (i, j, k) is a candidate tuple in L′(i, j) according to lines 4 and 10 in Procedure 1. In this 
case, the representative point of P is clearly T (i, j). Hence, the 3-tuple (i, j, k) actually corresponds to P in Ti, j . Since P is a 
non-dominated path in Ti, j , the 3-tuple (i, j, k) cannot be dominated by other tuples in L′(i, j) or L(i −1, j −1). Hence, there 
exists a tuple (x, y, k) in L(i, j), which is obtained by performing L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(i, j) = ω(P )

and k = |P |.
Case 2: (ik, jk) �= (i, j). Assume that P is a path in Ti−1, j . There are two possibilities for jk .

Case 2.1: jk = j. Let Q = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1), T (i, j). Since α(ik, jk) = b j = α(i, j), Q is an almost 
increasing path in Ti, j with |Q | = k = |P | and ω(Q ) = ω(P ). As P is a non-dominated path in Ti, j , Q also is. Let 
P ′ = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1). Because Q is a non-dominated path in Ti, j , P ′ is a non-dominated path in 
Ti−1, j−1 using similar argument to that in Case 1. By induction hypothesis, there exists a 3-tuple (u, v, k −1) in L(i −1, j −1)

such that α(u, v) ≤ ω(P ′) and k − 1 = |P ′|. By the arguments in Cases 1.1 and 1.2, we can conclude that there is a tuple 
(x, y, k) in L(i, j) such that α(x, y) ≤ ω(P ) and k = |P |.

Case 2.2: jk < j. Clearly, P is a non-dominated path in Ti−1, j−1. By induction hypothesis, there exists a 3-tuple (u, v, k)

in L(i − 1, j − 1) such that α(u, v) ≤ ω(P ) and k = |P |. Since P is also a non-dominated path in Ti, j , the 3-tuple (u, v, k)

cannot be dominated by other tuples in L′(i, j) or L(i − 1, j − 1). Thus, there is a tuple (x, y, k) in L(i, j), which is obtained 
by performing L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(u, v) ≤ ω(P ) and k = |P |.

On the other hand, suppose that P is a path in Ti, j−1. Then using the arguments similar to Cases 2.1 and 2.2, we can 
prove that there exists a tuple (x, y, k) in L(i, j) such that α(x, y) ≤ ω(P ) and k = |P |.

If (i, j) is a mismatched pair, then P is a path either in Ti−1, j or Ti, j−1. Assume that P is a path in Ti−1, j (respectively, 
Ti, j−1). Then P is a non-dominated path in Ti−1, j (respectively, Ti, j−1). By induction hypothesis, there exists a 3-tuple 
(u, v, k) in L(i − 1, j) (respectively, L(i, j − 1)) such that α(u, v) ≤ ω(P ) and k = |P |. Since P is a non-dominated path 
in Ti, j , the 3-tuple (u, v, k) cannot be dominated by other tuples in L(i − 1, j) or L(i, j − 1). Therefore, there exists a 
tuple (x, y, k) in L(i, j), which is obtained by performing L(i − 1, j) ⊕ L(i, j − 1), such that α(x, y) ≤ α(u, v) ≤ ω(P ) and 
k = |P |. �
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Using the recursive formula in Lemma 1, we can compute L(n, m), in which a 3-tuple (u′, v ′, lmax) with lmax = max{k :
(u, v, k) ∈ L(n, m)}) represents a longest almost increasing path in the matching table T . To help recover this longest path, 
we build an n × m table Prev as follows. When computing L P i

j(i, j), we use entry Prev(i, j) to store the location (x, y)

in T such that L P i−1
j−1(x, y) is a longest path in L(i − 1, j − 1) satisfying α(x, y) ≤ α(i, j). That is, L P i−1

j−1(x, y) is the path 
selected to construct L P i

j(i, j) by appending it with T (i, j). Based on Lemma 1, we describe Algorithm 1 below that can 
more efficiently compute an LCaIS between two input sequences.

Algorithm 1 Finding an LCaIS of two sequences.
Input: Two sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 and constant c > 0.
Output: An LCaIS between A and B .

1: for i = 0 to n do
2: L(i, 0) =∅;
3: end for
4: for j = 0 to m do
5: L(0, j) =∅;
6: end for
7: for i = 1 to n do
8: for j = 1 to m do
9: if ai = b j then

10: L(i, j) = Append2(L(i − 1, j − 1), c) ⊕ L(i − 1, j − 1);
11: else
12: L(i, j) = L(i − 1, j) ⊕ L(i, j − 1);
13: end if
14: end for
15: end for
16: Backtrack(L(n, m), Prev);

Procedure 2 Append2(L(i − 1, j − 1), c).
Input: Set L(i − 1, j − 1) and constant c > 0.
Output: L′(i, j).

1: L′(i, j) =∅; lmax = 0; (x, y) = (0, 0);
2: for each (u, v, k) in L(i − 1, j − 1) do
3: if α(u, v) ≤ α(i, j) and lmax < k then
4: lmax = k; (x, y) = (u, v);
5: end if
6: if α(i, j) < α(u, v) < α(i, j) + c then
7: L′(i, j) = L′(i, j) ∪ {(u, v, k + 1)};
8: end if
9: end for

10: L′(i, j) = L′(i, j) ∪ {(i, j, lmax + 1)};
11: Prev(i, j) = (x, y);
12: return L′(i, j);

Note that the information in the Prev table can only be used to construct a partial result of the LCaIS of the two in-
put sequences. The reason is explained as follows. Suppose that (x1, y1, lmax) is a 3-tuple in L(n, m) with lmax = max{k :
(u, v, k) ∈ L(n, m)} and P1 denotes its corresponding almost increasing path in T (n, m). Clearly, T (x1, y1) is the representa-
tive entry in P1. Suppose further that Prev(x1, y1) = (x2, y2). Then we can utilize the value of Prev(x1, y1) to find another 
entry T (x2, y2) in P1 that occurs before (but not necessarily immediately before) T (x1, y1). Let P ′

1 be the subpath of P1
from the position of T (x1, y1) to the end of P1, and P2 = P1 − P ′

1 (meaning that P2 is obtained from P1 by removing 
its P ′

1). It is not hard to see that T (x2, y2) becomes the representative entry of P2 and P ′
1 is a kind of special almost in-

creasing subpath whose representative is the first entry of P ′
1. By continuing this argument, we actually can partition P1

into several subpaths, say P ′
1, P ′

2, . . . , P
′
k , such that each P ′

i is a special almost increasing subpath, where 1 ≤ i ≤ k, and 
moreover 〈T (xk, yk), T (xk−1, yk−1), . . . , T (x1, y1)〉, which are obtained through the Prev table, form a partial result of P1
(i.e., a subsequence of β(P1)). Therefore, to recover the complete result of P1, as described in Procedure 3, we need to solve 
another problem called specialized LCaIS problem.

Specialized LCaIS problem
Input: Two sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 with a1 = b1 and a constant c > 0.
Output: A longest almost increasing path in the matching table T for A and B such that T (1, 1) is its representative point.

Let δ(i, j) be the length of L P i
j(1, 1) in sub-table Ti, j . According to Lemma 1, we can solve the specialized LCaIS problem 

by the following recursive formula. For all 2 ≤ i ≤ n and 2 ≤ j ≤ m,

δ(i, j) =
{

δ(i − 1, j − 1) + 1, if α(1,1) − c < α(i, j) < α(1,1)

max{δ(i − 1, j), δ(i, j − 1)}, otherwise.
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Procedure 3 Backtrack(L(n, m), Prev).
Input: Set L(n, m) and table Prev .
Output: An LCaIS of two input sequences A and B .
1: Let (top, le f t, lmax) ∈ L(n, m) with lmax = max{k : (u, v, k) ∈ L(n, m)};
2: (bottom, right) = (n, m);
3: Let S be a specialized LCaIS of Atop,bottom and Blef t,right ;
4: while (top, le f t) �= (0, 0) do
5: (bottom, right) = (top − 1, le f t − 1);
6: (top, le f t) = Prev(top, le f t);
7: Let S ′ be a specialized LCaIS of Atop,bottom and Blef t,right ;
8: S = S ′ · S; /* S ′ · S denotes the concatenation of S ′ and S */
9: end while

The boundary condition of the above formula is that δ(i, 1) = δ(1, j) = 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. It is interesting 
that this formula is very similar to that for computing the LCS between two strings. Therefore, we can solve the specialized 
LCaIS problem in quadratic time and space using the method similar to that for solving the traditional LCS problem [2–5].

Clearly, the space used for each L(i, j) in Algorithm 1 is O (l), where l denotes the length of an LCaIS of the two input 
sequences. Since we can use two alternative rows to fill the entire table L and the size of the table Prev is O (nm), the space 
complexity of Algorithm 1 is O (m) × O (l) + O (nm) = O (nm). The time for constructing L(i, j) is O (l) regardless of whether 
(i, j) is a matched pair or not. Moreover, the backtracking procedure for obtaining the specialized LCaIS needs O (nm) time. 
As a result, the total time complexity of Algorithm 1 is O (nm) × O (l) + O (nm) = O (nml).

Theorem 1. Algorithm 1 solves the LCaIS problem in O (nml) time and O (nm) space, where n and m are the lengths of two input 
sequences and l is the length of their LCaIS.

Note that if only the length of the LCaIS between two input sequences is computed, then it is not hard to see that our 
algorithm can do this job by using only O (l min(m, n)) space.

4. Conclusion

In this work, we studied the LCaIS problem on two sequences even with repeated elements. We presented a correct 
dynamic programming algorithm to solve this LCaIS problem in O (nml) time and O (nm) space, where n and m are the 
lengths of the two input sequences and l is the length of their LCaIS. Our algorithm has overcome the limitation and 
shortcoming in the algorithm proposed by Moosa et al. [1], which does not allow repeated elements in its input sequences 
and can produce erroneous results for some instances. Recall that according to the definition of the LCaIS problem, the input 
parameter c is required to be positive (i.e., c > 0). However, if it is allowed to be zero (i.e., c = 0), then the LCaIS problem 
becomes the LCIS problem. From the point of this view, the LCIS problem can be considered as a special case of the LCaIS 
problem. In the matching table, moreover, the representative entry of an increasing path for the LCIS problem is always at 
the last position of the path, while the representative entry of an almost increasing path for the LCaIS problem can be at 
any position. Currently, the LCIS problem is already known to be solvable in O (nm) time [6]. Therefore, it will be interesting 
in future to study how to design more time efficient algorithms to solve the LCaIS problem.
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