
Theoretical Computer Science 854 (2021) 44–51
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Computing a longest common almost-increasing subsequence

of two sequences

Toan Thang Ta, Yi-Kung Shieh, Chin Lung Lu ∗

Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 September 2019
Received in revised form 5 May 2020
Accepted 8 November 2020
Available online 20 November 2020

Keywords:
Algorithm
Dynamic programming
Longest common almost-increasing
subsequence

Given a positive constant c, a sequence S = 〈s1, s2, . . . , sk〉 of k numbers is said to be
almost increasing if and only if si > max

1≤ j<i
s j − c for all 1 < i ≤ k. A longest common

almost-increasing subsequence (LCaIS) between two input sequences is a longest common
subsequence that is also an almost increasing sequence. We found out that the existing
algorithm proposed by Moosa et al. [1] to find an LCaIS of two sequences without repeated
elements gives an incorrect result for some instances. In this work, we present a dynamic
programming algorithm that can correctly compute an LCaIS between any two sequences
with repeated elements in O (nml) time and O (nm) space, where n and m are the lengths
of two input sequences and l is the length of the output LCaIS.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Longest common subsequence (LCS) is a commonly used metric to measure the similarity of two sequences [2–5]. Given
a sequence S = 〈s1, s2, . . . , sk〉 of k numbers, S is an increasing sequence if si > si−1 for all 1 < i ≤ k. By applying the
increasing condition to LCS, Yang et al. [6] designed a dynamic programming algorithm to find a longest common increasing
subsequence (LCIS) between two comparable sequences in O (nm) time and space, where n and m are the lengths of two
input sequences. In fact, the LCIS problem can be applied to compute the alignment of two large-scale genomes [7,8] and is
an extension of the well-known longest increasing subsequence (LIS) problem that can be solved in optimal time O (n log n)

[9–11], where n is the length of the original sequence.
Recently, Elmasry [12] introduced the concept of an almost-increasing subsequence. That is, given a constant c > 0, a

sequence S = 〈s1, s2, . . . , sk〉 is said to be almost increasing if and only if si > max
1≤ j<i

s j − c for all 1 < i ≤ k. Elmasry used this

concept to introduce the problem of finding a longest almost-increasing subsequence (LaIS) in a given sequence of length n,
which can be considered as a relaxed version of LIS problem when the elements of the input sequence have a small amount
of noise. In addition, Elmasry [12] designed an optimal algorithm that solves the LaIS problem in O (n log l) time, where l
is the length of the output subsequence. Later, Moosa et al. [1] studied the problem of finding a longest common almost-
increasing subsequence (LCaIS) between two sequences. Formally, given two sequences of numbers A = 〈a1, a2, . . . , an〉 and
B = 〈b1, b2, . . . , bm〉 and a constant c > 0, a common almost-increasing subsequence of A and B is a common sequence C =
〈ai1 = b j1 , ai2 = b j2 , . . . , aik = b jk 〉, where 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m, such that C itself is
an almost increasing sequence. A longest common almost-increasing subsequence of A and B is a common almost-increasing

* Corresponding author.
E-mail addresses: toanthanghy@gmail.com (T.T. Ta), d9762814@oz.nthu.edu.tw (Y.-K. Shieh), cllu@cs.nthu.edu.tw (C.L. Lu).
https://doi.org/10.1016/j.tcs.2020.11.035
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.11.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.11.035&domain=pdf
mailto:toanthanghy@gmail.com
mailto:d9762814@oz.nthu.edu.tw
mailto:cllu@cs.nthu.edu.tw
https://doi.org/10.1016/j.tcs.2020.11.035

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
subsequence having the maximum length. Note that the LCaIS problem considered by Moosa et al. [1] requires no repeated
elements in each input sequence, i.e., ai �= au and b j �= bv for all i �= u and j �= v . In [1], Moosa et al. finally gave a dynamic
programming algorithm that uses O (n2) space and runs in O (n(n + c2)) time to find an LCaIS between two sequences of
equal length n.

We have found, however, that the algorithm proposed by Moosa et al. [1] gives an incorrect result for the following
simple instance. Consider two sequences A = 〈11, 7, 9, 8, 6〉 and B = 〈9, 8, 11, 7, 6〉 and a constant c = 5. Their algorithm
outputs 〈7, 6〉 of length 2 as an LCaIS, but it can be easily verified that the sequence 〈9, 8, 6〉 of length 3 is a common
almost-increasing subsequence of A and B and clearly 〈7, 6〉 is not an LCaIS between A and B . The flaw in this algorithm
is that when constructing common almost-increasing subsequences of 〈11, 7, 9, 8〉 and 〈9, 8, 11, 7〉, there are four maximal
common almost-increasing sequences, namely 〈9〉 and 〈11〉 of length 1 as well as 〈9, 8〉 and 〈11, 7〉 of length 2. The algo-
rithm only keeps the sequence of the smallest ending value among sequences having the same length (i.e., 〈9〉 and 〈11, 7〉
in this case) for later computation. Since the sequence 〈9, 8〉 is removed, the algorithm cannot produce a common almost-
increasing subsequence 〈9, 8, 6〉 of length 3. The reason why removing the sequence of larger ending value when there exist
more than one sequence of equal length was not strictly proved in [1]. This motivates us to devise a correct algorithm to
solve the LCaIS problem in this work.

In this study, we present a dynamic programming algorithm for computing an LCaIS of two input sequences of lengths n
and m and its time and space complexities are O (nml) and O (nm), respectively, where l is the length of the output LCaIS.
Note that computing just the length of the LCaIS can be done using less space (i.e., O (l min(m, n))) by our algorithm. It is
worth mentioning that the LCaIS problem we consider in this work allows repeated elements in the input sequences, while
the LCaIS problem studied by Moosa et al. [1] does not.

The rest of the paper is organized as follows. In Section 2, we provide some notations to facilitate the presentation of
our algorithm. Next, we discuss the main algorithm and analyze its time and space complexities in Section 3. Finally, we
give a brief conclusion in Section 4.

2. Preliminaries

For a sequence of n numbers S = 〈s1, s2, . . . , sn〉, we use |S| = n to denote the length of S and Si, j = 〈si, si+1, . . . , s j〉 to
denote a substring of S from the i-th to the j-th element, where 1 ≤ i ≤ j ≤ n. We define the representative of S , written as
γ (S), to be the last maximum element in S . For example, if S = 〈5, 3, 5, 1〉, then γ (S) is s3 even though both s1 and s3 are
maxima in S . The representative of a sequence is written in bold style in all examples given in this work.

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 be two sequences. We call a pair (i, j) as a matched pair if and only
if ai = b j , where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Otherwise, it is called a mismatched pair. For a matched pair (i, j), we utilize
α(i, j) to indicate either ai or b j , i.e., α(i, j) = ai = b j . With these two sequences A and B , we also create an n × m
two-dimensional table T , called matching table, in which T (i, j) = ‘∗’ if ai = b j ; otherwise T (i, j) = ε, where ε denotes
the empty character. Note that a star entry T (i, j) corresponds to a matched pair (i, j) and we say that α(i, j) is the
value of T (i, j). Basically, a common almost increasing subsequence (CaIS) of length k between two sequences A and B
corresponds to an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) consisting of star entries in T with 1 ≤ i1 <

i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk ≤ m. Conversely, an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk)

in T yields a unique CaIS of A and B , denoted as β(P), by concatenating the values of star entries in P , i.e., β(P) =
〈α(i1, j1), α(i2, j2), . . . , α(ik, jk)〉. Therefore, our problem is equivalent to finding a longest almost increasing path in the
matching table T of two input sequences A and B . Given an almost increasing path P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) in
T , we call the star entry T (ih, jh) in P as the representative entry (or point) of P if α(ih, jh) is the representative of β(P)

for some 1 ≤ h ≤ k. We use ω(P) to denote the value of the representative point in P and |P | to indicate its length, i.e.,
ω(P) = α(ih, jh) and |P | = k. Actually, ω(P) is the maximum value of the sequence β(P). For convenience, we use Ti, j to
denote a sub-table of T whose top-left entry is T (1, 1) and bottom-right entry is T (i, j). Note that Ti, j is an empty table
if i = 0 or j = 0. For each star entry T (u, v) in Ti, j , we utilize L P i

j(u, v) to indicate a longest almost increasing path in
Ti, j such that T (u, v) is its representative point. For example, consider A = 〈3, 2, 1, 3, 2〉 and B = 〈1, 3, 3, 2〉. When c = 2,
we have L P 5

4(4, 3) = T (1, 2), T (4, 3), T (5, 4) and β(L P 5
4(4, 3)) = 〈α(1, 2), α(4, 3), α(5, 4)〉 = 〈3, 3, 2〉 as illustrated in Fig. 1.

Actually, it can be verified that P = T (3, 1), T (4, 3), T (5, 4) is another longest almost increasing path in T5,4 such that
T (4, 3) is the representative point of P as well.

3. Our dynamic programming algorithm for solving the LCaIS problem

We use L(i, j) to denote the set of L P i
j(u, v) for all star entries T (u, v) in Ti, j , i.e., L(i, j) = {L P i

j(u, v) : T (u, v) =‘∗’, 1 ≤
u ≤ i and 1 ≤ v ≤ j}. In fact, if we can compute L(i, j) for all i = 1, 2, . . . , n and j = 1, 2, . . . , m, then the longest path in
L(n, m) will yield an LCaIS of A and B . By definition, L(i, j) =∅ if i = 0 or j = 0. Now, suppose that L(i −1, j −1), L(i −1, j)
and L(i, j − 1) are already known. Then we can construct L(i, j) from these sets according to the approaches described in
the following two cases.

Case 1: T (i, j) is an empty entry. For each star entry T (u, v) in Ti, j , we add the longest path among all paths in
L(i − 1, j) ∪ L(i, j − 1) such that their representative points are T (u, v) into L(i, j).
45

MikSuki
下劃線

USER
Highlight

USER
Underline

USER
Highlight

USER
Underline

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Underline

USER
Underline

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
Fig. 1. Matching table T of A = 〈3, 2, 1, 3, 2〉 and B = 〈1, 3, 3, 2〉. When c = 2, we have L P 5
4(4, 3) = T (1, 2), T (4, 3), T (5, 4) and its yielded CaIS

〈α(1, 2), α(4, 3), α(5, 4)〉 = 〈3, 3, 2〉.

i\ j 3 4

3

β(L P 3
4(1,2)) = 〈3,2〉

β(L P 3
4(1,3)) = 〈3,2〉

β(L P 3
4(2,4)) = 〈2〉

β(L P 3
4(3,1)) = 〈1〉

4

β(L P 4
3(1,2)) = 〈3〉 β(L P 4

4(1,2)) = 〈3,2〉
β(L P 4

3(1,3)) = 〈3〉 β(L P 4
4(1,3)) = 〈3,2〉

β(L P 4
3(3,1)) = 〈1〉 β(L P 4

4(2,4)) = 〈2〉
β(L P 4

3(4,2)) = 〈1,3〉 β(L P 4
4(3,1)) = 〈1〉

β(L P 4
3(4,3)) = 〈3,3〉 β(L P 4

4(4,2)) = 〈1,3〉
β(L P 4

4(4,3)) = 〈3,3〉

Fig. 2. L(4,4) is obtained from L(4,3) and L(3,4), where (4,4) is a mismatched pair.

Case 2: T (i, j) is a star entry. First, we construct L P i
j(i, j) by searching for the longest path P in L(i − 1, j − 1) such

that ω(P) ≤ α(i, j) and then appending T (i, j) to P . Second, we append T (i, j) to every path P in L(i − 1, j − 1) satisfying
α(i, j) < ω(P) < α(i, j) + c. Now, let L′(i, j) denote the set of all paths obtained in the above two steps. Finally, for each
star entry T (u, v) in Ti, j , we add the longest path among all paths in L(i − 1, j) ∪ L(i, j − 1) ∪ L′(i, j) such that their
representative points are T (u, v) into L(i, j).

For example, consider two sequences A, B and constant c as given in Fig. 1. Then the computations of L(4, 4) (respec-
tively, L(5, 4)) is briefly illustrated in Fig. 2 (respectively, Fig. 3) using the method described in the aforementioned Case 1
(respectively, Case 2), where for each almost increasing path P , we only write down its yielded CaIS β(P) for simplicity.

In the following, we discuss how to efficiently implement the basic idea mentioned above to solve the LCaIS problem.

Definition 1. Let P and Q be two almost increasing paths in a sub-table Ti, j . We say that P dominates Q if and only if
ω(P) ≤ ω(Q) and |P | > |Q |.

Below, we simplify L(i, j) by removing those paths that are useless to find the optimal solution of the LCaIS problem.
First, we remove all dominated paths in L(i, j). Next, if the resulting L(i, j) contains k > 1 paths L P i

j(u1, v1), L P i
j(u2, v2),

. . ., L P i
j(uk, vk) of the same length with α(u1, v1) ≤ α(u2, v2) ≤ . . . ≤ α(uk, vk), then we retain L P i

j(u1, v1) and remove
k − 1 remaining paths from L(i, j). For convenience, we call these k − 1 removed paths as redundant paths in L(i, j). Finally,
we replace each L P i

j(u, v) in L(i, j) by a 3-tuple (u, v, |L P i
j(u, v)|) and call the final L(i, j) as a simplified L(i, j). Fig. 4

shows an example of simplifying L(4, 3) as shown in Fig. 3 according to the above discussion. It is not hard to see that a
3-tuple with the maximum length in the simplified L(n, m) corresponds to a longest almost increasing path in the matching
table T that yields an LCaIS of the input sequences A and B . It can also be observed that every two 3-tuples (u, v, k) and
(u′, v ′, k′) in a simplified L(i, j) satisfy the conditions k �= k′ and α(u, v) < α(u′, v ′) if and only if k < k′ . This means that
the cardinal number of a simplified L(i, j) is at most l, where l denotes the length of the output for the LCaIS problem.

In Procedure 1, we describe an algorithm to compute simplified L′(i, j) directly from simplified L(i − 1, j − 1).
For simplicity, in the rest of this section, we assume that L(i, j), as well as L′(i, j), is already simplified for any 1 ≤ i ≤ n

and 1 ≤ j ≤ m when we mention it.
46

USER
Underline

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Underline

USER
Highlight

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
i\ j 3 4

4

β(L P 4
3(1,2)) = 〈3〉 β(L P 4

4(1,2)) = 〈3,2〉
β(L P 4

3(1,3)) = 〈3〉 β(L P 4
4(1,3)) = 〈3,2〉

β(L P 4
3(3,1)) = 〈1〉 β(L P 4

4(2,4)) = 〈2〉
β(L P 4

3(4,2)) = 〈1,3〉 β(L P 4
4(3,1)) = 〈1〉

β(L P 4
3(4,3)) = 〈3,3〉 β(L P 4

4(4,2)) = 〈1,3〉
β(L P 4

4(4,3)) = 〈3,3〉

5

β(L P 5
3(1,2)) = 〈3〉 Step 1:

β(L P 5
3(1,3)) = 〈3〉 β(L P 5

4(5,4)) = 〈1,2〉
β(L P 5

3(3,1)) = 〈1〉 Step 2:

β(L P 5
3(4,2)) = 〈1,3〉 β(L P 5

4(1,2)) = 〈3,2〉
β(L P 5

3(4,3)) = 〈3,3〉 β(L P 5
4(1,3)) = 〈3,2〉

β(L P 5
4(4,2)) = 〈1,3,2〉

β(L P 5
4(4,3)) = 〈3,3,2〉

Step 3:

β(L P 5
4(1,2)) = 〈3,2〉

β(L P 5
4(1,3)) = 〈3,2〉

β(L P 5
4(2,4)) = 〈2〉

β(L P 5
4(3,1)) = 〈1〉

β(L P 5
4(4,2)) = 〈1,3,2〉

β(L P 5
4(4,3)) = 〈3,3,2〉

β(L P 5
4(5,4)) = 〈1,2〉

Fig. 3. Three steps for constructing L(5,4), where (5,4) is a matched pair.

β(L P 4
3(1, 2)) = 〈3〉

β(L P 4
3(1, 3)) = 〈3〉

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

β(L P 4
3(4, 3)) = 〈3, 3〉

(a)

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

β(L P 4
3(4, 3)) = 〈3, 3〉

(b)

β(L P 4
3(3, 1)) = 〈1〉

β(L P 4
3(4, 2)) = 〈1, 3〉

(c)

(3, 1, 1)

(4, 2, 2)

(d)

Fig. 4. (a) Original L(4, 3), (b) temporary L(4, 3) after removing dominated paths L P 4
3(1, 2) and L P 4

3(1, 3), (c) temporary L(4, 3) after removing a redundant
path L P 4

3(4, 3) and (d) simplified L(4, 3).

Definition 2. Given any two sets of 3-tuples L(i1, j1) and L(i2, j2), where 1 ≤ i1, i2 ≤ n and 1 ≤ j1, j2 ≤ m, the merging
operation ⊕ is defined by L(i1, j1) ⊕ L(i2, j2) that equals to the set obtained by first uniting L(i1, j1) and L(i2, j2) and then
removing all the dominated and redundant 3-tuples.

In the following lemma, we derive a simpler recursive formula for more efficiently computing L(i, j). The intuition behind
this lemma is that if T (i, j) is a star entry, then every path in L(i − 1, j) ∪ L(i, j − 1) is either dominated by some path in
L(i − 1, j − 1) ∪ L′(i, j) or redundant when compared with some path in L(i − 1, j − 1) ∪ L′(i, j).

Lemma 1. If (i, j) is a matched pair, then L(i, j) = L(i − 1, j − 1) ⊕ L′(i, j); otherwise L(i, j) = L(i, j − 1) ⊕ L(i − 1, j). In other
words, we have

L(i, j) =
{

L(i − 1, j − 1) ⊕ L′(i, j), if T (i, j) = ‘∗’

L(i, j − 1) ⊕ L(i − 1, j), otherwise.
47

USER
Highlight

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
Procedure 1 Append1(L(i − 1, j − 1), c).
Input: Simplified L(i − 1, j − 1) and constant c > 0.
Output: Simplified L′(i, j).

1: L′(i, j) =∅; lmax = 0;
2: for each (u, v, k) in L(i − 1, j − 1) do
3: if α(u, v) ≤ α(i, j) and lmax < k then
4: lmax = k;
5: end if
6: if α(i, j) < α(u, v) < α(i, j) + c then
7: L′(i, j) = L′(i, j) ∪ {(u, v, k + 1)};
8: end if
9: end for

10: L′(i, j) = L′(i, j) ∪ {(i, j, lmax + 1)};
11: return L′(i, j);

Proof. To prove the correctness of Lemma 1, it is sufficient to show that for any non-dominated path P in the sub-table
Ti, j , there exists a 3-tuple (u, v, k) in L(i, j) such that α(u, v) ≤ ω(P) and k = |P |, where L(i, j) is computed by the formula
stated in Lemma 1 and L′(i, j) is obtained by Procedure 1. Below we prove it by induction on i and j.

Basis step (i = 0 or j = 0): The claim clearly holds since L(i, j) = ∅ when i = 0 or j = 0 and there is no path in the
empty table Ti, j .

Induction step (i > 0 and j > 0): It can be verified that for each 3-tuple in L′(i, j) obtained by Procedure 1, there exists
a corresponding almost increasing path in Ti, j . Let P = T (i1, j1), T (i2, j2), . . . , T (ik, jk) be a non-dominated path in Ti, j . It
should be noted that a non-dominated path in Ti, j can be a redundant path. If (i, j) is a matched pair, then we prove the
claim according to two possible locations of the matched pair (ik, jk).

Case 1: (ik, jk) = (i, j). Let P ′ = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1). We show below that P ′ is actually a non-dominated
path in Ti−1, j−1. Suppose that P ′ is dominated by another almost increasing path Q ′ in Ti−1, j−1, i.e., ω(Q ′) ≤ ω(P ′) and
|Q ′| > |P ′|. Let R be the path obtained by appending star entry T (i, j) into Q ′ . Then R is an almost increasing path in
Ti, j with ω(R) = max{ω(Q ′), α(i, j)} ≤ max{ω(P ′), α(i, j)} = ω(P) but |R| = |Q ′| + 1 > |P ′| + 1 = k = |P |. As a result, R
dominates P in Ti, j , a contradiction. Hence, we can conclude that P ′ is a non-dominated path in Ti−1, j−1. By induction
hypothesis, there exists a 3-tuple (u, v, k − 1) in L(i − 1, j − 1) such that α(u, v) ≤ ω(P ′) and k − 1 = |P ′|. This also indicates
that α(i, j) > ω(P ′) − c ≥ α(u, v) − c.

Case 1.1: α(i, j) < α(u, v). Then (u, v, k) ∈ L′(i, j) by line 7 in Procedure 1 and the representative point of P ′ is identical
to that of P , i.e., ω(P) = ω(P ′) = α(u, v). Since P is a non-dominated path in Ti, j , the 3-tuple (u, v, k) cannot be dominated
by other tuples in L′(i, j) or L(i − 1, j − 1). Therefore, there is a tuple (x, y, k) in L(i, j), which is obtained by performing
L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(u, v) = ω(P) and k = |P |.

Case 1.2: α(i, j) ≥ α(u, v). Then (i, j, k) is a candidate tuple in L′(i, j) according to lines 4 and 10 in Procedure 1. In this
case, the representative point of P is clearly T (i, j). Hence, the 3-tuple (i, j, k) actually corresponds to P in Ti, j . Since P is a
non-dominated path in Ti, j , the 3-tuple (i, j, k) cannot be dominated by other tuples in L′(i, j) or L(i −1, j −1). Hence, there
exists a tuple (x, y, k) in L(i, j), which is obtained by performing L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(i, j) = ω(P)

and k = |P |.
Case 2: (ik, jk) �= (i, j). Assume that P is a path in Ti−1, j . There are two possibilities for jk .

Case 2.1: jk = j. Let Q = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1), T (i, j). Since α(ik, jk) = b j = α(i, j), Q is an almost
increasing path in Ti, j with |Q | = k = |P | and ω(Q) = ω(P). As P is a non-dominated path in Ti, j , Q also is. Let
P ′ = T (i1, j1), T (i2, j2), . . . , T (ik−1, jk−1). Because Q is a non-dominated path in Ti, j , P ′ is a non-dominated path in
Ti−1, j−1 using similar argument to that in Case 1. By induction hypothesis, there exists a 3-tuple (u, v, k −1) in L(i −1, j −1)

such that α(u, v) ≤ ω(P ′) and k − 1 = |P ′|. By the arguments in Cases 1.1 and 1.2, we can conclude that there is a tuple
(x, y, k) in L(i, j) such that α(x, y) ≤ ω(P) and k = |P |.

Case 2.2: jk < j. Clearly, P is a non-dominated path in Ti−1, j−1. By induction hypothesis, there exists a 3-tuple (u, v, k)

in L(i − 1, j − 1) such that α(u, v) ≤ ω(P) and k = |P |. Since P is also a non-dominated path in Ti, j , the 3-tuple (u, v, k)

cannot be dominated by other tuples in L′(i, j) or L(i − 1, j − 1). Thus, there is a tuple (x, y, k) in L(i, j), which is obtained
by performing L(i − 1, j − 1) ⊕ L′(i, j), such that α(x, y) ≤ α(u, v) ≤ ω(P) and k = |P |.

On the other hand, suppose that P is a path in Ti, j−1. Then using the arguments similar to Cases 2.1 and 2.2, we can
prove that there exists a tuple (x, y, k) in L(i, j) such that α(x, y) ≤ ω(P) and k = |P |.

If (i, j) is a mismatched pair, then P is a path either in Ti−1, j or Ti, j−1. Assume that P is a path in Ti−1, j (respectively,
Ti, j−1). Then P is a non-dominated path in Ti−1, j (respectively, Ti, j−1). By induction hypothesis, there exists a 3-tuple
(u, v, k) in L(i − 1, j) (respectively, L(i, j − 1)) such that α(u, v) ≤ ω(P) and k = |P |. Since P is a non-dominated path
in Ti, j , the 3-tuple (u, v, k) cannot be dominated by other tuples in L(i − 1, j) or L(i, j − 1). Therefore, there exists a
tuple (x, y, k) in L(i, j), which is obtained by performing L(i − 1, j) ⊕ L(i, j − 1), such that α(x, y) ≤ α(u, v) ≤ ω(P) and
k = |P |. �
48

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
Using the recursive formula in Lemma 1, we can compute L(n, m), in which a 3-tuple (u′, v ′, lmax) with lmax = max{k :
(u, v, k) ∈ L(n, m)}) represents a longest almost increasing path in the matching table T . To help recover this longest path,
we build an n × m table Prev as follows. When computing L P i

j(i, j), we use entry Prev(i, j) to store the location (x, y)

in T such that L P i−1
j−1(x, y) is a longest path in L(i − 1, j − 1) satisfying α(x, y) ≤ α(i, j). That is, L P i−1

j−1(x, y) is the path
selected to construct L P i

j(i, j) by appending it with T (i, j). Based on Lemma 1, we describe Algorithm 1 below that can
more efficiently compute an LCaIS between two input sequences.

Algorithm 1 Finding an LCaIS of two sequences.
Input: Two sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 and constant c > 0.
Output: An LCaIS between A and B .

1: for i = 0 to n do
2: L(i, 0) =∅;
3: end for
4: for j = 0 to m do
5: L(0, j) =∅;
6: end for
7: for i = 1 to n do
8: for j = 1 to m do
9: if ai = b j then

10: L(i, j) = Append2(L(i − 1, j − 1), c) ⊕ L(i − 1, j − 1);
11: else
12: L(i, j) = L(i − 1, j) ⊕ L(i, j − 1);
13: end if
14: end for
15: end for
16: Backtrack(L(n, m), Prev);

Procedure 2 Append2(L(i − 1, j − 1), c).
Input: Set L(i − 1, j − 1) and constant c > 0.
Output: L′(i, j).

1: L′(i, j) =∅; lmax = 0; (x, y) = (0, 0);
2: for each (u, v, k) in L(i − 1, j − 1) do
3: if α(u, v) ≤ α(i, j) and lmax < k then
4: lmax = k; (x, y) = (u, v);
5: end if
6: if α(i, j) < α(u, v) < α(i, j) + c then
7: L′(i, j) = L′(i, j) ∪ {(u, v, k + 1)};
8: end if
9: end for

10: L′(i, j) = L′(i, j) ∪ {(i, j, lmax + 1)};
11: Prev(i, j) = (x, y);
12: return L′(i, j);

Note that the information in the Prev table can only be used to construct a partial result of the LCaIS of the two in-
put sequences. The reason is explained as follows. Suppose that (x1, y1, lmax) is a 3-tuple in L(n, m) with lmax = max{k :
(u, v, k) ∈ L(n, m)} and P1 denotes its corresponding almost increasing path in T (n, m). Clearly, T (x1, y1) is the representa-
tive entry in P1. Suppose further that Prev(x1, y1) = (x2, y2). Then we can utilize the value of Prev(x1, y1) to find another
entry T (x2, y2) in P1 that occurs before (but not necessarily immediately before) T (x1, y1). Let P ′

1 be the subpath of P1
from the position of T (x1, y1) to the end of P1, and P2 = P1 − P ′

1 (meaning that P2 is obtained from P1 by removing
its P ′

1). It is not hard to see that T (x2, y2) becomes the representative entry of P2 and P ′
1 is a kind of special almost in-

creasing subpath whose representative is the first entry of P ′
1. By continuing this argument, we actually can partition P1

into several subpaths, say P ′
1, P ′

2, . . . , P
′
k , such that each P ′

i is a special almost increasing subpath, where 1 ≤ i ≤ k, and
moreover 〈T (xk, yk), T (xk−1, yk−1), . . . , T (x1, y1)〉, which are obtained through the Prev table, form a partial result of P1
(i.e., a subsequence of β(P1)). Therefore, to recover the complete result of P1, as described in Procedure 3, we need to solve
another problem called specialized LCaIS problem.

Specialized LCaIS problem
Input: Two sequences A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bm〉 with a1 = b1 and a constant c > 0.
Output: A longest almost increasing path in the matching table T for A and B such that T (1, 1) is its representative point.

Let δ(i, j) be the length of L P i
j(1, 1) in sub-table Ti, j . According to Lemma 1, we can solve the specialized LCaIS problem

by the following recursive formula. For all 2 ≤ i ≤ n and 2 ≤ j ≤ m,

δ(i, j) =
{

δ(i − 1, j − 1) + 1, if α(1,1) − c < α(i, j) < α(1,1)

max{δ(i − 1, j), δ(i, j − 1)}, otherwise.
49

USER
Highlight

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
Procedure 3 Backtrack(L(n, m), Prev).
Input: Set L(n, m) and table Prev .
Output: An LCaIS of two input sequences A and B .
1: Let (top, le f t, lmax) ∈ L(n, m) with lmax = max{k : (u, v, k) ∈ L(n, m)};
2: (bottom, right) = (n, m);
3: Let S be a specialized LCaIS of Atop,bottom and Blef t,right ;
4: while (top, le f t) �= (0, 0) do
5: (bottom, right) = (top − 1, le f t − 1);
6: (top, le f t) = Prev(top, le f t);
7: Let S ′ be a specialized LCaIS of Atop,bottom and Blef t,right ;
8: S = S ′ · S; /* S ′ · S denotes the concatenation of S ′ and S */
9: end while

The boundary condition of the above formula is that δ(i, 1) = δ(1, j) = 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. It is interesting
that this formula is very similar to that for computing the LCS between two strings. Therefore, we can solve the specialized
LCaIS problem in quadratic time and space using the method similar to that for solving the traditional LCS problem [2–5].

Clearly, the space used for each L(i, j) in Algorithm 1 is O (l), where l denotes the length of an LCaIS of the two input
sequences. Since we can use two alternative rows to fill the entire table L and the size of the table Prev is O (nm), the space
complexity of Algorithm 1 is O (m) × O (l) + O (nm) = O (nm). The time for constructing L(i, j) is O (l) regardless of whether
(i, j) is a matched pair or not. Moreover, the backtracking procedure for obtaining the specialized LCaIS needs O (nm) time.
As a result, the total time complexity of Algorithm 1 is O (nm) × O (l) + O (nm) = O (nml).

Theorem 1. Algorithm 1 solves the LCaIS problem in O (nml) time and O (nm) space, where n and m are the lengths of two input
sequences and l is the length of their LCaIS.

Note that if only the length of the LCaIS between two input sequences is computed, then it is not hard to see that our
algorithm can do this job by using only O (l min(m, n)) space.

4. Conclusion

In this work, we studied the LCaIS problem on two sequences even with repeated elements. We presented a correct
dynamic programming algorithm to solve this LCaIS problem in O (nml) time and O (nm) space, where n and m are the
lengths of the two input sequences and l is the length of their LCaIS. Our algorithm has overcome the limitation and
shortcoming in the algorithm proposed by Moosa et al. [1], which does not allow repeated elements in its input sequences
and can produce erroneous results for some instances. Recall that according to the definition of the LCaIS problem, the input
parameter c is required to be positive (i.e., c > 0). However, if it is allowed to be zero (i.e., c = 0), then the LCaIS problem
becomes the LCIS problem. From the point of this view, the LCIS problem can be considered as a special case of the LCaIS
problem. In the matching table, moreover, the representative entry of an increasing path for the LCIS problem is always at
the last position of the path, while the representative entry of an almost increasing path for the LCaIS problem can be at
any position. Currently, the LCIS problem is already known to be solvable in O (nm) time [6]. Therefore, it will be interesting
in future to study how to design more time efficient algorithms to solve the LCaIS problem.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported in part by Ministry of Science and Technology of Taiwan under grant MOST107-2221-E-007-
066-MY2.

References

[1] J.M. Moosa, M.S. Rahman, F.T. Zohora, Computing a longest common subsequence that is almost increasing on sequences having no repeated elements,
J. Discret. Algorithms 20 (2013) 12–20.

[2] M. Crochemore, C. Hancart, T. Lecroq, Algorithms on Strings, Cambridge University Press, 2007.
[3] D. Gusfield, Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology, Cambridge University Press, 1997.
[4] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (1977) 664–675.
[5] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1974) 168–173.
[6] I.-H. Yang, C.-P. Huang, K.-M. Chao, A fast algorithm for computing a longest common increasing subsequence, Inf. Process. Lett. 93 (2005) 249–253.
[7] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, S.L. Salzberg, Alignment of whole genomes, Nucleic Acids Res. 27 (1999) 2369–2376.
[8] A.L. Delcher, A. Phillippy, J. Carlton, S.L. Salzberg, Fast algorithms for large-scale genome alignment and comparison, Nucleic Acids Res. 30 (2002)

2478–2483.
50

http://refhub.elsevier.com/S0304-3975(20)30673-3/bibBD7BC31A33E989FC782C37FFFAE2544Es1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibBD7BC31A33E989FC782C37FFFAE2544Es1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibC6D03775DCE2D3AB0D49EC9D3822306Cs1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibA7E6E41175EE42BF3964D7CFE281B9DFs1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibDC9A7A43E1D0B84CBB82186FF56ABAE4s1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibC0288F8A160EED7BFF4BE986CBCD91E1s1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bib43D4CFEF04D5CF85D5B5D5615BB2E4BDs1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibF9C3CB9AA4D82C88B96F6AAF7F4D0D90s1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bib9CA83595E74201A246A2B278EFC14D5Es1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bib9CA83595E74201A246A2B278EFC14D5Es1

T.T. Ta, Y.-K. Shieh and C.L. Lu Theoretical Computer Science 854 (2021) 44–51
[9] D.E. Knuth, Permutations, matrices, and generalized young tableaux, Pac. J. Math. 34 (1970) 709–727.
[10] P. Ramanan, Tight �(n lg n) lower bound for finding a longest increasing subsequence, Int. J. Comput. Math. 65 (1997) 161–164.
[11] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math. 13 (1961) 179–191.
[12] A. Elmasry, The longest almost-increasing subsequence, Inf. Process. Lett. 110 (2010) 655–658.
51

http://refhub.elsevier.com/S0304-3975(20)30673-3/bib7D8FD5B33B29DE3F3CC9F2BBFB6DC301s1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bib9042098D68277CA095EEF2853A946975s1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibFAB102AF757EF220FD5AF844C4DB938Cs1
http://refhub.elsevier.com/S0304-3975(20)30673-3/bibF311DA9F8A0C5AE0DEBC23B90DACFC9Bs1

	Computing a longest common almost-increasing subsequence of two sequences
	1 Introduction
	2 Preliminaries
	3 Our dynamic programming algorithm for solving the LCaIS problem
	4 Conclusion
	Declaration of competing interest
	Acknowledgements
	References

