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Abstract

This paper investigates an improved genetic algorithm on multiple automated guided vehicle

(multi-AGV) path planning. The innovations embody in two aspects. First, three-exchange

crossover heuristic operators are used to produce more optimal offsprings for getting more

information than with the traditional two-exchange crossover heuristic operators in the

improved genetic algorithm. Second, double-path constraints of both minimizing the total

path distance of all AGVs and minimizing single path distances of each AGV are exerted,

gaining the optimal shortest total path distance. The simulation results show that the total

path distance of all AGVs and the longest single AGV path distance are shortened by using

the improved genetic algorithm.

Introduction

Multi-objective optimization have been applied in many fields, including engineering [1–5],

transportation [6–10] and logistics [11–15]. A multi-objective problem is to search for a solu-

tion that satisfies all objective functions between conflicting objectives. Multi-objective optimi-

zation methods include classical optimization algorithms (like weighted sum methods, ε-

constraint methods, interactive methods, Pareto-dominated methods) [16–19] and intelligent

optimization methods (like evolution based algorithms and swarm based algorithms) [20–24].

Multiple automated guided vehicles (multi-AGVs), characterized by multi-objectives, are

playing an increasingly important role in the area of distribution logistics due to their high effi-

ciency for material handling among workstations. The applications of AGV systems face sev-

eral important issues: AGVs number determining [25–27], path planning [28–30] and

constraint exerting [31–33], etc.

Determining the optimal numbers of vehicles is the fundamental problem in the manage-

ment of an AGV system. Several methodologies have been proposed to achieve this goal and

their main objective is to attend all tasks on time with a sufficient numbers of vehicles [25–27,

34]. For example, Vivaldini et al. presented a new module to estimate the optimal numbers of

AGVs for the execution of a set of tasks by integrating task assignment and routing [27]. Ji and
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Xia built a new model for an AGV system and studied the minimum vehicle numbers by an

approximately analytical method based on the binary search [34]. Koo et al. studied an AGV

fleet size model where part waiting time is estimated for various vehicle dispatching rules to

determine the proper AGV fleet size [26].

The multi-AGV path planning is most important in ensuring an efficient flow of materials

during the production process. The path planning involves three issues in dispatching, sched-

uling and routing of tasks at the same time. The multi-AGV path planning problem [35–37] is

similar to the traveling salesman problem (TSP) [38–40] in the aspect of finding the shortest

tour/time which has extremely large search spaces and is very difficult to solve. Smolic-Rocak

et al. used time windows in a vector form to solve the shortest path problem for multi-AGV

systems [36]. Draganjac et al. implemented a shortest feasible path planning algorithm consid-

ering nonholonomic vehicle constraints for multi-AGV systems [35]. Wang et al. proposed a

multi-offspring genetic algorithm for the TSP by producing excellent individuals [38]. Wang

et al. investigated a novel memetic algorithm with a competitive capacity to maintain the total

distance as short as possible for the TSP [39]. Jiang and Yan developed a discrete fruit fly opti-

mization algorithm for the TSP [40].

There existing various constraints in multi-AGV path planning, e.g. collision-free con-

straints [41–43], time window constraints [36, 44], and time/distance constraints [35, 45]. This

paper investigates an improve genetic algorithm for multi-AGV path planning by exerting

double-path restrictions on both the total path distance of all AGVs and single path distances

of each AGV, and by choosing three-exchange crossover heuristic operators for crossover

operation.

Traditional genetic algorithms adopted two-exchange crossover operators for crossover

operation, that is, using two parent individuals to produce a progeny chromosome [46–48].

Obviously, traditional genetic algorithms with two parent individuals other than more parent

individuals would obtain less parent information, and reduce the diversity of offspring perfor-

mance. In order to improve the diversity of progenies, we put forward the idea of three-

exchange crossover operators for crossover operation, that is, using three parent individuals to

produce a progeny chromosome.

The contributions of this paper lie in the follows:

• Unlike the traditional path constraint only exerting on the total path distance of all AGVs,

this paper exerts double-path restrictions on both the total path distance of all AGVs and sin-

gle path distances of each AGV. The strategy double shortened total/single AGV path dis-

tance and obtained the optimal result.

• By using three parent individuals other than the traditional method with two parent individ-

uals, to produce a progeny chromosome, this method increases the information of produc-

ing the progeny chromosomes, earning the possibility of inheriting the excellent

characteristics of the parents and accelerating the searching speed of the improved

algorithm.

• Simulations on multi-AGV path diagrams and the iterative maps of the improved/traditional

genetic algorithms verify that the improved genetic algorithm has the shorter total path dis-

tance of all AGVs than that of the traditional genetic algorithm.

The rest of the paper is organized as follows. Section 2 demonstrates the overview of facility

layout. Section 3 investigates an improved genetic algorithm with double-path constraints by

using the three-exchange crossover heuristic operators. Section 4 provides the feasibility of the

algorithm by simulation. Finally, the concluding remarks are involved in Section 5.

Multi-AGV path planning with double-path constraints using an improved GA
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Overview of facility layout

Facility layout

A jobshop manufacturing system with multiple AGVs performs material delivering. There are

M AGVs traversing through N workstations (N> M). For the workstation distribution, the

following assumptions are considered for describing the details.

• M AGVs traverse through N workstations (N> M).

• Only one AGV passes through each workstation (except the starting point).

• Each AGV starts from the same starting point (workstation) and comes back to the starting

point.

• Each AGV travels one route separately with the predefined path and the fixed speed.

• Two constraints are exerted:

The total path distance of all AGVs should be minimized;

Each single AGV path distance should be minimized.

The schematic diagram is shown in Fig 1.

Fig 1. The work diagram of the AGV system.

https://doi.org/10.1371/journal.pone.0181747.g001
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Mathematical formulation

Referring to Fig 1, we formulate the proposed problem, mathematically. The indexes, parame-

ters and variables are introduced below.

1. Indexes

i, j—Indexes for two workstations on the ends of an arc, i = 0, 1, 2 . . ., N, j = 0, 1, 2 . . ., N.

k—Index for AGVs numbers, k = 1, 2 . . ., M.

l—Index for the workstations requires AGVs to delivery, l = 1, 2 . . ., Lk, 0< Lk < N.

2. Parameters

Rij—Arc between two workstations i and j.
Cij—Path through the corresponding arc segment Rij.

3. Variables

For i = 0, 1, . . ., N, j = 0, 1, . . ., N, k = 1, . . ., M, define

Xijk ¼

(
1 the kth AGV passes the arc Rij

0 otherwise;
ð1Þ

Yki ¼

(
1 the kth AGV goes to the ith station

0 otherwise;
ð2Þ

zk ¼
XLk

i¼0

XLk

j¼0

CijXijk: ð3Þ

4. Objective function

J ¼ min
XM

k¼1

zk

 !

\minzk ðk ¼ 1; 2; :::; kÞ; ð4Þ

5. Requirements

XM

k¼1

Yki ¼

(M; i ¼ 0

1; i ¼ 1; :::; Lk;
ð5Þ

XLk

i¼0

Xijk ¼ Ykj; j ¼ 0; :::; Lk; k ¼ 1; :::;M; ð6Þ

XLk

j¼0

Xijk ¼ Yki; i ¼ 0; :::; Lk; k ¼ 1; :::;M; ð7Þ

where

Requirement (5) specifies that each AGV starts from the starting workstation 0, all worksta-

tions can only be accessed once by an AGV;

Multi-AGV path planning with double-path constraints using an improved GA
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Requirement (6) shows that any arc starts from the starting workstation;

Requirement (7) implies that any arc ends with the starting workstation.

Algorithm design

The key problem of applying the genetic algorithm to the multi-AGV path planning is to

adopt the effective coding and decoding methods. Genetic algorithms repeatedly select,

crossover, and mutate the population to produce a new generation population that is

more adaptable to the environment than its parents, until satisfying the desired

requirements.

The step of the genetic algorithm includes: genetic coding, population selection, fitness

function, selection action, crossover operation, and matrix decoding. The proposed new

genetic algorithm minimizes the total path distance of all AGVs by selecting individuals with

big fitness values, and minimizes each AGV path distances by the three-exchange heuristic

crossover operator method.

Genetic coding

Symbol 0 indicates the starting workstation (point); symbols 1, 2, . . ., N mean the N work-

stations that need AGVs delivery. We add M − 1 dummy symbols, denoting M − 1 virtual

sites, labeled N + 1, . . ., N + M − 1. They have the same coordinates as the starting site,

meaning that every time a dummy symbol appears, the corresponding AGV returns to the

starting point. Assume that a gene represents a path that an AGV travels; one chromo-

some contains all genes, i.e., all paths that all AGVs travel. To avoid frequent sub-paths,

we assume that the path distance from the starting point 0 to the starting point 0 is

infinite.

For example: there are 10 workstations, the code is 0-9, 5 AGVs to complete the task, a ran-

dom chromosome coding is shown in Fig 2.

The paths of the five AGVs are as follows:

0 – −6 – −2 – −0

0 – −7 – −0

0 – −1 – −8 – −0

0 – −3 – −4 – −0

0 – −5 – −9 – −0

In the iterative process, there may be two kinds of dead solutions as the following Figs 3

and 4.

1. The virtual symbols are on one end of a chromosome

The paths of the five AGVs are as follows:

0 – −0 – −0

0 – −2 – −6 – −7 – −0

0 – −1 – −8 – −0

0 – −3 – −4 – −0

0 – −5 – −9 – −0

The 0 – −0 – −0 path means the distance is infinite, and can not meet the distance minimiz-

ing constraint, so this chromosome will be eliminated.

2. The virtual symbol appears continuously in a chromosome

The paths of the five AGVs are as follows:

0 – −6 – −2 – −0

0 – −7 – −8 – −1 – −0

Multi-AGV path planning with double-path constraints using an improved GA
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0 – −0 – −0

0 – −3 – −4 – −0

0 – −5 – −9 – −0

Obviously, the 0 – −0 – −0 path is present on this chromosome, and can not meet the dis-

tance minimizing constraint, so this chromosome also will be eliminated.

Population selection

The appropriate population size is important for the convergence of the genetic algorithm. If

the population size is too small, the genetic algorithm is easy to converge to the local optimal

solution; on the contrary, if the population scale is too large, the computing speed of the

genetic algorithm will be reduced. The size of the population is related to the variable N, and

the appropriate population size should be controlled between 4N and 6N [49].

Fitness function

In this paper, we use the exponential fitness functions according to [50]. The idea of this trans-

formation method comes from the SA (simulated annealing) process [50]. Due to the advan-

tages of exponentiation scale transformation, referring to [51], we choose a fitness function

with exponentially transformation as:

f ¼ a � exp ðb � ZÞ; ð8Þ

where Z(= Z1+Z2+� � �+Zk) is one of the parent individuals; α and β are arithmetic constants; α
determines the coercion of replication, the smaller the value, the greater the replication inten-

sity of the individual with the greatest fitness.

Fig 3. Situation 1 of dead solutions.

https://doi.org/10.1371/journal.pone.0181747.g003

Fig 4. Situation 2 of dead solutions.

https://doi.org/10.1371/journal.pone.0181747.g004

Fig 2. A random chromosome.

https://doi.org/10.1371/journal.pone.0181747.g002
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Selection operation

The selection operation is used to determine the recombination or crossover parent individu-

als and the number of offspring individuals generating by the candidate population. How to

select an operator will directly affect the results of the genetic algorithm. An inappropriate

operator will cause the evolution to stop or make the algorithm lose diversity, and produce

premature problems [52].

In this paper, we use the Roulette Wheel Selection [53] to select the parent individuals, the

probability of individual i is equal to the proportion of its fitness value and the sum of the indi-

vidual population fitness [54], as the following,

Pi ¼ fi=
XQ

k¼1

fk; ð9Þ

where fi is the fitness value of the individual i. Q is the numbers of selected chromosomes or

population size.

Crossover operation

Traditionally, crossover refers to the process in which two chromosomes exchange some genes

with each other in a certain way to form one new individuals. After crossover operation, a new

generation is produced, and it inherits the father’s basic characteristics.

The idea of the three-exchange heuristic crossover operator method is to produce a progeny

with three parent individuals. The proposed method increases the information of producing

the progeny chromosomes, comparing with the traditional method with two parent individu-

als. The increased parent chromosomes improve the possibility of inheriting the excellent

characteristics of the parents, and accelerate the searching speed of the algorithm. The explana-

tion of the three-exchange heuristic crossover operator method is shown in Fig 5.

Taking a task including 10 workstations and 5 AGVs as an example, the process of three-

crossover heuristic crossover operator method is described in detail as follows. The distance

between the ten workstations is shown in Table 1.

Fig 5. Three-exchange heuristic crossover operator method with 5 genes.

https://doi.org/10.1371/journal.pone.0181747.g005
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Three individuals were randomly selected as three-crossover heuristic crossover operators:

A = 6 2 12 7 11 1 8 10 3 4 13 5 9

B = 3 2 12 7 9 11 1 4 13 5 10 6 8

C = 5 3 10 8 7 11 2 6 12 1 4 13 9

The total distance of route A is 81, the largest distance of the single AGV path is 27;

The total distance of route B is 78, the largest distance of the single AGV path is 24;

The total distance of route C is 71, the largest distance of the single AGV path is 22.

Taking chromosome A as a reference, point 6 is the first position of chromosome A. From

right to left, cyclically move genes in the chromosomes B and C, and stop when point 6 being

the first position, then choose 6 as the first point of progeny S, the results are

A = 6 2 12 7 11 1 8 10 3 4 13 5 9

B = 6 8 3 2 12 7 9 11 1 4 13 5 10

C = 6 12 1 4 13 9 5 3 10 8 7 11 2

S = 6 � � � � � � � � � � � �

From the Table 1, we can get the distance around point 6 as follows,

dð6; 2Þ ¼ 8;

dð6; 8Þ ¼ 11;

dð6; 12Þ ¼ dð6; 0Þ ¼ 9:

Thus we get

dð6; 8Þ > dð6; 12Þ > dð6; 2Þ:

To meet the constraint of minimizing single AGV path distance, we choose point 2 as the sec-

ond point, the results are

A = 6 2 12 7 11 1 8 10 3 4 13 5 9

B = 6 2 12 7 9 11 1 4 13 5 10 8 3

C = 6 2 12 1 4 13 9 5 3 10 8 7 11

Similarly, we can determine the other genes of crossover progeny S in turn. Exerting with

the single AGV path distance minimizing constraint, the crossover progeny S of the first cross-

over step is

Table 1. The distance between the ten workstations.

start 0 1 2 3 4 5 6 7 8 9

0 1 4 1 12 7 5 6 3 5 5

1 5 0 7 4 1 8 1 2 4 7

2 3 5 0 3 1 6 4 9 1 3

3 7 1 9 0 7 8 9 5 9 9

4 8 6 6 1 0 13 5 1 3 12

5 1 4 7 3 2 0 5 2 5 2

6 9 7 8 8 7 1 0 1 11 4

7 12 11 3 2 7 1 6 0 3 8

8 5 4 2 4 4 5 3 5 0 7

9 2 7 5 11 8 7 9 8 4 0

Note: 0 is the starting point.

https://doi.org/10.1371/journal.pone.0181747.t001
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S = 6 2 12 7 9 11 1 4 13 5 10 8 3

The above obtained progeny chromosome indicates that the total path distance of all AGVs

is 65 and the maximum path distance of a single AGV is 17. Obviously, the total path distance

of all AGVs and the maximum single AGV path distance of the obtained S are less than those

of original A, B, and C.

Mutation operation

Mutation is to exchange genes within the same chromosome, resulting in a new individual.

Mutation can determine the local search ability of the genetic algorithm, maintain the diversity

of the group, prevent premature convergence of the genetic algorithm [55].

This paper adopts the exchanging mutation method [56]. The idea is to choose the ordinal

numbers a, b, c (a < b< c), and then insert the intermediate paths a and b (including a b) after

c (c refers to the paths associated with it). For example, if the sequence numbers a = 2, b = 5

and c = 10 are randomly generated, the corresponding individual transformations are as

follows:

A = 6 2 12 7 11 1 8 10 3 4 13 5 9

After the mutation:

A = 6 1 8 10 3 4 2 12 7 11 13 5 9

Matrix decoding

Set up a production scene with 10 workstations and 5 AGVs. A random chromosome is

shown in Fig 6.

The paths of the five AGVs are:

0 – −6 – −2 – −0

0 – −7 – −0

0 – −1 – −8 – −0

0 – −3 – −4 – −0

0 – −5 – −9 – −0

According to Table 1, establish a 10 � 10 workstation matrix D:

D ¼

1 4 1 12 7 5 6 3 5 5

5 0 7 4 1 8 1 2 4 7

3 5 0 3 1 6 4 9 1 3

7 1 9 0 7 8 9 5 9 9

8 6 6 1 0 13 5 1 3 12

1 4 7 3 2 0 5 2 5 2

9 7 8 8 7 1 0 1 11 4

12 11 3 3 7 1 6 0 3 8

5 4 2 4 4 5 3 5 0 7

2 7 5 11 8 7 9 8 4 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Fig 6. A random chromosome.

https://doi.org/10.1371/journal.pone.0181747.g006
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The specific decoding steps are described as follows:

(1) Get the reachable matrices of AGVs

The travel path of AGV1 is 0 – −6 – −2 – −0, comparing the path with matrix D, value 1 rep-

resents the AGV1 through the station, otherwise represented with value 0. So the reachable

matrix X1 of AGV1 can be obtained:

X1 ¼

1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Similarly, we can get other AGVs reachable Matrices X2, X3, X4, X5.

(2) Get the path distance matrices of AGVs

Multiplying the matrix Xk (k = 1, 2, � � �, 5) with D obtains the path distance matrix Dk

(k = 1, 2, � � �, 5) of each AGV.

For example, the path distance matrix for AGV1 is

D1 ¼

1 0 0 0 0 0 6 0 0 0

0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(3) Compute the path distance of AGVs

The path distance of AGV1 is

Z1 ¼ 6þ 3þ 8 ¼ 17;

similarly,

Z2 ¼ 3þ 12 ¼ 15;

Z3 ¼ 4þ 4þ 5 ¼ 13;

Z4 ¼ 12þ 7þ 8 ¼ 27;

Z5 ¼ 5þ 5þ 2 ¼ 12;

Multi-AGV path planning with double-path constraints using an improved GA
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and the total path distance of all AGVs is

Z ¼ Z1 þ Z2 þ Z3 þ Z4 þ Z5 ¼ 84:

Simulation

In simulation, we set up the production scene with 5 AGVs and 50 workstations, and meet the

requirements listed in the Section 2 and the double-path constraints. Set the population size is

200, applying the proposed new genetic algorithm to perform path optimization.

The simulation results for two genetic algorithms are drawn in Figs 7–10.

Figs 7 and 8 show that, at 3000 iterations, the total path distance is 72 for the new genetic

algorithm, and is 86 for the traditional genetic algorithm.

Fig 9 shows that, at 60 iterations, the maximum distance of single AGV is 34 for the tradi-

tional genetic algorithm, and is 32 for the new genetic algorithm.

Fig 10 shows the distance comparison between the two algorithms using bar graphs.

From the simulation, we can get:

(1) The improved genetic algorithm have the shorter total path distance than that of the tra-

ditional genetic algorithm.

(2) The convergence speed of the improved genetic algorithm is faster than that of the tradi-

tional genetic algorithm.

Fig 7. AGV diagram and map of the new genetic algorithm.

https://doi.org/10.1371/journal.pone.0181747.g007
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Fig 8. AGV diagram and map of the traditional genetic algorithm.

https://doi.org/10.1371/journal.pone.0181747.g008

Fig 9. Maximum distance of single AGV.

https://doi.org/10.1371/journal.pone.0181747.g009
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Conclusions

We recast the multi-AGV path planning problem into the framework of an genetic algorithm

to investigate the improved genetic algorithm on multi-AGV path optimization. In the

improved genetic algorithm, by using three-exchange crossover heuristic operators with more

information than that of the traditional two-exchange crossover heuristic operators, we get

more optimal offsprings. By exerting double-path constraints of both minimizing the total

path distance of all AGVs and minimizing each AGV path distance, we gain an optimal short-

est total path distance in AGV delivery task. The simulation results show that all AGV path dis-

tance and the longest single AGV path distance are shortened by using the improved genetic

algorithm.
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