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a b s t r a c t

Alignment is an important sequence comparison measure. Algorithms that compute
alignments have a wide range of applications, namely in bioinformatic tools. Alignments
can be computed as maximum scoring paths in Alignment DAGs. In this paper we study
the properties of matrices that contain alignment scores between a string and all the
sub-strings of another string. We focus on the fact that these matrices have the Monge
property and are sparse in some sense. Related studies were recently presented for HSM
and DIST matrices, leading to O(n log n) procedure for multiplying those matrices, where
O(n) bounds the sizes of the strings. Our results strictly generalize previous solutions. We
measure the sparseness of thematrices with variable � and present an algorithm formatrix
multiplication in O((n+ �) log3(n+ �)) time, which we improve to O((n+ �) log2(n+ �)),
within the same space.We discuss applications of this algorithm, namely fully incremental
alignment and alignment update. We study, experimentally, the performance of the
methods we propose.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents algorithms to multiply Monge [1] matrices, more precisely for the max-plus product of anti-Monge
matrices.Weuse the anti-Mongeproperty, but drop theprefix and refer to themasMonge. Thesematrices have a longhistory
of algorithmic applications [1]. They play an important role in optimization theory. For example in the traveling salesman
problem [2], among other applications. They are also important for several polynomial algorithms, particularly related to
dynamic programming. The SMAWK algorithm [3] is a particularly significant example of how the Monge property can be
used to speed-up a combinatorial search. The original motivation was the geometric problem of determining all the farthest
neighbors of a set of convex points.

Monge matrices have applications to string processing problems, namely computing sequence alignments [4] and
determining RNA secondary structure [4, Section 7.6.2] and [5]. Moreover, Monge matrices appear naturally when storing
several related alignment values, known as Dist tables [6,7], when using the edit distance, or as Highest-Scoring Matrices
(HSMs) [8], when considering Longest Common Subsequences. The fact that these matrices are Monge has a significant
impact on string problems such as Cyclic LCS [9–12], Longest Repeated subsequence, Fully-Incremental LCS [8,11,13,14],
etc.

Alves et al. [15] proposed an online algorithm to compute an implicit representation of HSMs, in O(n2) time and O(n)
working space, where O(n) bounds the sizes of the strings being processed. Subsequently Tiskin presented an alternative
way to represent these matrices in O(n) space [8]. In this paper we generalize this representation, with the notion of
core. Given this representation the natural question is: can we multiply HSMs in linear time? This was proposed as an
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open problem by Landau1 [16]. Tiskin made significant contributions by proposing O(n1.5) and O(n log n) time algorithms
[8,17,18]. However the algorithmsmentionedwere limited to theUnit-Monge case,meaning that the implicit representation
is regular, in the sense that its entries can only be 0 or 1. This restricts the application of previous results to the edit distance,
LCS or even weighted LCS problems. Alignments resulting from general score matrices will yield more complex implicit
representations, involving real numbers.

We consider the general multiplication problem of core-sparse Monge matrices, i.e., o(n2) core size, and present a core
sensitive algorithm, themultiplemaxima trees algorithm (MMT), alongwith an amortized version, AMMT. Tiskin’s algorithm
can be partially generalized, although affected by a variable factor ⌫, this factor is explained in Section 4.2. A comprehensive
comparison is given in Section 4. The experimental results show that our prototype obtains the performance bounds of
AMMT.We use our generalmultiplication algorithm to propose the first, as far as we know, non-trivial solution for sequence
alignment update and circular alignment computation.

The structure of the paper is the following: Section 2 defines fundamental concepts; Section 3 describes the MMT and
AMMT algorithms; Section 4 gives a theoretical and experimental analysis of the several algorithms, including applications;
Section 5 concludes the paper.

2. Fundamental concepts

In this section we present some concepts related to Monge matrices, then we introduce the implicit multiplication
problem and finish with the HSM class of matrices.

2.1. Basic notions and properties of monge matrices

In this paper log n is log2 n. Matrix row and column indices start at 0. For matrix A consider the expression:
�A(i, i0; j, j0) = A(i0, j0) � A(i0, j) � A(i, j0) + A(i, j). (1)

A matrix A, of size r ⇥ c , is Monge
2 iff �A(i, i0; j, j0) � 0, for any indices i, i0, j and j0 such that 0  i  i0 < r and

0  j  j0 < c. Fig. 1 shows an example of a Monge matrix, where �A(3, 5; 0, 2) = (�3) � (�10) � (�20) + (�3) = 24.
Fig. 2 shows the samematrix, alongwith the non-zero�A(i, i + 1; j, j + 1) values inside boxes, we also refer to these values
as the density matrix, which we define shortly. The leftmost argument maximum of a given row is denoted as lax, i.e., the
smallest column index were the maximum of a row occurs. In the matrix figures, such as Fig. 1, the leftmost maxima per
row are in bold. For example laxA[4, _] = 1, the respective maximum is A(4, laxA[4, _]) = 6. A matrix ismonotonewhen
i  i0 implies laxA[i, _]  laxA[i0, _]. In other words the lax values increase as the row index increases. TheMonge property
implies that the matrices are also monotone, this can be observed in Figs. 1 and 6 by noticing that the bold values move to
the right when descending by the rows.

Monge matrices occur naturally in several computer science problems. The Monge property, Eq. (1), usually entails a
significant efficiency boost in the problems where it occurs. Historically this property dates back to Gaspard Monge (1781),
who studied the continuous transportation problem, Monge is in fact known as the ‘‘father of Descriptive geometry’’. Alan
Hofffman later used this property to solve Hitchcock’s transportation with a greedy algorithm. The Monge property became
popular, among computer scientists, due to the seminal paper by Aggarwal et al. [3] on searching in totally monotone
matrices, which presented the SMAWK algorithm, hence originating a new focus for research on Monge matrices. The
original SMAWK algorithm article presented a linear time solution for the all-farthest neighbor problem, for the vertices of
a convex polygon. Nowadays the following problems are known have efficient algorithms that explore the Monge property.

• The Uncapacitated transportation problem consists of determining, for a given Monge cost network A(i, j), the distri-
bution x(i, j) � 0 which minimizes the total cost

P
0i<r

P
1jc A(i, j)x(i, j) for transporting goods from the supply

vector a = (a(0), . . . , a(r � 1)) into the demand vector b = (b(0), . . . , b(c � 1)), such that
P

0j<c x(i, j) = a(i) andP
1ir x(i, j) = b( j). An O(c + r) solution follows from a general result of Hoffman [19], whereas for the general case,

non Monge, the best solutions require more than O((c + r)2) time [20]. The Monge property is also relevant for several
variations of the transportation problem [1].

• Searching and selecting in Monge matrices, i.e., the determining all the maximum or minimum values, per rows or per
columns, can be computed,with the SMAWK [3] algorithm, inO(c max{1, log(r/c)}) time. This is opposed the naiveO(rc)
algorithm for general matrices.

• Dynamic programming problems, i.e., algorithms that avoid computing repeated recursive calls by storing the values
in a table. Early relations to the Monge property were presented by Wilber [21]. This technique is valuable in bioin-
formatic problems, such a RNA folding and sequence alignment [22]. Larmore and Schieber studied applications of the
Monge property to this kind of problems [23], see the exposition by Giancarlo in [4, Chapter 7]. A surprising such result,
involving data compression was proposed by Crochemore et al. [24]

• The traveling salesman problem, with a Monge cost matrix, becomes O(c2), where c is the number of cities [25].

1 The problem was formulated for Dist tables but it is essentially equivalent.
2 The usual Monge definition is �A(i, i0; j, j0)  0, in which case �A verifies our condition.
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Fig. 1. The AMonge matrix. The row and column indices are shown outside. The leftmost maximum, per row, is in bold.

Fig. 2. The AMonge matrix and the underlying density matrix. The row and column indices are shown outside. The leftmost maxima, per row, are in bold.

Fig. 3. A density matrix, the 0 entries are omitted. The row and column indices are shown outside.

For a detailed explanation of these and other problems related toMongematrices, see Burkard et al. [1]. A recent application
of Monge matrices to Hierarchial modeling was presented by Imaev and Judd [26].

The notion of core follows from an alternative characterization of Monge matrices. Let D denote a matrix, of size
(r � 1) ⇥ (c � 1), with non-negative values, referred to as a density matrix. The rows and columns of these matrices
are indexed over half integers, i.e., the first row and the first column are indexed by 0.5 instead of 0. Fig. 3 shows an example
of such a matrix. The matrices consist of the values enclosed in boxes, the omitted boxes represent a 0. The respective
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Fig. 4. A density matrix and the respective distribution matrix. The shaded rectangle illustrates the relation between distribution matrices and density
matrices, namely A(5, 2) = 10 + 1 + 12 + 12 = 35.

distributionmatrix d, of size r ⇥ c , is defined, over the integers, as:

d(i, j) =
X

0<i0<i;0<j0<j

D(i0, j0) for all 0  i < r and 0  j < c. (2)

A density and a distribution matrix are shown, simultaneously, in Fig. 4.
The next lemma shows an alternative characterization ofMongematrices. The Lemma also establishes a relation between

the values and the density matrix, namely D(i + 0.5, j + 0.5) = �A(i, i + 1; j, j + 1).

Lemma 1 (Lemma 2.1 in [1]). Amatrix A, of size r ⇥ c, is Monge iff there is an r ⇥ c distribution matrix d and two vectors u 2 Rr

and t 2 Rc such that

A(i, j) = d(i, j) + u(i) + t( j) for all 0  i < r and 0  j < c. (3)

Proof. The proof follows by observing that �A is additive, i.e., �A(i, i0; j, j0) + �A(i0, i00; j, j0) = �A(i, i00; j, j0) and likewise
for j. Moreover define t( j) = A(0, j) and u(i) = A(i, 0) � t(0). ⇤

2.2. Problem statement and related results

The non-zero entries of D form the core of A, where �(A) denotes its size. A matrix is considered sparse if �(A) = o(rc).
Notice that�A(i, i0; j, j0) = �d(i, i0; j, j0), therefore computing the expression in Eq. (1) consists of summing the core entries
inside [i, i0] ⇥ [j, j0], for example �A(3, 5; 0, 2) = 12 + 12, as previously shown with direct computation.

This lemma is presented to illustrate the fact that the values of A can be obtained from a smaller representation.
Substituting the definitions of u and t into Eq. (3) we obtain that A(i, j) = d(i, j) + A(0, j) + A(i, 0) � A(0, 0). Hence
we refer to the triple with the density matrix d and the A(i, 0) and A(0, j) values as the implicit representation of A. In Fig. 5
the matrices use this representation, and moreover represent the implicit matrix multiplication problem. Let us start by
defining the notion of Monge matrix multiplication.

Definition 2. For matrices A, B, of sizes r ⇥ c and (c = r 0) ⇥ c 0, the max-plus product matrix, C = A ⌦ B, is C(i, j) =
max0k<c{A(i, k) + B(k, j)}.

Fig. 6 shows a sample max-plus matrix product. In this paper we present an algorithm to multiply Monge matrices,
represented in implicit form, i.e., given A and B in implicit form determine the implicit representation of C, see Fig. 5.
Therefore the input requires O(r + c + c 0 + �(A) + �(B)) space and the output requires O(r + c 0 + �(C)) space. We are
interested in algorithms that operate within this overall space, and ideally within the same time bound. State of the art
solutions partially solve the problem. Tiskin [17] presented an algorithm for Unit-Monge matrices, i.e., when the entries
of the density matrix are only 0 or 1. For general Monge matrices it is also possible to iterate the SMAWK [3] algorithm,
although the resulting algorithm is slow, and a direct implementation requires more than the implicit space.

In this paper we study the multiplication of implicit Monge matrices, we adapt the iterated SMAWK algorithm, so that it
operates in implicit space. Since the resulting algorithm is still slowwepropose theMultipleMaxima Trees (MMT) algorithm
which is faster than the iterated SMAWK approach, but slower than the algorithm of Tiskin, for Unit-Monge matrices. We
present a theoretical and experimental analysis of the performance of MMT in Section 4, where a larger variety of matrices
is considered.

We start by studying the iterated SMAWK algorithm. It may seem that this algorithm is not useful for the implicit
multiplication problem, since it will require random access to the entries of A and B. Storing these entries explicitly requires
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Fig. 5. The A and B matrices in implicit form. An illustration of the implicit matrix multiplication problem.

O(rc + r 0c 0) space, which is much more space than the one we are considering. For now we will ignore this issue and still
study the SMAWK algorithm. In Section 4 we discuss representations of A and B, that require much less space and still
provide random access to the underlying matrices.

To perform themultiplication we organize it into a sequence of intermediate computation matrices,Mi, of size c 0 ⇥ r 0, such
that Mi( j, k) = A(i, k) + B(k, j), for 0  i < r, 0  j < c 0, 0  k < r 0 = c. Fig. 7 shows M3. These matrices are used
to compute the values of C, since C(i, j) = Mi( j, laxMi[j, _]), which by definition of lax is the same as maxk Mi( j, k). For
example row 3 of C can be obtained from M3. Observe that the bold numbers of Fig. 7 correspond to row 3 of C in Fig. 6. An
important reason to consider theMi matrices is that they inherit the Monge property from B.
Lemma 3. Let A and B be Monge matrices, of sizes r ⇥ c and (c = r 0) ⇥ c 0, then theMi matrices are Monge, for any 0  i < c.
Proof. Use Lemma 1 to conclude that B(k, j) = dB(k, j) + uB(k) + tB( j), where dB is a distribution matrix. Recall that
Mi( j, k) = A(i, k) + B(k, j) = dB(k, j) + (A(i, k) + uB(k)) + tB( j). Note that i is not an argument of Mi( j, k), therefore we
can group the A(i, k) term in the vertical vector. The resulting matrix is Monge because it has the structure described in
Lemma 1. ⇤

The previous proof points out that the underlying distribution matrix of the differentMi matrices is the same, in fact the
one of B. This regularity partially explains our algorithm.

We will use the Monge property of theMi matrices to compute C in a non-naive way.
Lemma 4. Let A and B be Monge matrices, of sizes r ⇥ c and (c = r 0) ⇥ c 0, then C = A ⌦ B can be obtained in
O(rr 0 max{1, log(c 0/r 0)}) time.
Proof. Applying SMAWK [3] to the Mi matrices returns all the row maxima. For a given Mi, this procedure takes
O(r 0 max{1, log(c 0/r 0)}) time. Iterating this procedure for all possible i’s yields the bound in the Lemma and returns all
the laxMi[j, _] values. ⇤

This paper does not explain the SMAWK algorithm, an interested reader should consult Aggarwal et al. [3]. A simple, yet
less efficient alternative is to recursively find themaximum of the middle row and divideM into two smaller sub-problems.
For M of size c 0 ⇥ r 0 this process takes only O(r 0 log c 0) time. Therefore an iterated version of this algorithm would require
O(rr 0 log c 0) time. The MMT algorithm uses the regularities of theMi matrices and a variation of this algorithm.

The iterated SMAWK algorithm is also inadequate for the implicit Monge matrix multiplication problem, because there
we obtain an explicit representation of C, instead of its core. In Section 3.2, we explain how to compute the core values, and
hence the implicit representation of C, within reasonable working space.
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Fig. 6. Illustration of the Monge max-plus product. Three Monge matrices, A (top-left), B (top-right) and C = A ⌦ B (bottom). The row and column indices
are shown outside. Row 3 of C is highlighted by a grey background.

Fig. 7. The figure shows theM3 matrix.
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Due to the additive properties of �A the average density of A can be computed as:

�A =
X

0i<r; 0j<c

�A(i, i + 1; j, j + 1)/�(A) = �A(0, r; 0, c)/�(A). (4)

This value measures the average density values, counting only the positive entries. Re-writing Eq. (4) we have �(A) =
�A(0, r; 0, c)/�A. When considering integer valued matrices we have that �A � 1, therefore �(A)  �A(0, r; 0, c),
becomes a bound on the core size. We show experimentally, in Table 2, that �A assumes higher values in practice (when
the density matrices are not restricted to 0 or 1 values).

The MMT algorithm is effective, as long as the intervening matrices are sparse, i.e., �(A) = o(cr), �(B) = o(cr) and
�(C) = o(cr). In fact �(C) depends on �(A) and �(B). We prove that applying the max-plus product to two Monge matrices
yields a Monge matrix, and also relate �(C) with characteristics of the matrices A and B.

Lemma 5. Let A and B be Monge matrices, of sizes r ⇥ c and (c = r 0) ⇥ c 0, let also 0  i  i0 < r and 0  j  j0 < c be indices,
and ki,j = laxMi[j, _] indices that correspond to maxima, the following properties hold:

• max{�A(i, i0; ki0,j, ki,j0), �B(ki,j0 , ki0,j; j, j0)}  �C(i, i0; j, j0)
• �C(i, i0; j, j0)  min{�A(i, i0; ki,j, ki0,j0), �B(ki,j, ki0,j0; j, j0)}.
• C is Monge.
• �(C)  min{�A(0, r; 0, c), �B(0, r 0; 0, c 0)}/�C

• For integer valued matrices �(C)  min{�A(0, r; 0, c), �B(0, r 0; 0, c 0)}
Proof. The first inequalities follow from a similar derivation. We present one such derivation and point out the differences
for the remaining:

�C(i, i0; j, j0)
= C(i0, j0) � C(i0, j) � C(i, j0) + C(i, j) (5)
= C(i0, j0) � Mi0( j, ki0,j) � Mi( j0, ki,j0) + C(i, j) (6)
� Mi0( j0, ki,j0) � Mi0( j, ki0,j) � Mi( j0, ki,j0) + Mi( j, ki0,j) (7)
= A(i0, ki,j0) � A(i0, ki0,j) � A(i, ki,j0) + A(i, ki0,j) (8)
= �A(i, i0; ki0,j, ki,j0). (9)

The equality (5) follows from the definition of �C(i, i0; j, j0). Equality (6) follows from the definition of ki,j0 and ki0,j.
Inequality (7) follows by choosing ki,j0 in C(i0, j0), instead of the index ki0,j0 , which would maximize the value. Likewise
we also choose ki0,j in C(i, j). To obtain equality (8) note that Mi0( j0, ki,j0) � Mi( j0, ki,j0) = A(i0, ki,j0) � A(i, ki,j0) and
that Mi( j, ki0,j) � Mi0( j, ki0,j) = A(i, ki0,j) � A(i0, ki0,j), i.e., in this case we can eliminate the influence of B. To obtain
�C(i, i0; j, j0) � �B(ki,j0 , ki0,j; j, j0) in inequality (7) swap the chosen indices, i.e., choose ki0,j in C(i0, j0) and ki,j0 in C(i, j).

For the second inequality use the indices ki0,j0 and ki,j in Eq. (6). Now we choose these indices in C(i0, j) and C(i, j0) to
obtain a new inequality (7), which becomes a  inequality.

To prove that C is Monge assume that ki0,j  ki,j0 , in which case 0  �A(i, i0; ki0,j, ki,j0), because A is Monge. Otherwise
ki,j0 < ki0,j and 0  �B(ki,j0 , ki0,j; j, j0), because B is Monge. Hence, using the first property, we can conclude that
0  �C(i, i0; j, j0) and therefore C is Monge.

For the fourth property uses the second inequality and Eq. (4) to obtain �(C) = �C(0, r; 0, c 0)/�C  min{�A(. . .; . . .),

�B(. . .; . . .)}/�C. Moreover �A(0, r; k0,0, kr,c) + �A(0, r; 0, k0,0) + �A(0, r; kr,c, c) = �A(0, r; 0, c 0) and all the parcels
are positive. Using a similar reasoning for Bwe conclude that �C(0, r; 0, c 0)  min{�A(0, r; 0, c), �B(0, r 0; 0, c 0)}.

The last property follows from the previous one by observing that for integer valued matrices we have that �C � 1. ⇤

Note that for the Unit-Monge matrices, considered by Tiskin, the last property implies the result that �C  min{�A, �B}.
Unit-Mongematrices are such that the non-zero entries of the densitymatrix are always 1. In this case�A = �B = �C = 1,
the result follows by using Eq. (4).

2.3. Highest score matrices

Monge matrices occur in several dynamic programming problems, in particular related to sequence alignment. We
denote by S, S 0 and T strings of size m, m0 and n respectively; by ⌃ the alphabet of size � ; by S[i] the symbol at position i,
assuming that positions start at 0; by S.S 0

concatenation; by S = S[..i�1].S[i..j].S[j+1..] respectively a prefix, a substring
and a suffix; note that S[i..j], with j < i, denotes the empty string; a subsequence of S is obtained by deleting zero or more
letters; a Longest Common Subsequence LCS(S, T ) is a largest subsequence that can be obtained from both strings S and
T . Consider the following example S = ba, S 0 = ab and T = baba, where m = m0 = 2 and n = 4. In this example
LCS(S, T ) = ba, LCS(S 0, T ) = ab and LCS(S.S 0, T ) = bab.

The size of LCS(S, T ) can be computed as a highest-scoring path in a DAG. The DAG is a grid of horizontal and vertical
edges with score 0, it contains diagonal edges, with score 1, for every pair of matching characters between the strings. For
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Fig. 8. The general alignment DAG of S = abcabc and T = aabbcc , using the PAM matrix. The nodes contain the computation of one highest scoring path,
which is also illustrated with a dashed line and boxes.

a general alignment Align(S, T ) the scores can have arbitrary real values. Moreover the scores do not have to be unique for
a type of edge, i.e., all the edges can have different values. In bioinformatic applications, alignments that are computed with
PAM [27] matrices usually have scores that are letter dependent, i.e., the scores associated with an edge usually depend on
the letters that are associated with that edge. A general alignment DAG for strings ‘‘abcabc’’ and ‘‘aabbcc’’, that uses the PAM
scoring is shown in Fig. 8, for this alignment we are assuming the following correspondences to amino acids: ‘a’ to Alanine;
‘b’ to Asparagine or Aspartic acid; ‘c’ to Cysteine. An even more regular type of alignment, but less regular than LCS is the
Weighted Longest Common Subsequence (WLCS). In this variant the weights of the edges depend on the type of edge,
horizontal, vertical, diagonal match or diagonal mismatch. Fig. 9 shows an WLCS alignment DAG.

Depending on the starting and ending nodes of the path we can determine several LCS values, between S and a substring
of T . The highest-score matrix (HSM) HS,T stores these LCS values, i.e., HS,T (i, j) = LCS(S, T [i..j � 1]). In fact the full HSM
matrixHS,T (i, j) contains the values of the highest scoring paths on an infinite extended alignment DAG LCS(S[i..], T [..j�1])
and LCS(S[..j�1], T [i..]). Using this simplificationwe can obtainHS.S0,T asHS,T ⌦HS0,T , the generalmultiplication is possible,
but more complex. A similar matrix was denominated as Dist(S, T ) by Apostolico et al. [6], for edit distance problems. In
this paper we follow the theory by Tiskin [17,18] but the results are essentially equivalent.

In this context the max-plus product, Definition 2, represents the fact that a highest-score path of HS.S0,T can be
decomposed into a path of HS,T followed by a path of HS0,T . HSMs, from non-weighted LCS, are Monge [6], core-sparse and
unit, i.e., �(HS,T ) = min{m, n} = o(n2) and the non-empty core entries are always 1. HSMs from WLCS are not necessarily
unit, for example the matrix A of Fig. 2. To use Tiskin’s algorithm for these matrices it is necessary to expand them into unit
matrices, this entails a performance penalty that we discuss in Section 4. To see why HSMs are Monge choose two pairs of
indices i  i0 and j  j0. Note that HS,T (i, j) and HS,T (i0, j0) correspond to two, possibly, non-crossing paths. On the other
hand HS,T (i, j0) and HS,T (i0, j) correspond to two paths that must necessarily cross each other [7].

We illustrate this property over WLCS derived HSM matrices HW
S,T , i.e., matrices defined as above, but for WLCS. Fig. 10

shows an example of the simultaneous computation of WLCS values. Therefore H
W
S,T (i, j) = WLCS(S, T [i..j � 1]). Now

consider Fig. 11, the paths in this figure are obtained by following the highest scores, presented in Fig. 10. Choosing i = 0,
i0 = 2 and j = 4 and j0 = 6. Note that the H

W
S,T (i, j

0) = WLCS(S, T ) and H
W
S,T (i

0, j) = WLCS(S, ab), by decomposing the
first path we obtain that HW

S,T (i, j
0) = WLCS(ab, aa) + WLCS(abab, abbb). Likewise by decomposing the second path we

obtain that HW
S,T (i, j

0) = WLCS(ab, ✏) + WLCS(abab, ab). Notice that HW
S,T (i, j)  WLCS(ab, aa) + WLCS(abab, ab) and that

H
W
S,T (i

0, j0)  WLCS(ab, ✏)+WLCS(abab, abbb). Thereforewe can conclude thatHS,T (i, j)+HS,T (i0, j0) � HS,T (i, j0)+HS,T (i0, j)
by reorganizing the terms in the expression and using the previous inequalities.

Aaron
PAM matrix

Aaron
alignment DAG

Aaron
Weighted Longest Common Subsequence (WLCS)

Aaron
highest-scorematrix(HSM)HS,T storestheseLCSvalues

Aaron
HS.S0,T asHS,T ⌦HS0,T,

Aaron
Dist(S , T )

Aaron
a highest-score path of HS.S0,T can be decomposedintoapathofHS,T followedbyapathofHS0,T

Aaron
why HSMs are Monge choose two pairs of indices

Aaron
possibly, non-crossing paths



38 L.M.S. Russo / Theoretical Computer Science 423 (2012) 30–49

Fig. 9. The WLCS alignment DAG of S = ababab and T = aaabbb. The nodes contain the computation of one highest scoring path, which is also illustrated
with a dashed line and boxes.

Fig. 10. The WLCS alignment DAG of S = ababab and T = aaabbb (top-left in the boxes). The nodes also contain the computation of the highest scoring
paths for the suffix T [2..] = abbb (top-right), i.e., the computation starting with i = 2. Moreover the alignments ending with j = 4 are also considered, i.e.,
T [2..4] = ab (bottom-right) and T [0..4] = aaab (bottom-left). A box that illustrates relative positions is given below.
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Fig. 11. The WLCS alignment DAG of S = ababab and T = aaabbb. We show the four highest scoring paths, for i = 0, i0 = 2, j = 4, j0 = 6. This figure
illustrates the discussion on the Monge Property of HSM matrices, on the next page. Note that the crossing paths can be rearranged by the crossing point,
resulting in paths from i to j and from i0 to j0 , which must necessarily score less than the respective non-crossing paths.

Unit-Monge matrices can be multiplied efficiently as follows:
Theorem 6 ([17]). Given Unit-MongematricesA, B, both of size n⇥n, the core entries of C = A⌦B can be obtained in O(n log n)
time and O(n) space.
This result has a significant impact on string problems [28], namely Cyclic LCS, Longest Repeated Subsequence, Fully-
Incremental LCS [11,13], etc. The latter problem consists of maintaining a data structure that returns the size of LCS(S, T )
and supports updates to LCS(c.S, T ), LCS(S.c, T ), LCS(S, c.T ) and LCS(S, T .c), where c is a new character. Notice that the
first update is against the usual dynamic programming direction and therefore a naive approach requires O(mn) time. Using
Theorem 6 with A = Hc,T the update to LCS(c.S, T ) runs in O(n log n) time, which is competitive against state of the art
solutions [13,14] of O(n) time.

3. Core sensitive multiplication

This Section describes theMultiple Maxima Trees (MMT) algorithm that solves the implicit Mongematrix multiplication
problem. The algorithm receives the cores of A and B and outputs the core of C. We describe the algorithm in two phases.
First we propose a structure that represents the individual values of C, i.e., that we can use to access an individual value of C;
Second we explain how to use those values to determine the core of C.

3.1. Representing C = A ⌦ B

We divide matrix A, in half, into A
` and A

r . The left sub-matrix A
` contains columns 0 to dc/2e � 1. The right sub-matrix

A
r contains columns dc/2e to c � 1. For example in Fig. 12 A

` contains columns 0, 1, 2, 3 and A
r contains columns 4, 5, 6.

Notice that there will be an index for which the leftmost maximum changes from A
` to A

r .
Definition 7. The transition point Tr(A), of a monotone matrix A, is a half integer such that laxA[i, _] is laxA`[i, _] for
i < Tr(A) and dc/2e + laxAr [i, _] for i > Tr(A).
Fig. 12 indicates that Tr(A) = 7.5 with an arrow. Fig. 13 shows that Tr(M3) = 9.5. The figure also shows Tr(M`

3) = 4.5
and that Tr(Mr

3) = 9.5. We use the convention that Tr(A) = �0.5 if laxA[i, _] = dc/2e + laxAr [i, _], for all i, and that
Tr(A) = r � 0.5 if laxA[i, _] = laxA`[i, _], for all i. For example Tr(M3) = 10 � 0.5.
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Fig. 12. The A Monge matrix. The row and column indices are shown outside. The matrix is divided into A
` and A

r by a vertical line and Tr(A) = 7.5 is
pointed by an arrow.

Fig. 13. The figure shows the M3 matrix (Bottom) and the respective maxima tree (Top). The edges of the tree are labeled ` and r depending on whether
the corresponding sub-tree is left or right. The arrows, on the left and on the right, indicate that Tr(M3) = 9.5 = Tr(Mr

3) and that Tr(M`
3) = 4.5. The ⇥

symbol illustrates that assuming Tr(A`)  Tr(A)  Tr(Ar ), is incorrect. The highlighted path in the tree shows the computation of laxM3[5, _].
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Definition 8. The maxima tree MT A, of a Monge matrix A, is a balanced binary tree. If A is empty MT A is also empty,
otherwise the sub-trees that start at the children of the Root are MT

A` and MT Ar . The Root stores Tr(A), the remaining
nodes store the corresponding transition points.

Fig. 13 shows the maxima tree3 of M3. Maxima trees are not binary search trees, therefore it is incorrect to assume that
Tr(A`)  Tr(A)  Tr(Ar), Fig. 13 shows a counter example, indicated by 6. The maxima tree can be used to compute lax
values.

Lemma 9. Let A be a Monge matrix, of size r ⇥ c. Its maxima tree MT A can be stored in O(c) space and supports laxA[i, _] in
O(log c) time.

Proof. We compute laxA[i, _] recursively as laxA`[i, _] if i < Tr(A) and as dc/2e + laxAr [i, _] otherwise, i.e., move to the
left child, v`, or to the right child, vr . The execution time is bounded by the height of the tree, that is O(log c). Since we store
only one value per node, the space occupied by the tree depends on the number of nodes, which is O(c). ⇤

Suppose wewant to compute laxM3[5, _]. We start at the Root and since 5 < 9.5wemove to the left, now since 5 > 4.5
we move to the right, since 5 > 2.5 we move to the right and reach the leaf of column 3 = laxM3[5, _]. Notice that we can
also compute the lax values of a sub-matrix corresponding to an internal node of MT A.

Lemma 10. A maxima tree can be built in O(c log r) time.

Proof. The tree can be built bottom-up. The Tr(A) of the Root can be computed with a binary search in O(log r) steps. If
A

`(i, laxA`[i, _]) � A
r(i, laxAr [i, _]) then4 Tr(A) > i, otherwise Tr(A) < i. For the remaining internal nodes the process is

similar. This yields an overall O(c(log c) log r) time. An amortized analysis shows that we are not paying O(log c) to obtain
the lax values, as in Lemma 9. Most nodes are close to the leaves. Half of the nodes pay 1 operation for lax. One quarter of
the nodes pay 2 operations, and so on. The overall time is O(c log r). ⇤

Building all the MT Mi trees takes O(rr 0 log c 0) time and O(rr 0) space. The resulting structure provides O(log r 0) access
time to C(i, j), recall that C(i, j) = Mi( j, laxMi[j, _])). This result is illustrative but it is still inefficient. TheMi matrices have
regularities that can considerably increase the efficiency of this procedure.

Lemma 11. Given Monge matrices A and B, when �A(i, i0; k, k0) = 0 thenMi( j, k)  Mi( j, k0) iffMi0( j, k)  Mi0( j, k0).

Proof. The following diagram proves the lemma:

Mi( j, k) � Mi( j, k0) = A(i, k) � A(i, k0) + B(k, j) � B(k0, j) (10)

= (11)
Mi0( j, k) � Mi0( j, k0) = A(i0, k) � A(i0, k0) + B(k, j) � B(k0, j). (12)

Eqs. (10) and (12) follow from the definition ofMi. Eq. (11) follows from the hypothesis. ⇤

Notice that �A(i, i0; k, k0) = 0 implies that �A(i1, i2; k1, k2) = 0 for any i  i1  i2  i0 and k  k1  k2  k0.
Therefore the lemma shows that there is redundant information among the MT Mi trees. Namely if �A(i, i0; k, k0) = 0 and
v, v0 are nodes of MT Mi and MT Mi0 , respectively, whose corresponding rows are the [k, k0] interval then the sub-trees of
v and v0 are identical. Fig. 14 shows an example of this observation, matrices M2, M3, M4 share the right sub-tree, since
�A(2, 4; 4, 6) = 0. MoreoverM5 does not share the right sub-tree withM4, since �A(4, 5; 4, 6) = 10 6= 0.

Lemma 12. Given Monge matrices A and B, of sizes r ⇥ c and (c = r 0) ⇥ c 0, there is a representation of C with O(log r 0) access
time, that needs O(r 0 + �(A) log r 0) space and O(r + (r 0 + �(A)(log r 0)2) log c 0) time to be built.

Proof. Use Lemma 10 to build MT 1, in O(r 0 log c 0) time. In general use Lemma 11 to build MT Mi+1 from MT Mi . If
�A(i, i + 1; 0, c � 1) = 0 then MT Mi and MT Mi0 are identical and the computation finishes. Otherwise we build a new
Root for MT Mi0 and proceed recursively to determine whether the left and right children of MT Mi0 are new or the same
as in MT Mi . Each core value of A originates at most log r 0 new nodes. For each new node we recompute, bottom-up, the
respective transition points, in O((log r 0) log c 0) time each. The O(r) term comes from the i cycle. ⇤

3 Note that we simplified the notation and use only MT 3 to refer to the maxima tree ofM3.
4 Note that the previous expression is maxk A`[i, k] � maxk Ar [i, k], the expression illustrates how this value is computed.
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Fig. 14. MatricesM2,M3,M4,M5 and the respective maxima trees. Each cell showsM2 (top-left),M3 (top-right),M4 (bottom-left) andM5 (bottom-right).
The bold values highlight the leftmost maximum, per row. Themaxima ofM3, over gray, correspond to row 3 of C in Fig. 6. Nodes and branches exclusive to
MT 2 or MT 5 are dashed. Nodes contain the transition point of the sub-matrix. Similar sub-trees are not repeated. The edges are labeled ` and r depending
on whether the corresponding sub-tree is left or right. The computation of laxM3[5, _] = 3 is indicated by thicker lines.

3.2. Obtaining the core

This section explains how to obtain the core of C from its representation.

Lemma 13. Given a Monge matrix C, of size r ⇥ c 0, its core entries can be determined by inspecting O(r + �(C) log c 0) entries
of C.

Proof. For every i we compute �C(i, i + 1; 0, c 0 � 1). If the result is 0 we conclude there are no core entries in [i, i + 1] ⇥
[0, c 0�1] andwe stop the search. Otherwisewe recursively consider�C(i, i + 1; 0, dc 0/2e) and�C(i, i + 1; dc 0/2e, c 0 � 1).
This procedure needs O(log c 0) time for each core entry of C and overall O(r) time to consider all the rows of C. ⇤

Fig. 15 shows an illustration of the procedure described in the lemma, between rows 3 and 4 of C. We can now combine
Lemmas 12 and 13 to obtain our main result. Note that in the working space we do not consider the space of the implicit
representation ofA and B. This space is discussed in Section 4, alongwith the kind of informationwe can obtain in this space,
and the time to do so, but is omitted here for simplicity.

Theorem 14. Let A and B be Monge matrices, of sizes r ⇥ c and (c = r 0) ⇥ c 0, the core of C = A ⌦ B can be computed in
O(r log r 0 + (r 0 + (�(C) + �(A) log r 0) log r 0) log c 0) time and O(�(C) + r 0) working space.

Proof. Lemmas 12 and 13 yield an O(�(C) + r 0 + �(A) log r 0) working space solution. It is not necessary to store all the
maxima trees MT Mi . An iteration of the procedure in Lemma 13 inspects onlyMi andMi+1. Hence it is enough to store only
two trees in each iteration, which requires at most O(r 0) space, see Lemma 9 and proof of Lemma 12. ⇤

Using the equation C = (BT ⌦ A
T )T the previous result gives an algorithm that runs in O(c 0 log c + (c + (�(C) +

�(B) log c) log c) log r) time and O(�(C) + c) space.
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Fig. 15. An illustration of the procedure in Lemma 13. The non-zero �C(i, i + 1; j, j + 1) values are inside boxes. Rows 3 and 4 of C are over a darker
background. The boxes between rows 3 and 4 of C illustrate the procedure in Lemma 13.

3.3. Amortized analysis

This section presents a more efficient version of Theorem 14. The algorithm is essentially the same but we use a slightly
different scan and amortized analysis on the core size of the intervening matrices. We start by observing that transition
points are monotonic non-increasing.
Lemma 15. For arbitrary Monge matrices A, B, the transition points of the intermediate computation matrices, Tr(Mi), form a
monotonic non-increasing sequence, i.e., Tr(Mi) � Tr(Mi+1).
Proof. This property follows from the simpler observation that laxMi[j, _]  laxMi+1[j, _]. For example, notice that in
Fig. 14 the bold values ofMi+1 are to the right of the bold values ofMi.

Suppose by contradiction that for some i and jwe have that k0 = laxMi[j, _] > laxMi+1[j, _] = k. Consider the following
derivation:

(Mi( j, k) � Mi( j, k0)| {z }
<0

) + ((�Mi+1( j, k) + Mi+1( j, k0)| {z }
0

) < 0 (13)

=

(A(i, k) + B(k, j) � A(i, k0) � B(k0, j)) + (�A(i + 1, k) � B(k, j) + A(i + 1, k0) + B(k0, j)) < 0 (14)

=

(A(i, k) � A(i, k0)) + (�A(i + 1, k) + A(i + 1, k0)) < 0 (15)

=

�A(i, i + 1; k, k0) < 0. (16)

The inequality under the first term of Eq. (13) comes from the hypotheses that k0 = laxMi[j, _] and k0 > k. A similar
reasoning explains the inequality under the second term. These two inequalities justify Eq. (13). The remaining relations are
obtained by simplifying this expression. Eq. (14) is obtained from the definition of Mi. Eq. (15) is simplified from Eq. (14).
Eq. (15) uses the definition of �A(i, i + 1; k, k0). The last equation contradicts the Monge property of A. ⇤

This result will have an impact on Lemma 10. Up to this point the transition points were computed with binary searches.
Computing transition points with sequential searches seems, deceptively, less efficient but it will turn out to be good for
amortized analysis. Scanning all the rows of A orMi would still be inefficient. We can scan only the rows that have non-zero
density values, the next lemma explains why.
Lemma 16. For an arbitrary Monge matrix A, of size r ⇥ c, we have that �A(Tr(A) � 0.5, Tr(A) + 0.5; 0, c) > 0.
Proof. We prove that if i  i0 and laxA[i, _] < laxA[i0, _] then �A(i, i0; 0, c) > 0. This property implies the result in the
lemma because Tr(A)� 0.5  Tr(A)+ 0.5 and laxA[Tr(A) � 0.5, _] < laxA[Tr(A) + 0.5, _], otherwise there would be no
transition.
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Suppose by contradiction that �A(i, i0; 0, c) = 0 and that j = laxA[i, _] < laxMi[i0, _] = j0. From the hypotheses we
conclude that:

�A(i, i0; j, j0) = 0 (17)

=

(A(i, j) � A(i, j0)) + (�A(i0, j) + A(i0, j0))| {z }
>0

= 0. (18)

Eq. (17) follows from the hypotheses that �A(i, i0; 0, c) = 0. Eq. (18) is derived from Eq. (17) by definition of �A(i, i0; j, j0).
The inequality of the second term follows from the fact that j0 = laxMi[i0, _] and j < j0. From this last relation we can
conclude that A(i, j) < A(i, j0), which is a contradiction because j = laxA[i, _] and therefore A(i, j)must be a maximum. ⇤

This lemma implies that we can compute a transition point, of Mi, with a sequential search over the core entries of Mi.
Combining this search with Lemma 15 means that to compute Tr(Mi0) after computing Tr(Mi) we can simply continue the
search. The next lemma uses this approach to obtain an improvement of Lemma 12.

Lemma 17. Given Monge matrices A and B, of sizes r ⇥ c and (c = r 0) ⇥ c 0, there is a representation of C with O(log r 0) access
time, that needs O(r 0 + �(A) log r 0) space and O(r + r 0 log c 0 + (�(A) + �(B))(log r 0)2) time to be built.

Proof. Weuse the same procedure as Lemma 12, but scan over the core entries of Tr(Mi) sequentially, in linear time, instead
of binary searches to determine transition points. Recall that the core of the Tr(Mi) matrices is the same as the core of B,
Lemma 3. Using the Lemmas 15 and 16 we amortize the binary search factor O(log c 0) to O(1), by consulting the O(�(B))
entries of B.

Let us number the nodes of the maxima tree MT i from 1 to r 0, the Root is 1 and the last leaf is r 0, denoted as v
( j)
i . Each

of these nodes stores one transition point value. Due to Lemma 16 we are not interested in the value of the transition point
itself, instead we are interested in the number of positive density values, in the sub-matrix associated with v

( j)
i , between

0 and the transition point. We denote these values as l( j)i . Hence l( j)i � l( j)i+1 counts the number of steps that the sequential
search executes from iteration j to j+1 for a given node. Recall that these values are decreasing, a consequence of Lemma 15.
Therefore the overall number of search steps is:

rX

i=1

r 0X

j=1

l( j)i � l( j)i+1 =
r 0X

j=1

l( j)1 � l( j)r  2�(B) log r 0

The first equality follows by swapping the
P

operators and using the telescopic property of the sum. The second
inequality results from adding the number of positive density values inside all the sub-matrices of B. The bound holds by
considering the l( j)1 � l( j)r values at the smallest sub-matrices, with 2 or 3 columns, and multiplying these values by log r 0.
These values add-up to at most �(B). Each search step uses the lax operation, which accounts for the second O(log r 0) factor.
Also the �(A) still appears in the complexity, for the reasons presented in Lemma 12, which are not accounted for in the
previous expression. ⇤

Since Lemma 12 was critical for the performance of Theorem 14, the improved Lemma 17 yields the following result:

Theorem 18. Let A and B be Monge matrices, of sizes r ⇥ c and (c = r 0) ⇥ c 0, the core of C = A ⌦ B can be computed in
O(r log r 0 + r 0 log c 0 + (�(C) log c 0 + (�(A) + �(B)) log r 0) log r 0) time and O(�(C) + r 0) working space.

Likewise using the equation C = (BT ⌦ A
T )T the previous result gives an algorithm that runs in O(c 0 log c + c log r +

(�(C) log r + (�(B) + �(A)) log c) log c) time and O(�(C) + c) space.

4. Analysis

4.1. Theoretical analysis

This section presents a theoretical and empirical analysis of severalmultiplication algorithms. Until nowwehave omitted
the time to access an entry of A or B. It is common to assume that this value isO(1), for example, in a geometrical context the
entries of A may represent the Euclidean distance between two points in the plane. Therefore this value can be computed,
with a fixed number of operations, instead of having to consult adjacent values in the matrix. In the context of sequence
alignment accessing a random element of A requires a dedicated data structure. Since the algorithms we presented work
in o(rc) space, it is not possible to store the values of A in memory, which would guarantee O(1) access time. Tiskin [18]
proposed a dominance counting structure [29] to represent Unit-Mongematrices.5 In this case computing the sum in Eq. (2)
consists of counting the number of points inside a rectangle. This structure supported access to a random element of A in

5 More precisely the matrices were assumed to be permutations, but general Unit-Monge matrices can be reduced to this case.

Aaron
O(log r0) access

Aaron
O(r0 + �(A) log r0) space

Aaron
O(r + r0 log c0 + (�(A) + �(B))(log r0)2) time

Aaron
a sequential search over the core entries of Mi.

Aaron
O(log c0) to O(1)

Aaron
a dominance counting structure [29] to represent Unit-Monge matrices

Aaron
the number of positive density values
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Table 1

Comparison between max-plus multiplication algorithms, accounting for access
time to A and B. The hs(n), t(n)i notation means s(n) space and t(n) time
requirements.

� = ⇥(n✏) MMT, Theorem 14 AMMT, Theorem 18
✏ = 2 hO(n2),O(n2 log n)i hO(n2),O(n2 log n)i
2 < ✏  1 hO(n✏ log n),O(n✏ log3 n)i hO(n✏ log n),O(n✏ log2 n)i
Unit-Monge, ✏ = 1 hO(n),O(n log3 n)i hO(n),O(n log2 n)i
1 < ✏  0 hO(n),O(n log2 n)i hO(n),O(n log2 n)i
� = ⇥(n✏) SMAWK , Lemma 4 Theorem 6
✏ = 2 hO(n2),O(n2)i –
2 < ✏  1 hO(n✏ log n),O(n2 log n)i –
Unit-Monge, ✏ = 1 hO(n),O(n2 log n)i hO(n),O(n log n)i
1 < ✏  0 hO(n),O(n2 log n)i –

Table 2

Core statistics for the analyzed examples,
including average sparsity (log �(A))/ log n,
average core density �A and the ⌫ values.

LCS WLCS PAM
(log �(A))/ log n 1.0 1.25 1.30
�A 1.0 5.38 15.70
⌫ 2 14 26

O((log �(A))/ log log �(A)) time and O(�(A)) space. For general Monge matrices use the structure by Willard [30], which
requires O(log �(A)) time and O(�(A) log �(A)) space. Note also that besides this type of access, in AMMT, Lemma 17, we
need to access the density values of sub-matrices of B, this implies accessing the density values inside a vertical strip.
This process is also supported by the structure of Willard, or with more recent representations based on the wavelet tree
[31,32]. Contrary to the algorithmswepropose, the algorithmof Tiskin (Theorem6)makes regular accesses to the underlying
matrix, i.e., it does not require randomaccesses, instead the values are consulted sequentially and therefore can be computed
incrementally in O(1) per access, without a dedicated data structure. These structures are important for the algorithms we
present in Theorems 14 and 18.We refer to these algorithms asMultipleMaxima Trees (MMT) andAmortizedMMT (AMMT).
The MMT algorithms always computes a lax value before accessing an entry, i.e., the accesses of the algorithm are always of
the form C(i, j) = Mi( j, laxMi[j, _]). Except in the amortized analysis of Lemma 10 the lax operation takes ⌦(log r 0) time,
see Lemma 9. This property is also confirmed experimentally in this section.

To simplify the analysis let us assume that ⇥(r) = ⇥(c) = ⇥(r 0) = ⇥(c 0) = ⇥(n) and that ⇥(�(A)) = ⇥(�(B)) =
⇥(�(C)) = ⇥(�). The algorithm of Theorem 6 needs to access entries at each step. Hence one could expect that the access
time became a factor of the overall time. However this would be a pessimistic comparison [33]. The reason for this is that
the algorithm makes non-random access to the underlying Monge matrices. The accesses are sequential, in the sense that
after accessing A(i, j) the next access value can be computed in O(1) time by adding or subtracting a value from the core
of A.

Table 1 shows a comparison of the different algorithms according to core size, � = ⇥(n✏). The analysis considers the
best space and time requirements that includes the access time to A and B.

First notice that the algorithms of Theorems 14 and 18 are indeed different, the result in Theorem 18 is not a tighter
analysis of the algorithm in Theorem 14. An example is the multiplication of the following matrices:

0

B@

0 �1 �2 �3
0 0 �1 �2
0 0 0 �1
0 0 0 0

1

CA ⌦

0

B@

0 �1 �2 �3
0 0 �1 �2
0 0 0 �1
0 0 0 0

1

CA =

0

B@

0 �1 �2 �3
0 0 �1 �2
0 0 0 �1
0 0 0 0

1

CA .

The density matrix, of these matrices, is the usual identity matrix, with ’1’s along the main diagonal. It is straightforward
to generalize these matrices to size n ⇥ n, in which case � = ⇥(n) and MMT runs in O(n log3 n) time and AMMT runs in
O(n log2 n) time.

For ✏ = 2 the access time is O(1), in this case Lemmas 12 and 13 have amortized performance, hence the o(n2 log3 n)
time of MMT and AMMT. Lemma 12 becomes an iterated Lemma 10. Lemma 13 loses an O(log n) factor. For ✏ < 1 the access
time is O(log n), the dominating time is that of building MT 1, Lemma 10. Because of the amortized analysis we need to
count the access time, hence the ⌦(n log n) time of MMT and AMMT.

Table 1 shows that the MMT algorithms are not always the most efficient, in particular SMAWK is faster by an O(log n)
factor for � = ⇥(n2). This situation changes for ✏ < 2, not only because SMAWK is not sensitive to the core size, but also

Aaron
O(log �(A)) time and O(�(A) log �(A)) space

Aaron
consulted sequentially

Aaron
專們的 dedicated

Aaron
Multiple Maxima Trees (MMT) and Amortized MMT (AMMT).
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悲觀的 pessimistic

Aaron
The accesses are sequential

Aaron
identity matrix

Aaron
� = ⇥ (n) and MMT runs in O(n log3 n) time and AMMT runs in O(n log2 n) time.

Aaron
⌦ (n log n) time of MMT and AMMT.

Aaron
SMAWK is not sensitive to the core size
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because access times are no longer O(1). For the remaining core-sizes the MMTs are faster than SMAWK . For the particular
case of Unit-Monge matrices, with � = ⇥(n), the algorithm of Theorem 6 is faster than MMT by a O(log2 n) factor and
faster then AMMT by an O(log n) factor. This hints that AMMT can possibly be improved. In practice this factor is not always
dominant, especially when the core entries have large values.

An important class of Monge matrices are obtained from WLCS. The algorithm of Theorem 6 can be adapted to this case
by multiplying its performance by a scaling factor ⌫, i.e., it becomes O(n⌫) space and O(n⌫ log n) time. To compare the two
algorithms note that � = O(n⌫), because all the entries of the matrix are integers. This bound is not always tight. Hence if
� is close to this bound the algorithm of Theorem 6 is faster than MMT by an O(log2 n) factor and faster then AMMT by an
O(log n) factor. On the other hand if � = ⌦(n), but close to O(n), then the algorithm in Theorem 6 is slower than MMT by
an O(⌫/ log2 n) factor and slower than AMMT by an O(⌫/ log n) factor. Section 4.3 shows experimental results.

4.2. Applications

Using MMT we obtain a non-trivial solution for the Fully-Incremental Alignment problem, which consists of updating a
generic alignment score from Align(S, T ) to Align(c.S, T ) or Align(S, c.T ) or Align(S.c, T ) or Align(S, T .c), where Align is
the respective score and c is a new character. For Align(S, T .c) we can simply compute HS,T .c by multiplying HS,T and HS,c ,
i.e., HS,T .c = HS,T ⌦ HS,c , the remaining problems can be solved in a similar way.

The resulting procedure takes O((n+ �) log3 n) time and O(n+ � log n) space, where � is the core size of the intervening
matrices. Using AMMT this result becomesO((n+�) log2 n) time andO(n+� log n) space. Notice that apart from the solution
presented here the only alternative is a naive solution, that requires a complete re-computation and therefore takes O(n2)
time. The algorithm in Theorem 6 can not be used in the general case, not even if allowing for a multiplicative factor ⌫.

We can use Eq. (4) to obtain a bound for �, stated in terms of alignment scores. Let us first consider A when trying to
compute Align(S, T .c). For a given alignment matrix we define ⌫, such that |h � d| < ⌫ for any vertical or horizontal score
h and any diagonal score d, i.e., is Align(c, ✏) or Align(✏, c) for some letter c , and d is Align(c, c 0), for any letters c and c 0.
Moreover the previous bound for ⌫ should also hold when d = 0. It is enough to choose the smallest ⌫ that satisfies the
previous condition. This was the selection criterion for ⌫ in the previous section. The values �⌫ are used in the alignment
DAGs as the weight of moving backwards on vertical or horizontal edges. In this case �A(0, r; 0, c)  2n⌫ � w, where
w = Align(S, T ). Therefore adding all the core sizes and using Lemma 5 we can conclude that � = O(n(⌫/�)), where � is
the smallest average in the matrices being multiplied. Typical average density values are shown in Table 2.

Since the solution to the previous problem consists of multiplying matrices it can solve a more general problem, that is
both incremental and decremental.

Definition 19. Given strings S, S 0, T and T 0 the alignment update problem consists of maintaining a data structure that
represents the alignment score between S and T .T 0, i.e.,Align(S, T .T 0), such that given a character c this value can be updated
to Align(S, T .c.T 0) and vice-versa.

Note that this problem is restricted to update only one of the strings, not both at the same time. For this problem consider
a balanced binary tree, AVL [34]. Every leaf of the AVL tree contains the matrix HS,a for every letter a in T .T 0. Moreover the
internal nodes contain HSMs related to the substrings of T .T 0. If R.R0 is a substring of T .T 0 and HS,R is the matrix of the left
child and HS,R0 is the matrix of the right child then HS,R.R0 is the matrix of the node. Note that adjacent leaves in the tree
contain consecutive letters of T .T 0. To insert a letter c we simply insert a new leaf in the tree and update the matrices in
the path to the Root, using Monge matrix multiplication. When re-balancing occurs the matrices at the nodes can also be
updated with matrix multiplication. Likewise deletions are handled in a similar way.

An update to the tree requires at most O(log n) multiplications, where O(n) is the size of S and T .T 0. Therefore an update
can be executed with O(log n) calls to AMMT, i.e., the overall time requirement of an update is O((n + �) log2(n + �) log n).
Storing the tree requires O(n + �0), where �0 is the accumulated core size of all the intervening matrices.

We also consider the circular alignment problem. Given strings S and T a circular alignment is an alignment between
S and a cyclic rotation of T , the problem consists in determining the best alignment between S and any cyclic rotation of
S 0. Solutions for circular LCS, that require O(n2) time were proposed by several authors. Moreover Tiskin [18] proposed a
solution that requires only O(( n log log n

log n )2) time.
We present the first, non-naive, solution to circular alignment. Again, Tiskin’s algorithm cannot be used for general

alignments. Using AMMT our result becomes O(n(n+ �) log2 n) time and O(n+ � log n) space, where � is the core size of the
interveningmatrices. A naive solution would require O(n3) time. The procedure consists in computing theHS,T .T matrix and
reading the entries that correspond to alignments between S and substrings of T .T with the size of T , i.e., HS,T .T (i, i + |T |).
This matrix must be computed from scratch, i.e., if T 0.c is a prefix of T .T then HS,T 0.c is computed by mutiplying submatrices
of HS,T 0 and HS,c . This accounts for the O(n) factor in these algorithms. For small alphabets this factor can be improved to
O(n/ log� n) by computing HS,Qi for every q-sample of T . In this case we avoid recomputation of repeated matrices. The last
stepmultiplies all theO(n/ log� n)matrices of the formHS,Qi . A similar speed-up canbe obtainedbyusing the compressibility
of T , resulting in an O(n/Hk) factor, where Hk is the k-th order entropy of S [35]. In this case instead of the q-samples tree
use the Trie from the Lempel–Ziv 78 [36] parsing of S.
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Using MMT we obtain a non-trivial solution for the Fully-Incremental Alignment problem,
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access times are no longer O(1)
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4.3. Experimental results

We implemented a prototype of the MMT algorithm and tested it on an Intel Core2 Duo @1.33 GHz, with 1.9 GiB of RAM
running Xubuntu 9.10, with Linux Kernel 2.6.31. The code was compiled with gcc 4.4.1 -O9. The implementation is
actually an improvement of AMMT, where the computation of the transition points is an inverse binary search. This means
thatwe startwith a small interval anddouble it at each step, providedwe can guarantee that it does not contain the transition
point we are searching for. Whenever the interval contains the desired transition point we do a regular binary search. This
process obtains, essentially, the amortized performance of AMMT, without the overhead of having to keep the B matrix in
a form that supports sequential access to the positive density values, within each sub-matrix. We refer to this prototype as
BMMT.

Results from this prototype were originally reported in [33]. Unfortunately, in that reference, the prototype was
denominated MMT, but actually it obtains the performance of AMMT. At the time we were unaware that the inverse binary
search procedurewould amortize theworst case performance. Still the performance of the algorithms in Theorems 14 and 18
is in fact different, in the worst case. To obtain AMMT’s performance it is necessary to use the scan described in Lemma 17,
or the inverse binary search just described. In the average case it may be that the performance of MMT is close to the
performance of AMMT, but changing an implementation of MMT to BMMT requires little extra effort and therefore there is
no compelling argument to use MMT instead.

The prototype consists only of themultiplication andnot of the representation ofA andB, which are stored inmemory and
hence have O(1) access time, our results show that this simplification has no impact in the asymptotic performance of the
algorithm. To test the performance we multiplied HSMmatrices, obtained from the LCS. We also tested HSMs that resulted
from generic alignments with the PAM weight matrix [27] and HSMs from Weighted Longest Common Subsequences
(WLCS), using the weights in Fig. 9. The algorithm of Theorem 6 can be extended to support WLCSs, but the space and
time are affected by a factor ⌫, in this scenario ⌫ = 14. On the other hand for PAM this technique does not apply, i.e., the
algorithm from Theorem 6 cannot be adapted to this problem. If it were possible it would have ⌫ = 26. The underlying
strings S, S 0, T were random Bernoulli proteins, i.e., � = 23, that differed in a letter with 10% probability. The sizes were
m = m0 = 4i and n = 8i for i between 1 and 128.

Besides comparing the algorithms we also analyzed the underlying matrices with respect to their core. We verified
experimentally that our test matrices are sparse, by computing the average (log �(A))/ log n. This value is usually close
to 1, and very distant from 2, hence indicating that the matrices are sparse. We also measured the average density of the
underlyingmatrix. The results, in Table 1, highlight the difference between�A(0, r; 0, c) and �(A), recall Eq. (2). The ⌫ factor
of the reduction presented by Tiskin is also presented, moreover the following relation holds �A  ⌫, because this factor is
used to expand the density matrices into ‘‘equivalent’’ unit density matrices.

The results from executing the algorithms are shown in Fig. 16. To make the plots readable we show only 20% of the
points. The x axis is indexed by a variable N = max{n, �}. For precision we repeated each query during 10 s. The plots on
the left show the running time, in seconds, of the BMMT algorithm and of an O(⌫n log(⌫n)) time algorithm, denominated as
Simulated. The ⌫ factor is calculated from Tiskin’s reduction procedure [18]. The simulated prototype is a divide and conquer
algorithm that allocates an array of size O(⌫n) and increases every cell from 0 to log(⌫n). At each step all the cells in the
array are increased by 1, the array is then divided in half and each part is processed recursively. The recursion processes
both sub-arrays, but in random order.

We compute a minimum squares (MSQ) estimates of c and d in the expression O(cN logd N). Since the behavior is
asymptotic the first points may distort the values. To diminish this effect we compute several MSQ estimates, successively
discarding the first points. We pessimistically choose the largest estimate.

The results show that for LCS and WLCS the � values are similar to n, but this is not always true in the PAM case. This
can be observed by looking at the simulated results, when � = ⇥(⌫n) then N = ⇥(⌫n) and the Simulated result show
stable O(N logN) curves. This happens for the LCS andWLCS cases, but not for the PAM dataset. In the PAM dataset � varies
between values that are o(⌫n), up toO(⌫n).When � = o(⌫n) the correspondingO(⌫n log(⌫n)) value is plottedwith a smaller
N value, hence causing a dispersion in the simulated points. The same then happens for the BMMT prototype. This is in fact
a pessimist comparison, for a fair comparisonwe should useN = n for the simulated algorithm. Still BMMT is already faster,
for PAM, because of the ⌫ factor, and for the remaining cases the comparison is fair. Using O(1) access time BMMT is slower
than the simulated algorithm for LCS and WLCS but, generally, faster for PAM. Note that d is much smaller than 3, for a
decent fitting of the model, i.e., R2 > 0.95, the time bound is always lower than O(Nlog2N).

The graphics on the right show the number of operations for different sub-routines. The respective MSQs appear in the
same line in the label. We estimate the ratio between node accesses and leaf accesses (Nodes/Leaves), which is always very
close to O(logN). This value is important because it is against this time that the accesses to A and B add. If this ratio was 1
we would need to add an O(log n) factor to the final complexity. Since the ratio is close to O(logN) the accesses add only
a constant term. The BinSteps line counts the average number of steps that is necessary in a binary search that computes a
transition point. This value is o(logN) because the BMMT prototype uses inverse binary search.

Transition points are computed lazily, i.e., only if we need to consult them during the algorithm. TotalOps/N measures
the total number of operations that the algorithm used, divided by N . The d estimate of this value is usually larger than the
d value obtained in the time graphs, on the left. This may be related to cache effects. For LCS and WLCS the bound was at
most O(log2.1 N), for PAM the value was higher, but the model fitting was extremely low.
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Fig. 16. Experimental testing of the BMMT algorithm. The x-axis represents variable N = max{n, �}. The y-axis of the plots on the left indicates the time in
seconds. The y-axis of the graphs on the right indicates the number of operations.

5. Conclusions

In this paper we studied algorithms for the max-plus product of Monge matrices. We analyzed the existing algorithms
considering the core size, Table 1. The analysis showed that the existing algorithms are either sub-optimal or apply only to
specific classes of matrices. Alternatively we proposed a core sensitive algorithm, MMT, and an amortized version AMMT.
This algorithm is faster than the iterated SMAWK algorithm, except when the core is O(n2). For Unit-Monge matrices the
algorithm of Theorem 6 is theoretically faster than AMMT, by an O(log n) factor. The algorithm of Theorem 6 can also be
applied to matrices that result fromWeighted LCSs, by using a ⌫ time and space factor.

We also showed experimentally that the MMT algorithms are efficient for general sparse Monge matrices, namely those
related to PAM alignments. The MMT and AMMT algorithms are simple and flexible, their main tools are binary trees
and binary searches. They are also flexible and provided, as far as we know, the first non-trivial algorithm for the fully-
incremental alignment, alignment update and circular alignment problems, string processing problems that are relevant
for bio-informatics. We expect MMT and AMMT to have broad applications, since a myriad [17,24] of string processing and
optimization problems [1] use Monge matrices.

Aaron
max-plus product of Monge matrices
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