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a b s t r a c t 

Finding the multiple longest common subsequences (MLCS) among many long sequences (i.e., the large 

scale MLCS problem) has many important applications, such as gene alignment, disease diagnosis, and 

documents similarity check, etc. It is an NP-hard problem (Maier et al., 1978). The key bottle neck of 

this problem is that the existing state-of-the-art algorithms must construct a huge graph (called direct 

acyclic graph, briefly DAG), and the computer usually has no enough space to store and handle this graph. 

Thus the existing algorithms cannot solve the large scale MLCS problem. In order to quickly solve the 

large-scale MLCS problem within limited computer resources, this paper therefore proposes a branch and 

bound irredundant graph algorithm called Big-MLCS, which constructs a much smaller DAG (called Small- 

DAG) than the existing algorithms do by a branch and bound method, and designs a new data structure 

to efficiently store and handle Small-DAG. By these schemes, Big-MLCS is more efficient than the existing 

algorithms. Also, we compare the proposed algorithm with two state-of-the-art algorithms through the 

experiments, and the results show that the proposed algorithm outperforms the compared algorithms 

and is more suitable to large-scale MLCS problems. 

© 2021 Elsevier Ltd. All rights reserved. 

1

A

i  

fi

a

s

v

fi

i

q

l

s

s

n

m

s

i  

f

W

d

a

t

a

r

a

g

e

l

a

m

t

t

n

a

fi

p

o

m

i

h

0

. Introduction 

Sequences over a finite alphabet � are a common type of data. 

 typical example of such sequences is DNA sequences consist- 

ng of four characters ( � = { A, C, G, T } ). One basic problem in the

elds of pattern recognition, gene alignment, disease diagnosis, 

nd documents similarity check is to find the longest common sub- 

equences of many sequences. According to the number of the in- 

olved sequences, this problem can be divided into two categories: 

nding the longest common subsequences (LCS) of two sequences 

s called an LCS problem, and finding the longest common subse- 

uence among three or more sequences is called an MLCS prob- 

em, where the length and number of the longest common sub- 

equences are commonly used to measure the similarity between 

equences. In this paper, we study MLCS problem, which has a 

umber of attractions, such as cancer detection [1] , cancer treat- 

ent [2] , protein sequence alignment [3] , protein sequence clas- 

ifying [4] , mRNA processing [5] , body sensor network research- 

ng [6] , gene data searching [7] , and gene data analysing [8] . Un-

ortunately, the MLCS problem is an NP-hard problem [9] . In the 
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ecades, a number of methods have been developed to solve LCS 

nd MLCS problems. Roughly these methods can be classified into 

wo classes: Exact algorithms and Approximation algorithms. Ex- 

ct algorithms are ones which try to find all MLCS in a single 

un, while approximation algorithms are ones which try to find 

n approximate/true MLCS quickly, however, the approximate al- 

orithms can only get a part of the approximate/true MLCS. Blum 

t al. [10] proposed a beam search method to solve MLCS prob- 

em. Yang et al. proposed a parallel algorithm called Pro-MLCS [11] , 

nd SA-MLCS algorithm [12] to further reduce space overhead. Et- 

inan et al. [13] proposed a method called FAME to speed up 

he search process. In this paper, we will focus our attention to 

he exact algorithms. There are two kinds of exact algorithms: dy- 

amic programming based algorithms and dominant point based 

lgorithms. The dynamic programming based algorithm [14] was 

rst used to quickly find LCS of two sequences, and the time com- 

lexity of the algorithm is O (nm), where n and m are the lengths 

f two sequences, respectively. Apostolico et al. [15] proposed a 

ethod to reduce the space cost of the algorithm without affect- 

ng the time complexity of the original algorithm. Tchendji et al. 

16] proposed a parallel algorithm to reduce the execution time 

f the algorithm. However, the time complexity of traditional dy- 

amic programming algorithm will increase exponentially with the 

umber of sequences, which is obviously not suitable for solving 
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LCS problems. With the advancement of gene sequencing tech- 

ology, the scale of the existing human gene database has grown 

apidly [17] , and algorithms based on dynamic programming can 

o longer meet the needs of finding the longest common sub- 

equence in multiple sequences. In order to effectively solve the 

LCS problem, some scholars have put forward the algorithms 

ased on dominant point in recent years. The core idea of these 

lgorithms is to construct a Directed Acyclic Graph (DAG) through 

on-dominated sorting, thereby transforming the MLCS problem 

nto searching the longest path in a DAG. Experiments show that, 

ompared with the dynamic programming based algorithms, the 

ominant point based algorithms greatly reduce the search space 

nd thus achieve a great performance improvement. The first dom- 

nant point based algorithm was proposed by Hunt in 1977 [18] , 

nd its time complexity is O ((r + n ) logn ) , where r is the num-

er of nodes in DAG. Hakata et al. [19] proposed a strategy to 

olve larger scale MLCS problem. Korkin [20] gave a parallel ver- 

ion to reduce the time for searching for LCSs. In order to fur- 

her improve the performance of the dominant point based algo- 

ithms, Chen [21] proposed FAST-LCS algorithm. Although a part 

f the space storage is sacrificed by constructing a Successor Ta- 

le in this algorithm, the speed of constructing DGA is accelerated. 

urther, as a representative of the efficient dominant point based 

lgorithms, the Quick-DPAR algorithm [22] reduces the times of 

on-dominated sorting by using a new rule. Gustavsson and Syber- 

eldt [23] accelerated the non-dominated sorting by using non- 

ominated tree. Nevertheless, these dominant point based algo- 

ithms will still quickly use up its memory space before a MLCS 

s found. In fact, during the search process, the number of nodes 

n each layer of the DAG will increase exponentially, resulting in 

 huge space overhead, even the memory space being exhausted. 

lso, as the nodes in each layer increase exponentially, the time 

equired for non-dominated sorting in each layer will also in- 

rease exponentially, resulting in the severe heavy time cost. In 

016, Li et al. [24] proposed an algorithm named Top-MLCS, which 

as an overwhelming advantage over the existing dominant point 

ased algorithms. The merit of Top-MLCS algorithm is that it cre- 

ted a DAG without redundant nodes, which is called Irredundant 

ommon Subsequences Graph (ICSG). That is, the same point ap- 

ears only once, and the non-dominated sorting between points 

s avoided, thus saving a lot of time and space. However, it needs 

orward and backward topological sorting schemes. For large-scale 

LCS problems, DAG constructed by TOP-MLCS is still very huge 

nd TOP-MLCS still faces the problem of memory exhausted. The 

ain reasons are as follows: 1) To circumvent redundant nodes in 

he graph, Top-MLCS has to store all the built nodes of ICSG (im- 

lemented by Hash table). As construction of ICSG continues, the 

umber of nodes in the DAG and Hash table increases rapidly, re- 

ulting in too large ICSG and the memory exhausted. 2) After the 

onstruction of the ICSG is completed, it needs to use topological 

orting twice to find the MLCS, which increases the time cost. To 

onstruct small DAG, Liu et al. [25] designed a character merging 

cheme which merges the consecutively repeated characters in the 

equences. However, when there are fewer consecutive repeated 

haracters in sequences, the improvement of the strategy will be 

imited. To overcome the shortcomings of the existing dominant 

oint based algorithms and effectively solve large-scale MLCS prob- 

ems in a limited memory, we design a branch and bound irredun- 

ant graph algorithm called Big-MLCS. Our main contributions are 

s follows: 

• Design a branch and bound strategy for identifying non- 

contributed points and non-longest paths. If we can judge 

that a match point is unlikely to appear in MLCS, this point and 

all paths through this point will not have contribution to search 

the longest path, and they are called non-contributed point and 
2 
non-longest paths, respectively. Therefore, we do not put them 

on DAG, thereby reducing the scale of DAG. To do so, we design 

a branch and bound strategy to identify them. 
• Construct a much smaller DAG than those constructed by the 

existing algorithms. We use the proposed branch and bound 

strategy to identify the non-contributed point and non-longest 

paths, and do not include them in DAG. As a result, the con- 

structed DAG will be much smaller than the existing ones and 

is called Small-DAG. 
• Design a strategy for deleting points in the Hash table 

timely. The establishment of the Hash table is to prevent the 

same points from appearing repeatedly in Small-DAG. Also, if 

we can judge that a point is unlikely to appear in subsequent 

searches, we can safely delete it from the Hash table without 

any impact on the final result, thereby reducing the scale of 

Hash table and memory usage. 
• Propose a new data structure for storing Small-DAG to avoid 

topological sorting. In constructing Small-DAG, we only store 

the longest path, and do not store non-longest paths in Small- 

DAG. Therefore, in Small-DAG, all the paths from the end point 

to the start point are the longest paths. Both time and space 

costs are smaller than those in the existing DAGs including 

ICSG. 
• Propose a new algorithm for larger-scale MLCS problems 

with lower time and space cost. We propose a branch and 

bound irredundant graph MLCS algorithm called Big-MLCS for 

large-scale MLCS problems and make the comparison with the 

state-of-the-art algorithms. The results show that our algorithm 

performs better than the counterparts and is more suitable to 

large-scale MLCS problems. 

The rest of this paper is organized as follows. Section 2 intro- 

uces some preliminaries and makes an overview of the related 

orks, mainly on the dominant point based algorithms including 

OP-MLCS. Section 3 describes the proposed algorithm Big-MLCS 

n detail. Section 4 analyzes the performance of our algorithm in 

olving large-scale MLCS problems and compares it with the state- 

f-the-art algorithms. Finally, we draw a conclusion in Section 5 . 

. Preliminaries and related work 

.1. Notations and definitions 

In this Section, we will give some common notations and def- 

nitions first. Then, we will introduce the dominant point based 

lgorithms including the algorithm based on ICSG with some ex- 

mples. 

efinition 1. Let � be a alphabet set ( � = { A, C, G, T } for a DNA

equence), S = c 1 c 2 · · · c n ( c i ∈ �, 1 ≤ i ≤ n ) be a sequence on alpha-

et set �, and | S | be the length of the sequence. If S ′ is a sequence

ormed by deleting non or some character(s) from the sequence S, 

e call S ′ a subsequence of S. 

For example, if we delete all the characters A from sequence 

 = ACGGT GA , sequence S ′ = CGGT G is a subsequence of sequence

. 

efinition 2. For two sequences S 1 and S 2 , if S ′ is a subsequence

f both sequence S 1 and sequence S 2 , then S ′ is called the com- 

on subsequence of S 1 and S 2 . Among all common subsequences, 

 longest one is called a longest common subsequence of S 1 and 

 2 . The number of longest common subsequences is not neces- 

arily only one. For example, for sequences S 1 = ACGGT AGA and 

 2 = T AC GAGT C , both S ′ 1 = AC GGT and S ′ 2 = ACGAG are their longest

ommon subsequences. 
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Fig. 1. Construction process of the DAG by the dominant point based algorithm. 
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efinition 3. The problem of finding all the longest common sub- 

equence of a given number of d ( d ≥ 3 ) sequences is called MLCS 

roblem. 

As mentioned earlier, dominant point based methods are the 

urrent most efficient methods for solving MLCS problems. In the 

ollowing sections, we will introduce these approaches. 

.2. Dominant point based approaches 

The reason why the algorithms based on dominant points can 

olve the MLCS problem more efficiently is that they reduce the 

earch space through the non-dominated sorting, thereby reducing 

he size of the directed acyclic graph (DAG). In order to facilitate 

ur understanding of the core idea of the algorithms, we will give 

ome definitions first, and then illustrate the process of construct- 

ng directed acyclic graph (DAG) by a simple example. 

efinition 4. For a set of sequences I = { S 1 , · · · , S i , · · · , S d } on

lphabet set �, we use S i [ j] to represent the j th character of

he sequence S i ( S i [ j] ∈ �, 1 ≤ i ≤ d, 1 ≤ j ≤ | S i | ). If S 1 [ c 1 ] = · · · =
 d [ c d ] = α ∈ �, we call point p = (c 1 , c 2 , · · · , c d ) a match point of

. 

For example, for sequences: S 1 = ACGGT AGA 

S 2 = T AC GAGT C 

S 3 = T C GAGT AC 

p = (1 , 2 , 4) is a match point of character A . 

efinition 5. Given a set of sequences I = { S 1 , · · · , S i , · · · , S d } on

lphabet set �. For two matching points p = (p 1 , p 2 , · · · , p d ) and

 = (q 1 , q 2 , · · · , q d ) , we define: 

1. p = q if ∀ i (1 ≤ i ≤ d) , p i = q i . 

2. p weakly dominates q , if ∀ i (1 ≤ i ≤ d) , p i ≤ q i and ∃ i, p i < q i 
(denoted by p 	 q ). 

3. p dominates q or q is dominated by p, if ∀ i (1 ≤ i ≤ d) , p i < q i 
(denoted by p ≺ q ). 

4. q is called a successor of p if p ≺ q . Further, if there is no match

point r to satisfy p ≺ r ≺ q , then q is called an immediate suc- 

cessor of p. 

5. If q is a successor of p, we call p a predecessor of q . 

efinition 6. Given a set of match points P = { P 1 , P 2 , · · · , P n } , if a

atch point P i ( 1 ≤ i ≤ n ) is not dominated by any and other match

oints in set P = { P 1 , P 2 , · · · , P n } , P i is a non-dominated point of set

 . If there is a point P j which dominates P i , P i is called a dominated

oint. 

The principle of the dominant point based algorithms is based 

n the following observation: in the set of all successor nodes, only 

on-dominated points are likely on the longest path (correspond- 

ng to MLCS) on the DAG, so one can only keep non-dominated 

oints by non-dominated sorting, and delete the dominated points 

rom the set, thus reducing the search space and making DAG con- 

tructed much smaller. 

For d given sequences, we first create a d dimensional initial 

ode (also called source node) O = (0 , 0 , · · · , 0) and a d dimen-

ional infinite node (also called end node) E = (∞ , ∞ , · · · , ∞ ) , and

et the level of the source node to 0 in the initialization phase. Af- 

erward, we look for all successor nodes of the source node, and 

se the non-dominated sorting method to find the non-dominated 

oints in the set of these successors, delete the dominated nodes, 

raw an edge from the original (initial) node to the remaining suc- 

essors (each remaining successor is used as a node), and set the 

evel of these remaining successors to 1. For each node in level 1, 

e look for its all successors. All successors of all nodes in level 1 

orm a set of successors of level 1. We use the non-dominant sort- 

ng method to find the non-dominated points in the set of succes- 

ors of level 1, and delete the all dominated points. The remaining 

uccessors in the set of successors of level 1 are the nodes in level
3 
. Draw an edge from any node in level 1 to its remaining suc- 

essor in level 2. We can construct nodes in the followed levels 

y repeating the above process until any node in a level has no 

uccessor, and then draw an edge from each node in this level to 

he end point. This finishes the construction of the directed acyclic 

raph (DAG). Each longest path in the DAG graph is corresponding 

o a MLCS. 

We will use an example (the example given in Definition 4 ) 

o illustrate the framework of the aforementioned dominant point 

ased algorithm. 

xample 1. Given three sequences: 

S 1 = ACGGT AGA 

S 2 = T AC GAGT C 

S 3 = T C GAGT AC 

Figure 1 

shows the details of the construction process. That is: 

1. Create the original node and infinite node, and then set the 

level of the original node to 0. 

2. Find the successors of the original node, here we can 

find A (1 , 2 , 4) , C(2 , 3 , 2) , G (3 , 4 , 3) , and T (5 , 1 , 1) . After non-

dominated sorting on successor nodes, we can find that 

G (3 , 4 , 3) is dominated by C(2 , 3 , 2) . So we delete the succes-

sor G (3 , 4 , 3) (marked in gray), draw an edge from the origi-

nal point to its three remaining successor nodes, and mark the 

level of the remaining successor nodes as level 1. 

3. For each node of all nodes A (1 , 2 , 4) , C(2 , 3 , 2) and T (5 , 1 , 1) in

level 1, e.g., for node A (1 , 2 , 4) , find all its successors A (6 , 5 , 7) ,

C(2 , 3 , 8) , G (3 , 4 , 5) and T (5 , 7 , 6) . Similarly, we can find the

successors of nodes C(2 , 3 , 2) and T (5 , 1 , 1) . After using non-

dominant sorting method, we can delete 4 dominated points 

(the successors A (6 , 5 , 7) and T (5 , 7 , 6) of A (1 , 2 , 4) , and the

successors A (6 , 5 , 4) and T (5 , 7 , 6) of C(2 , 3 , 2) ) in gray and

keep 5 non-dominated points ( C(2 , 3 , 8) , G (3 , 4 , 5) , G (3 , 4 , 3) ,

A (6 , 2 , 4) , G (7 , 4 , 3) ) in white. Set the level of these 5 non-

dominated points in white to 2. 

4. Repeat Step 3 until all the nodes in the level 4 have no suc- 

cessor nodes. At this time, we draw an edge from each node 
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in level 4 to end node. The construction of the entire directed 

acyclic graph (DAG) is completed. 

5. All the paths from the original node to the end node are 

all longest common subsequences. In this example, there are 

three longest common subsequences: S ′ 1 = CGAG , S ′ 2 = CGGT , 

S ′ 
3 

= T AGA 

Although the dominant point based algorithm described above 

s more efficient than the dynamic programming based algorithms, 

here are two main shortcomings below: 

• Repeatedly appeared points waste a lot of space and time. For 

example, as shown in Fig. 1 , point G (3 , 4 , 3) in the first level

appears again in the second level. Similarly, point T (5 , 7 , 6) ap-

pears two times in the second level and also appears two times 

in the third level and one time in the fourth level. It appears re-

peatedly 5 times. Obviously, these repeated points needs to be 

stored repeatedly and deleted repeatedly (if they repeat more 

than two times and are dominated), which wastes a lot of space 

and time. 
• The non-dominated sorting on the successor nodes created in 

each level needs huge time consumption. In fact, it needs com- 

parison of each pair of high dimensional points in each level, 

and the comparison between one pair of points needs d com- 

parisons of two real numbers if there are d sequences (in the 

example, d = 3 ). With the increase of the problem scale (the 

number of sequences and the length of sequences), the num- 

ber of nodes in each level will increase exponentially, which 

will results in huge time consumption. 

Unfortunately, with the increase of the length and number of 

equences, the time and space consumptions of algorithms based 

n dominant point are very large. Hence, these algorithms are dif- 

cult to deal with large-scale MLCS problems. Recently, Li et al. 

24] put forwards the Top-MLCS algorithm. Its most notable in- 

ovation is to construct a much smaller DAG, i.e., ICSG, without 

edundant nodes and cleverly avoid the non-dominated sorting 

mong successors. After ICSG is constructed, we can get the MLCS 

hrough topological sorting. In the next section, we will introduce 

he framework of Top-MLCS algorithm. 

.3. Top-MLCS algorithm 

In order to easily understand the Top-MLCS algorithm, we in- 

roduce the definition of the in-degree of nodes in graph theory 

rst. 

Definition 7. For a node in a direct graph, the sum of all edges

o this node from other nodes is called the in-degree of the node. 

For example, in Fig. 1 , the in-degree of the original node O =
0 , 0 , · · · , 0) is 0 because no edge to it, and the in-degree of the

nfinite node E = (∞ , ∞ , · · · , ∞ ) is 3 because there are three edges

o it. 

The framework of the Top-MLCS algorithm is mainly composed 

f the following three parts: 

.3.1. Construction of ICSG 

One of the most important techniques of Top-MLCS algorithm is 

onstructing ICSG. In the process of constructing the ICSG, in order 

o avoid redundant nodes in the graph, one needs to store the in- 

ormation of the constructed points by a Hash table. When a new 

uccessor q of a node p appears, one has to judge whether this 

uccessor q has been created in the ICSG. If it has not been cre- 

ted, it will be added as a new node in the ISCG, and an edge from

he predecessor p to its successor q is drawn. This predecessor- 

uccessor relation information is stored in the Hash table. If it has 

lready been created, it needs not to be added to the ICSG. One 

nly has to draw an edge from p to it. 
4 
Let us use the example in Definition 4 to show the process of 

CSG construction. Given three sequences: 

S 1 = ACGGT AGA 

S 2 = T AC GAGT C 

S 3 = T C GAGT AC 

1. Create the original node, and let infinite node denote the end 

node. 

2. Find successors of the original node, and we can find four suc- 

cessors A (1 , 2 , 4) , C(2 , 3 , 2) , G (3 , 4 , 3) ,and T (5 , 1 , 1) . Draw the

edges from the original point to the successor nodes, and put 

them all in the Hash table. 

3. For each new generated node, Find its all successors. For ex- 

ample, for node A (1 , 2 , 4) , find its all successors C(2 , 3 , 8) ,

A (6 , 5 , 7) , G (3 , 4 , 5) and T (5 , 7 , 6) . Identify whether these four

successors have been created in ICSG (check whether the suc- 

cessor exists in hash table). Because these four successors have 

not been created, we connect the edges from A (1 , 2 , 4) to each

of them, and store all the successors into the Hash table. For 

node C(2 , 3 , 2) , find its all successors T (5 , 7 , 6) , A (6 , 5 , 4) and

G (3 , 4 , 3) . Because T (5 , 7 , 6) and G (3 , 4 , 3) have been created in

the ICSG, we only need to draw edges from C(2 , 3 , 2) to each of

these two successors. While A (6 , 5 , 4) has not been created, we

draw an edge from C(2 , 3 , 2) to its this successor A (6 , 5 , 4) and

store A (6 , 5 , 4) into the Hash table, as shown in Fig. 2 (a). 

4. Repeat above process until all new generated points in the 

graph have no successors. Draw an edge from each of the new 

generated points to the infinite node. So far, the entire ICSG is 

constructed, as shown in Fig. 2 (b). 

.3.2. Forward topological sorting 

Note that there are no redundant (repeated) nodes in ICSG 

nd a large amount of time required for non-dominated sorting is 

voided. However, the ICSG constructed has the following problem: 

he level of each node in the DAG constructed by other dominant 

oint based algorithms is very clear, while the level of each node 

n ICSG is not clear or even a node in the ICSG may have no level

ecause there may be more than one path from the source node 

o it (see Fig. 2 b). This results in more difficult and more computa-

ion cost to find all longest paths from the source node to the end 

ode. In order to determine the level of nodes in ICSG, Top-MLCS 

lgorithm uses a topological sorting scheme as follows. 

1. Initially, we set the level of the source node as 0. Then, start- 

ing from each node in the current level (only the source node 

in level 0), we delete all edges originating from each node in 

the current level (represented by dashed edges in Fig. 3 (a)). 
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Fig. 3. An example to optimize ICSG using topological sorting, where (a), (b1), (b2), (c1), and(c2) show the process of forward topological sorting, (d) shows the forward 

topological sorted ICSG, and (e) shows the backward topological sorted ICSG. 

 

 

 

 

 

shown in Fig. 3 (d). 
Find all successor nodes of the each current level node (the 

source node in this example) in ICSG whose in-degrees are 0 

( A (1 , 2 , 4) , C(2 , 3 , 2) and T (5 , 1 , 1) ). These nodes are the nodes

in the next level (in level 1) as shown in Fig. 3 (b1). Now we

can get a part of the forward topological sorted ICSG, as shown 

in Fig. 3 (b2). 

2. Starting from each node in level 1, we delete all edges originat- 

ing from the nodes in level 1 (represented by dashed edges in 

Fig. 3 (b1)). Find all nodes in the ICSG with the in-degree being 
5 
0. Here we can find C(2 , 3 , 8) , G (3 , 4 , 5) , G (3 , 4 , 3) , A (6 , 2 , 4)

and G (7 , 4 , 3) . Set the level of these 5 nodes to 2, as shown

in Fig. 3 (c1). Our current forward topological sorted ICSG is ex- 

panded to Fig. 3 (c2). 

3. Repeat the above process by starting from each node (in 

Fig. 3 (c1)) in level 2 until the levels of all nodes in ICSG are

determined, and we can get a new ICSG with each node be- 

ing defined a level by the forward topology sorting scheme, as 
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Fig. 4. Strategy for deleting non-contribution points in VHT. 
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.3.3. Backward topological sorting and analysis 

When one gets the leveled ICSG shown in Fig. 3 (d), one can get

ll MLCSs by a backward topological sorting as follows: Searching 

uccessively level by level from end node to source node. If a path 

oes not go through any point in some level, then this path is not 

he longest path and it is not corresponding to any MLCS. Thus, 

his path can be deleted from ICSG in Fig. 3 (d), which will result in

 simplified ICSG as shown in Fig. 3 (e). Each path from source node

o end node in this simplified ICSG is the longest path and any 

LCS is corresponding to the longest path from source node to end 

ode in this simplified ICSG. Thus, finding all MLCS is transformed 

nto searching all longest paths in this simplified ICSG. 

However, Top-MLCS has the following disadvantages, illustrated 

y the aforementioned example: 

• Although there are no redundant nodes in the graph, and we 

need not do non-dominated sorting for points of the same 

level, we have to use a lot space to store all these non-repeated 

nodes created and the relation of each pair of the predecessor 

and the successor of these non-repeated nodes. In this example, 

in order to avoid duplicate creation of the same points, we need 

to store 16 points of d dimensions in the hash table, where d

is the number of sequences. As the number of sequences in- 

creases, the cost of storing these nodes will increase greatly. 
• After ICSG with non-repeated nodes is constructed as shown in 

Fig. 3 , one needs to set up the exact level of each point in this

ICSG through forward topological sorting (the process shown 

from Fig. 3 (a)–(d)), which will take a lot of time especially 

when the scale of this ICSG is large. In order to get the final

solution, one has to further use the backward topological sort- 

ing to delete the non-longest path from leveled ICSG (shown 

in Fig. 3 (d))to get the simplified ICSG (shown in Fig. 3 (e)). This

process is very time-consuming. 
• Top-MLCS algorithm lacks branch and bound strategy in the 

process of constructing ICSG. We can see from the above ex- 

ample that not all points can form the longest path, such as 

the path composed of points T (5 , 1 , 1) , G (7 , 4 , 3) and A (8 , 5 , 7)

( Fig. 3 (d)), whose length is only 3, but computing resources and 

storage resources are still wasted on them. 

To overcome these drawbacks, Section III will propose the Big- 

LCS algorithm for MLCS Problems. 

. The Big-MLCS algorithm 

We will introduce our strategy for deleting points in the Hash 

able timely in Section 3.1 , a new data structure for storing Small- 

AG in Section 3.2 , and a branch and bound method for deleting 

o-contributed points and non-longest paths in Section 3.3 . 

.1. Reduce storage space by deleting points in vector Hash tables 

imely 

In order to introduce our algorithm more clearly, we will first 

ive a definition of minimum value of a matching point. 

Definition 8. For a match point p = (p 1 , p 2 , · · · , p d ) , We call

 (p) = min { p 1 , p 2 , · · · , p d } the minimum value of p. 

Note that there are no repeated nodes in the constructed ICSG 

n Top-MLCS, but one needs to store all the points that have 

een constructed into the Hash table. However, with the increas- 

ng number of nodes, the memory occupied by the Hash table will 

ontinually increase, and the efficiency of searching elements in 

he Hash table will decline as well. When the number of sequences 

i.e., the dimension of nodes in Hash table) is large, the space con- 

umption of Hash table will be even larger. Here, we design a new 

ash Table strategy called Vector Hash Table (VHT) by deleting the 
6 
oints in VHT timely, which has a significant reduction in the stor- 

ge of original Hash table. The theoretical basis of this operation 

s that, if the minimum value of the two match points are equal, 

hey will not dominate each other, which means they will not be- 

ome each other’s successor node. For the example mentioned ear- 

ier, the minimum value of all components of both A (1 , 2 , 4) and

 (5 , 1 , 1) is 1, so it is impossible for one to be a successor of the

ther. 

Based on this observation, we store successors in different VHTs 

ccording to the minimum component value of a match point. We 

how the steps to implement this strategy in Algorithm 1 (We give 

ach point a unique Index, which will be used in Section 3.2 ). 

To easily understand this strategy, we will briefly explain the 

rocess of Algorithm 1 through the example mentioned earlier. 

lgorithm 1 Strategy for deleting points in VHT timely 

1: V HT [0] store { (0 , 0 , · · · , 0) , Index = 0 } 
2: Index = Index + 1 

3: for i = 0 to | S | do 

4: while V HT [ i ] � = ∅ do 

5: get p f rom V HT [ i ] 

6: for each k in Successor(p) do 

7: if k / ∈ V HT [ m (k )] then 

8: V HT [ m (k )] Store { k, Index } 
9: Index = Index + 1 

0: end if 

11: end for 

2: end while 

3: Delete V HT [ i ] 

4: end for 

1. Store original node (0,0,0) in VHT[0], as shown in Fig. 4 a(1). 

2. Find its all successors. If the minimal component value of a 

successor is i , this successor is stored in the corresponding 

VHT[i]. In this example, it has four successors (1,2,4), (5,1,1), 

(2,3,2) and (3,4,3). Successors (1,2,4) and (5,1,1) have the min- 

imal component value i = 1 . Thus these two successors are 

stored in VHT[1] ( Fig. 4 ). Similarly, successor (2,3,2) has the 

minimal component value i = 2 and will be stored in VHT[2] 

( Fig. 4 ). (3,4,3) has the minimal component value i = 3 and will

be stored in VHT[3] ( Fig. 4 a). Delete the previous VHT[0] shown 

in Fig. 4 a(1) (marked in gray). 

3. For nodes in the undeleted VHT[i] with the smallest i , find 

their all successors. For any successor of a node in VHT[i] with 

its minimal component value being j, put it in the VHT[j]. 

Delete VHT[i] after putting all successors of its all nodes. In 

this example, find the successor nodes of (1,2,4) and (5,1,1) in 



C. Wang, Y. Wang and Y. Cheung Pattern Recognition 119 (2021) 108059 

n

3

s

c

s

S

I

T

t

i

l

i

f

t

i

A

1

1

1

1

1

1

2

2

2

2

2

2

b

b

i

(

o  

t

p

t

 

 

 

 

d

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

f

VHT[1], store their successors in VHT[2]-[5] according to their 

minimum component values ( Fig. 4 b(2)–(4)), and then delete 

VHT[1] as shown in Fig. 4 b(1). 

4. For the undeleted VHT[j] with the smallest j, repeat the above 

process until all nodes in the undeleted VHT have no succes- 

sors. 

Using this VHT strategy, it is expected that we can delete a large 

umber of nodes in VHT timely. 

.2. A new data structure for storing Small-DAG to avoid topological 

orting 

In the Top-MLCS algorithm, when the construction of ICSG is 

ompleted, the forward and backward topological sorting schemes 

hould be used to get all MLCSs, which is laborious. Note that in 

ection 3.1 , we design VHT which maps each node to its index. 

n this section, we design a new data structure called Graph Hash 

able (GHT) which can maps the index of each node to its posi- 

ion information (level, predecessor and corresponding character) 

n Small-DAG. By using GHT, we can easily and quickly know the 

evel, predecessor and corresponding character of each node from 

ts index and only need to store the following three kinds of data 

or constructing Small-DAG: 

1. Character α ( α ∈ �). 

2. Predecessors of any node in Small-DAG. 

3. Level of the node in Small-DAG. 

To build Small-DAG, we need to update the position informa- 

ion: the predecessor and level of each node. The method is given 

n Algorithm 2 . 

lgorithm 2 Method of updating information of nodes. 

1: get p and Index of p f rom V HT [ i ] 

2: get Le v elp f rom GHT [ Index of p] 

3: for each k in Successor(p) do 

4: if k / ∈ V HT [ m (k )] then 

5: V HT [ m (k )] Store { k, Index of k } 
6: P redecessor of k = Index of p

7: Le v elk = Le v elp + 1 

8: GHT Store { Index of k , k } 
9: else 

0: get Index of k f romV HT [ m (k )] 

11: get Le v elk f rom GHT [ Index of k ] 

2: if Le v elp + 1 > Le v elk then 

3: P redecessor of k = Index of p

14: Le v el of k = Le v elp + 1 

5: GHT Store { Index of k , k } 
6: end if 

17: if Le v elp + 1 = Le v elk then 

18: P redecessor of k + = Index of p

9: GHT Store { Index of k , k } 
0: end if 

1: if Le v elp + 1 < Le v elk then 

2: DoNothing 

3: end if 

4: end if 

5: end for 

In order to better understand the updating process, we will 

riefly explain it through Fig. 5 . 

When we look for the successors of p, if successor k has not 

een created in the graph, we will directly create it, temporar- 

ly mark its level as Le v elp + 1 , and connect an edge from k to p

 Fig. 5 (a)). 
7 
If k has already been created, it means that there are at least 

ne precursor q of k and a path from q to k . In this case, in order

o ensure that we only record the longest path, we need to com- 

are the length of the new path with the existing one(s). There are 

hree cases here: 

1. If l e v el p + 1 > l e v el k , the new path is longer than the exist-

ing one(s). W have to update the value of l e v el k by l e v el p + 1

and delete the existing path to k . Connect an edge from k to p

( Fig. 5 (b)). 

2. If l e v el p + 1 = l e v el k , the length of the new path is same as the

existing one(s), then we only need to connect one edge from k 

to p without updating the level of k . ( Fig. 5 (c)). 

3. If l e v el p + 1 < l e v el k , the new path is shorter. So we don’t need

any action ( Fig. 5 (d)). 

We will continue to use the previous example to intro- 

uce how to construct and store Small-DAG by the strategies in 

ections 3.1 and 3.2 . For given sequences: 

S 1 = ACGGT AGA 

S 2 = T AC GAGT C 

S 3 = T C GAGT AC 

1. Create the original node and infinite node. Put the initial node 

in VHT[0], mark the level of the initial node as 0, and the Index 

of the initial node as 0. 

2. Find successors of the original node: A (1 , 2 , 4) , C(2 , 3 , 2) ,

G (3 , 4 , 3) ,and T (5 , 1 , 1) . Their Indexes are 1, 2, 3, 4 respectively.

Put A (1 , 2 , 4) and T (5 , 1 , 1) in VHT[1], C(2 , 3 , 2) in VHT[2], and

G (3 , 4 , 3) in VHT[3], and then mark their level as 1. Connect

the edges from them to the original node and delete VHT[0] 

( Fig. 6 (a) and Fig. 4 (a)). 

3. For each node in VHT[1], find its successors. For A (1 , 2 , 4) ,

we can find its successors C(2 , 3 , 8) , A (6 , 5 , 7) , G (3 , 4 , 5) and

T (5 , 7 , 6) . Their Indexes are 5,6,7,8 respectively. Store them in

the VHTs[2],[5],[3] and [5], respectively, and mark their lev- 

els as l e v el A (1 , 2 , 4) + 1 = 2 because they have not been cre-

ated, and then connect the edges from them to A (1 , 2 , 4) . Simi-

larly, find the successors A (6 , 2 , 4) and G (7 , 4 , 3) of T (5 , 1 , 1) in

VHT[1], put them in VHTs[2] and [3], respectively. Mark their 

levels as l e v el T (5 , 1 , 1) + 1 = 2 because they have not been

created, and then connect the edges from them to T (5 , 1 , 1) .

Delete VHT[1] ( Fig. 6 (b)). 

4. For nodes C(2 , 3 , 2) , A (6 , 2 , 4) and C(2 , 3 , 8) in VHT[2]. Find all

successors T (3 , 4 , 3) , T (5 , 7 , 6) and A (6 , 5 , 4) of C(2 , 3 , 2) first.

Note that T (5 , 7 , 6) already exists, and its current level 2 is

equal to l e v el C(2 , 3 , 2) + 1 , so we only need to connect one

edge from T (5 , 7 , 6) to C(2 , 3 , 2) . Similarly, T (3 , 4 , 3) already

exists, but its level 1 < l e v el C(2 , 3 , 2) + 1 = 2 , so we update its

level to 2, and delete the edge from it to its previous precur- 

sor O (0 , 0 , 0) . A (6 , 5 , 4) has not been created yet, so we store

it in VHT[4], mark its level as l e v el C(2 , 3 , 2) + 1 = 2 , and con-

nect the edge from it to C(2 , 3 , 2) . Then we find the succes-

sors of C(2 , 3 , 8) and A (6 , 2 , 4) . Since C(2 , 3 , 8) has no succes-

sor, we connect an edge from infinite node to it, and temporar- 

ily mark the level of infinite node as 3. A (6 , 2 , 4) has successors

G (7 , 4 , 5) and A (8 , 5 , 7) . Since these two successors are new

created ones, let their level is equal to l e v el A (6 , 2 , 4) + 1 = 3

and put them in VHTs[4] and [5]. At this point, we have pro- 

cessed all nodes in VHT[2], so we can delete VHT[2] ( Fig. 6 (c)). 

5. For nodes in VHT[3], VHT[4], and so on, successively repeat 

above steps until all nodes have no successors. In the end we 

can get the result of Fig. 6 (d). 

By comparing the results of Fig. 6 and Fig. 3 , we can find that

ur new strategies have the following advantages: 

1) During the construction of Small-DAG, we delete useless in- 

ormation in Hash table and useless edges and only store the edges 
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Fig. 5. Method of updating nodes’ data. 

Fig. 6. Construct and store Small-DAG by the strategies in Sections 3.1 and 3.2 . 
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n the longest paths, while during the construction of ICSG by 

op-MLCS, only repeated nodes are avoided and ICSG still con- 

ains many useless edges. Also, Top-MLCS should store the d- 

imensional vectors of all points, as shown in Fig. 3 (a), but Small- 

AG constructed by Big-MLCS dose not need to store any d- 

imensional vectors, as shown in Fig. 6 (d). 
8 
2) To get Fig. 3 (d) from Fig. 3 (a), Top-MLCS has to use the for-

ard topology sorting, while Big-MLCS can directly get Fig. 6 (d), 

hich is similar to Fig. 3 . But Fig. 3 (d) has to store a d-dimensional

ector on each node, while Fig. 6 (d) needs not to do so. 

3) To obtain all MLCS from Fig. 3 , Top-MLCS should use the 

ackward topology sorting form Fig. 3 (d) to get Fig. 3 (e), while Big- 
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Fig. 7. Approximately estimate the lower bound of the length of MLCS. 
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LCS can directly obtain all MLCS from the end node to the source 

ode in Small-DAG. Thus, Big-MLCS dose not need the forward and 

ackward topological sorting schemes. Therefore, the time cost of 

op-MLCS is much higher than that of Big-MLCS. 

To further reduce the space and time cost, we design a branch 

nd bound method to delete non-contributed points and non- 

ongest paths during the construction of Small-DAG. 

.3. Branch and bound method and Big-MLCS 

Note that Small-DAG constructed in the previous subsections 

ften contains non-contributed points and non-longest paths. Gen- 

rating and storing them will consume a lot of computer resources. 

ut they are worthless for searching MLCS. How to identify such 

aths including nodes on them is not an easy task. In this section, 

e will propose a branch and bound method which can identify 

hether a node is on the longest path. The method consists of two 

arts: 

1. Find a true path as long as possible. 

2. Judge whether a point is on the MLCS. 

In order to find a true path as long as possible, we choose only 

ne matching point which is most possible to be on the longest 

ath in each level according to the following two criteria. For a 

atching point p = (p 1 , p 2 , · · · , p d ) , we calculate: 

um = 

d ∑ 

i =1 

p i (1) 

is = 

d ∑ 

i =1 

∣∣∣p i −
sum 

d 

∣∣∣ (2) 

Among all matching points in each level, we pick up one 

atching point with minimum sum first. If there are more than 

ne matching points with the minimal sum , we will choose the 

ne with minimum dis . If there are more than one matching points 

ith both minimal sum and minimal dis , we will randomly choose 

ne matching point among them. In this way, we can choose one 

atching point in each level and these matching points from level 

 to the final level form a path. The length of this path is a tempo-

ary maximum lower bound of the length of the longest path. We 

all this as Temporary Maximum Length . 

Let us briefly show this process based on the example men- 

ioned earlier. As shown in Fig. 7 , we calculate sum and dis of

odes in the first level respectively, and select C(2 , 3 , 2) (Its sum

nd dis attain the minimal value simultaneously), then continue to 

nd its successors and compute their sum and dis . Select G (3 , 4 , 3)
9 
Its sum and dis attain the minimal value simultaneously) at level 

. Repeat the above operations. Finally, we can get a path ( CGGT ) 

ith Temporary Maximum Length 4. 

For estimating Temporary Maximum Length , when both sum 

nd dis of more than one match points are same, we have to 

andomly choose one match point. But note that there are few 

ases for both sum and dis of more than one match points to 

e same, and even if there are some such cases, the experiments 

ave shown that the impact of randomly choosing match points on 

emporary Maximum Length is not large. 

Suppose that the current matching point put on Small-DAG 

s P = (p 1 , p 2 , · · · , p d ) . We can get a set of subsequences Ī =
 ̄S 1 , S̄ 2 , · · · , S̄ d } , where the i th subsequence S̄ i consists of the char-

cters after the p i th character in original sequence S i . We esti- 

ate an upper bound of the length of path from the source node 

o the end node through node P as follows. First, we divide this 

ath into two parts. The first part is the first half path from the 

ource node to node P , and its length is le v el P which has been

nown. The second half path is from node P to the end node. We 

stimate an upper bound of the length of the second half path, 

arked as U pperBoundtoEndNode P . Then we use their sum as an 

pper bound of the length of path from the source node to the 

nd node through node P , expressed as U pperBound P . So our esti- 

ation method can be formalized as: 

pperBound P = le v el P + U pperBoundtoEndNode P (3) 

If this estimated upper bound is smaller than Temporary Max- 

mum Length , then this path through P must not be on the MLCS 

nd can be deleted. 

To estimate an upper bound of the length of the second half 

ath, note that the length of MLCS of Ī will not exceed the length 

f the LCS of any two subsequences in set Ī . This means that we 

an roughly estimate an upper bound of the length of MLCS of Ī 

hrough the length of the LCS of two subsequences, and this upper 

ound of the length of MLCS of Ī can be seen as an upper bound 

f the second half path. However, there are C 2 
d 

= 

d (d −1) 
2 cases for 

electing two sequences from set Ī . How to choose two sequences 

rom Ī ? Since the length of the LCS of two sequences is an up- 

er bound of the length of MLCS, it is better to choose the two 

equences such that the length of their LCS is as small as possi- 

le. For this purpose, we select the shortest sequence in set Ī as 

ne sequence marked as S ∗ (if there are multiple sequences with 

he shortest length, then choose one randomly). As for another se- 

uence, it is better to choose one which is as most different as 

ossible to the first one. To do so, we have to give a metric to mea-

ure the difference between two sequences. We call this metric as 

iversity metric. 

We let N 

α
S̄ i 

( a ∈ �) represent the number of the character α in

equence S̄ i , and len ̄S i denote the length of the sequence S̄ i . Note 

hat the larger the value of (N 

α
S ∗ − N 

α
S̄ i 
) , the bigger the diversity be-

ween S ∗ and S̄ i , and the bigger the difference between these two 

equences. Also, the fewer the character α contained in S ∗, the 

ewer the match points it can form with S̄ i than other character 

n S ∗, and thus smaller contribution to the diversity. By consider- 

ng these two factors, the diversity between S ∗ and S̄ i is defined as: 

i v ersity (S ∗, S̄ i ) = 

∑ 

α∈ �

N 

α
S ∗

lenS ∗
(N 

α
S ∗ − N 

α
S̄ i 
) (4) 

Based on the diversity metric, we can choose the second se- 

uence having the greater diversity with sequence S ∗. We use the 

ollowing example to explain the calculation process of diversity. 

or given sequences 

S̄ 1 = AGAT AT 

S̄ = C C T AGC C 
2 
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Algorithm 3 Big-MLCS. 

1: Estimate T emporary Maximum Length 

2: for i = 0 to | S | do 

3: while V HT [ i ] � = ∅ do 

4: get p and Index of p f rom V HT [ i ] 

5: get Le v elp f rom GHT [ Index of p] 

6: U pperbound p ← estimate the upper bound through p

7: if U pperbound p ≥ Temporary Maximum Length then 

8: Find Successor(p) and update related information 

9: if Le v elp + 1 > T emporary Maximum Length then 

10: T emporary Maximum Length = Le v elp + 1 

11: end if 

12: end if 

13: end while 

14: Delete VHT[i] 

15: end for 
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S̄ 3 = AAT T C GC since the length of S̄ 1 is 6, which is less than the

ength of the other two, we take S ∗ = S̄ 1 . And then we count the

umber of each character in these sequences follows 

N 

A 
S ∗ = 3 , N 

C 
S ∗ = 0 , N 

G 
S ∗ = 1 , N 

T 
S ∗ = 2 

N 

A 
S̄ 2 

= 1 , N 

C 
S̄ 2 

= 4 , N 

G 
S̄ 2 

= 1 , N 

T 
S̄ 2 

= 1 

N 

A 
S̄ 3 

= 2 , N 

C 
S̄ 3 

= 2 , N 

G 
S̄ 3 

= 1 , N 

T 
S̄ 3 

= 2 

di v ersity (S ∗, S̄ 2 ) = 

3 
6 (3 − 1) + 

0 
6 (0 − 4) + 

1 
6 (1 − 1) + 

2 
6 (2 − 1) = 

4 
3 

di v ersity (S ∗, S̄ 3 ) = 

3 
6 (3 − 2) + 

0 
6 (0 − 2) + 

1 
6 (1 − 1) + 

2 
6 (2 − 2) = 

1 
2 

So we choose the length of LCS between S̄ 1 and S̄ 2 to approx- 

mately estimate the upper bound of the length of MLCS of these 

hree sequences (also the upper bound of the length of the second 

alf path). We use the dynamic programming algorithm mentioned 

arlier to calculate the LCS length of these two sequences quickly, 

nd give the analysis of the time complexity in Section IV. 

As mentioned before, for the current matching point P , we have 

o identify whether P is not on the MLCS. We will first compare the 

pper bound of the length of the path through it with Temporary 

aximum Length . If the upper bound is smaller than Temporary 

aximum Length , then P is not on the MLCS and can be deleted 

irectly in Small-DAG. We use the previous example to illustrate 

he branch and bound strategy in more detail. For given sequences: 

S 1 = ACGG T AGA 

S 2 = T AC GAGT C 

S 3 = T C GAGT AC 

Suppose that the current matching point is P = T (5 , 1 , 1) . The

equences Ī = { ̄S 1 , S̄ 2 , S̄ 3 } after P are: 

S̄ 1 = AGA 

S̄ 2 = AC GAGT C 

S̄ 3 = C GAGT AC 

We compute the upper bound of the length of MLCS of Ī which 

s 3 and the length of the first half path which is l e v el T (5 , 1 , 1) =
 . Since 

 e v el T (5 , 1 , 1) + 3 = 4 > = Temporary Maximum Length , 

e cannot identify P = T (5 , 1 , 1) is not on the MLCS and need to

ut P on Small-DAG as a node and search its successors. 

But for another matching point P = G (7 , 4 , 3) , the sequences Ī =
 ̄S 1 , S̄ 2 , S̄ 3 } after P are: 

S̄ 1 = A 

S̄ 2 = AGT C

S̄ 3 = AGT AC

We can calculate the upper bound of MLCS of Ī which is 1 and 

he length of the first half path which is l e v el G (7 , 4 , 3) = 2 . Since 

 e v el G (7 , 4 , 3) + 1 = 3 < Temporary Maximum Length , 

e can identify that P = G (7 , 4 , 3) is a non-contributed point and

eeds not to be put on Small-DAG as a node. The framework of 

ur proposed Big-MLCS is shown in Algorithm 3 . 

In general, the Small-DAG built by the Big-MLCS algorithm has 

 significant reduction in scale compared to ICSG. There are two 

ain reasons for this: 1) In the process of building Small-DAG, we 

elete the high-dimensional of nodes through VHT strategy, and 

ecord Small-DAG with GHT with less space cost. 2) We delete 

 large number of nodes that are not on the longest path (non- 

ontribution points) through branch and bound strategy, so as to 

educe the search space and further reduce the size of Small-DAG. 

. Time and space complexity 

The time and space complexity of the proposed algorithm. First, 

e mark the length of the sequences with n and the number 

f sequences with d. In the initialization, we built the Successor 

able proposed in Fast-LCS to quickly find successor nodes of a 
10 
oint, and the time complexity of constructing Successor Table is 

 (d | �| n ) [21] . Second, we estimate the time cost to find the suc-

essor nodes and store them in the Vector Hash Table. We use 

 to represent the set of all points in Small-DAG, then the time 

omplexity of this part will be O ( | V | ) . Finally, we use E to rep-

esent the set of all edges in Small-DAG, and time complexity of 

his part is O ( | E | ) . Although we need to find a path in order to

stimate Temporary Maximum Length , since we only keep one 

ode in each layer, the time complexity of this part will not ex- 

eed O (d | �| | MLCS | ) ≤ O (d| �| n ) . The time complexity of estimat-

ng upper bound U pperBound p is no more than the time complex- 

ty of finding the LCS lengths of all possible two sequences by Dy- 

amic Programming for two sequences. In fact, even if we calculate 

he LCS lengths of all possible two sequences, the time complex- 

ty of this part is only O (n 2 d 2 ) . So the time complexity of the en-

ire search process is no more than O (d | �| n ) + O (n 2 d 2 ) + O ( | V | ) +
 ( | E | ) . Since O (d | �| n ) � O (n 2 d 2 ) and O ( | V | ) = O ( | E | ) , thus, the

ime complexity of Big-MLCS is max { O (n 2 d 2 ) , O ( | V | ) } . Because

 (n 2 d 2 ) < O ( | V | ) , so the time complexity of our proposed algo-

ithm is O ( | V | ) . 
For the compared algorithms, the time complexity of Quick- 

PPAR is O 

(
d( log n ) d−2 | V 1 | 

)
[22] , where V 1 is the set of nodes in 

he DAG constructed by Quick-DPPAR, and the time complexity of 

op-MLCS is O ( | V 2 | ) [24] , where V 2 is the set of nodes in the ICSG

onstructed by Top-MLCS. It should note that, due to the lack of 

 reasonable scheme to reduce the search space, the DAG con- 

tructed by Top-MLCS is much larger than those constructed by 

uick-DPPAR and Big-MLCS, and DAG constructed by Quick-DPPAR 

s larger than that constructed by Big-MLCS, i.e., | V 2 | � | V 1 | > | V | .
ut Quick-DPPAR uses the time-consuming non-dominated sorting 

ethod to reduce the search space, so O 

(
d( log n ) d−2 | V 1 | 

)
> O ( | V 2 | ) 

24] . Thus, O 

(
d( log n ) d−2 | V 1 | 

)
> O ( | V 2 | ) � O ( | V | ) . 

The space complexity of Big-MLCS. The space consumed by Suc- 

essor Table is O (d | �| n ) , the space consumed by storage points

s no more than O (d | V | ) (It should be noted here that since we

elete the nodes in the Hash Table during the search, our ac- 

ual memory consumption depends on the maximum number of 

odes stored in the Hash Table which is no more than | V | ), and

he space consumed by storage edge is O ( | E | ) . Since O (d | �| n ) �
 (d | V | ) + O ( | E | ) , the space complexity of Big-MLCS is O (d | V | ) . The

pace complexity of Quick-DPPAR and Top-MLCS can be expressed 

s O (d | V 1 | ) [22] and O (d | V 2 | ) [24] , respectively. For | V 2 | � | V 1 | >
 V | , we can deduce that our Big-MLCS algorithm has lower space 

omplexity than two compared algorithms due to the use of the 

HT and GHT strategies as well as the branch and bound strategy. 
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Fig. 8. Total number of nodes in Hash table. 

Table 1 

The Running Time (in second) of Quick-DPPAR (R1), 

Top-MLCS (R2), and Big-MLCS (R3) on 5 Sequences 

with Various Lengths. 

Length of 

sequences 

DNA ( | �| = 4 A) 

R1 R2 R3 

50 0.361 0.116 0.084 

75 19.431 1.085 0.181 

90 77.187 3.052 0.334 

100 147.141 5.667 0.822 

120 1980.077 26.434 1.648 

140 + 82.681 2.855 

160 + 188.481 5.032 

180 + 369.641 12.749 

200 + 781.881 42.952 

220 + 

∗ 57.351 

250 + 

∗ 123.994 

270 + 

∗ 191.525 

300 + 

∗ 358.516 

320 + 

∗ 539.699 

350 + 

∗ 954.201 

370 + 

∗ 1331.873 

400 + 

∗ 2412.356 

420 + 

∗ 2901.176 

450 + 

∗ 4578.232 

470 + 

∗ 5486.221 

t

l

p

l

a

b

p

s

. Experiments and analysis 

.1. Experimental environment, data set and compared algorithms 

In the experiments, all algorithms were run on a cloud server. 

he hardware of the cloud server is: inter (R) Xeon (R) Gold 5115 

PU (2.40GHz), and the maximum memory usage of each user is 

imited to 128G. The data set comes from the widely used well- 

nown data set NCBI (Available: www.ncbi.nlm.nih.gov ). This is a 

eal DNA data set. 

The compared algorithms are two state-of-the-art excellent 

erformance Dominant-point based algorithms: Quick-DPPAR and 

op-MLCS. In Section B, we will first show the effectiveness of the 

trategy of deleting nodes in hash table and the proposed Big- 

LCS in the form of a line graph. Then we will test the perfor-

ance of Big-MLCS by two kinds of experiments commonly used 

n the experiments of the existing algorithms: (1) Fix sequence 

ength to 85, increasing the number of sequences from 5 to 30 0 0 0.

2) Fix sequence number to 5, increasing the length of sequences 

rom 50 to 470. In order to ensure the fairness of the experiments, 

e randomly selected 10 groups of samples for each experiment, 

nd compared their average time and memory overhead. The test 

xamples for different algorithms are exactly the same. 

.2. Results and analysis 

To test the effectiveness of the strategy of deleting the nodes 

n Hash table and Big-MLCS, we do the following experiments: 

e randomly choose 10 groups of samples with the number of 

equences being 5 and the length of sequences being 100. We 

ompare the number of nodes used in the Hash table in three 

trategies. Strategy 1: the strategy which does not use any deletion 

i.e.,does not delete any point in Hash Table). Strategy 2: the strat- 

gy which uses only the strategies in Section 3.1 . Strategy 3: the 

roposed strategy which combine the strategies in Sections 3.1 and 

.3 . 

We can see that when Strategy 1 is used, we need to store in-

ormation of about 1.6 million nodes, and when strategy 2 is used, 

he number of nodes we have to store will increase first and then 

radually decrease to 0. Also, Strategy 2 only needs to store at 

ost about 20 0 0 0 0 nodes, only about 12 . 5% of storage of Strategy

. However, Strategy 3 only needs to store about 32,0 0 0 nodes at 

ost, only about 2 % of storage of strategy 1 ( Fig. 8 ). These results

ndicate that the strategy for deleting points in Section 3.1 and the 

ranch and bound algorithm in Section 3.3 are very efficient. 

In the following, we will compare the performance of our al- 

orithm Big-MLCS with Quick-DPPAR and Top-MLCS by conducting 

wo kinds of experiments. The results are summarized in Tables 1 

nd 2 , where ‘ ∗’ indicates that the algorithm cannot get results in

imited memory (128G), ’ + ’ indicates that the algorithm cannot 

et results in our limited time of 60 0 0 seconds. 

From Table 1 , we can see that when the number of sequences is 

xed at 5, as the sequence length increases, the time for all algo- 

ithms to solve the MLCS problem will increase as well. When the 

ength of the sequence is less than 120, all three algorithms can 

et MLCS in a short time. The slowest one is Quick-DPPAR, and the 

ime required by the Top-MLCS algorithm is about 1.5 to 16 times 

f that required by the proposed algorithm Big-MLCS. When se- 

uence length is between 120 and 200, Quick-DPPAR is obviously 

annot get the final result in the given time limit, while Top-MLCS 

nd Big-MLCS can still get the final results. But the time used by 

op-MLCS is about 18 to 29 times of that used by the proposed 

lgorithm Big-MLCS. When the sequence length increases to more 

han 200, Both Quick-MLCS and Top-MLCS algorithm can not solve 

he problem in the 128G memory space or the given limited time, 

hile the proposed algorithm Big-MLCS can still get the MLCS un- 
11 
il the length of sequences reaches 470 in the given space and time 

imits. This indicates Big-MLCS can solve the much longer MLCS 

roblems in the same environment. The length of the MLCS prob- 

ems solved by Big-MLCS is more than 2 times of that by Top-MLCS 

nd more than 3 times of that by Quick-MLCS. 

For problems with the fixed number of sequences, it can also 

e seen that the longer the sequences, the more difficult the MLCS 

roblems, and the more time and space an algorithm will con- 

ume. 

http://www.ncbi.nlm.nih.gov
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Table 2 

The Running Time (in second) of Quick-DPPAR (R1), Top- 

MLCS (R2), and Big-MLCS (R3) for different number of Se- 

quences with fixed length 85. 

Number of 

sequences 

DNA ( | �| = 4 ) 

| LCS | R1 R2 R3 

5 35 39.496 3.011 0.307 

10 27 + 632.233 38.763 

20 23 + 

∗ 586.441 

40 21 + 

∗ 249.311 

60 19 + 

∗ 192.739 

100 18 + 

∗ 201.879 

150 17 + 

∗ 183.253 

200 17 + 992.672 189.072 

250 16 + 931.968 175.545 

300 14 + 521.583 116.603 

500 14 + 292.577 57.331 

700 14 + 215.792 67.806 

1000 13 + 349.783 103.431 

3000 12 + 239.094 87.462 

5000 11 + 244.049 94.342 

10000 10 + 304.792 125.442 

30000 9 + 352.388 153.451 

a  

t

t

t
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t

p

T

l
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Table 3 

Total number of Points and Memory Overhead (in Gigabytes) in construction 

of ICSG by Top-MLCS (R2) and Small-DAG by Big-MLCS (R3) of D Sequences 

with Length 85. 

Number of 

sequences 

DNA ( | �| = 4 ) 

Points(R2) Points(R3) Memory(R2) Memory(R3) 

5 622333 89488 0.243 0.161 

10 114680000 3620073 34.567 2.347 

20 ∗ 36210254 ∗ 14.454 

40 ∗ 11985235 ∗ 8.645 

60 ∗ 8650605 ∗ 8.246 

100 ∗ 6557299 ∗ 8.971 

150 ∗ 4374551 ∗ 6.540 

200 26551691 4175879 89.622 6.433 

250 18198590 3177579 47.868 5.679 

300 8633164 1922892 39.341 3.671 

500 3127653 630890 16.435 2.542 

700 1675006 706902 32.304 1.981 

1000 1803448 715636 38.572 3.243 

3000 324373 151484 20.185 2.134 

5000 160634 79333 17.913 1.787 

10000 74244 46410 20.541 2.033 

30000 20342 13511 15.657 1.651 

o

o

D

o

o

D

t

o

i

m  

p

a

o

6

fi

B

c

t

t

a

D

s

o

a

m

b

l

i

n

t

a

m

i

w
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c

u

s

For the problems with the length of the sequence being fixed 

t 85, it can be seen from Table 2 that Quick-MLCS can only find

he MLCS for one problem, i.e., the problem with 5 sequences in 

he given time and space limits and uses much more time than 

hat used by Top-MLCs and Big-MLCS. While the time used by Top- 

LCS is about 10 times of that used by Big-MLCS. 

It can also be seen that for problems with at least 10 but less 

han 200 sequences, Top-MLCS can find the MLCs for only one 

roblem, i.e., the problem with 10 sequence. But the time used by 

op-MLCS is about 16 times of that used by Big-MLCS. For prob- 

ems with more than 10 but less than 200 sequences, Top-MLCS 

annot solve them, but Big-MLCS still can get the MLCS in a short 

ime. When number of sequences increases from 200 to 30 0 0 0, 

uick-MLCS still cannot solve these problems, while Top-MLCS and 

ig-MLCS can. However, the time used by Top-MLCS is from about 

.3 to 5.3 times of that used by Big-MLCS. 

Note that with the increase of the number of sequences, the 

verall trend of time used to solve the MLCS problem will first 

ncrease, and then gradually decrease. The reason for this phe- 

omenon is that with the increase of the number of sequences 

o larger than a certain scale (In this case, when the number of 

ligned sequences is more than 100), the length of the final MLCS 

nd the number of match points in graph will gradually decrease 

nd the problem becomes less time consuming. This means that 

or the problems with the fixed length, it is not the case that the 

ore sequences, the more difficulty of the MLCS problems. The 

ost difficult MLCS problems for the fixed sequence length are 

ith a middle number of sequences. For example, for the prob- 

ems with the length of sequences fixed to 85, the most difficult 

roblems are the problems with 20 to 200 sequences. 

We have also recorded the total number of points and the 

emory overhead of graph ICSG constructed by Top-MLCS and 

hose of graph Small-DAG constructed by the proposed algorithm 

ig-MLCS, respectively, and listed them in Table 3 . We can see from 

able 3 that for the problems with fixed length 85 and different 

umber of sequences, when the number of sequences gradually 

ncreases, the total number of points and memory consumption 

f both Top-MLCS and Big-MLCS first increase and then decrease. 

owever, because Big-MLCS uses the strategies in Sections 3.1 and 

.3 , the total points and memory consumption of Small-DAG con- 

tructed by Big-MLCS are much smaller than those of ICSG con- 

tructed by Top-MLCS. 
12 
For problem with 5 sequences, the number of points in ICSG 

f Top-MLCS is about 7 times of that in Small-DAG and memory 

verhead of ICSG of Top-MLCS is about 2 times of that of Small- 

AG. For problem with 10 sequences, the number of points in ICSG 

f Top-MLCS is about 31 times of that in Small-DAG and memory 

verhead of ICSG of Top-MLCS is about 17 times of that of Small- 

AG. For problems with more than 10 but less than 700 sequences, 

he number of points in ICSG of Top-MLCS is about 4.7 to 6 times 

f that in Small-DAG and memory overhead of ICSG of Top-MLCS 

s about 7 to 14 times of that of Small-DAG. For problems with 

ore than 700 but no more than 30 0 0 0 sequences, the number of

oints in ICSG of Top-MLCS is about 2 times of that in Small-DAG 

nd memory overhead of ICSG of Top-MLCS is about 10 to 16 times 

f that of Small-DAG. 

. Conclusion 

In this paper, we have proposed a new fast and memory ef- 

cient algorithm called Big-MLCS for large-scale MLCS problems. 

y deleting points in Hash Table timely during the search pro- 

ess and application of new data structures, we have reduced the 

ime cost by avoiding the topological sorting in Top-MLCS, and fur- 

her reduce DAG and the space consumption through the branch 

nd bound method. As a result, a much Smaller DAG called Small- 

AG than the existing ones is constructed. The experimental re- 

ults have shown that the Big-MLCS outperforms the two state- 

f-the-art algorithms: Quick-MLCS and Top-MLCS, in terms of time 

nd space cost, and can solve much larger-scale MLCS problems 

ore quickly than Quick-MLCS and Top-MLCS. 

However, there are some issues to be studied further: 1) In the 

ranch and bound method, the lower bound of the length of the 

ongest path is estimated one time, that is, once it is estimated, it 

s used from the beginning to the end without updating. This is 

ot good enough in some time. In the future, we will try to adap- 

ively update this lower bound by a heuristic method so that the 

lgorithm is more efficient. 2) The upper bound estimation used 

any sequences, which can increase the time cost. In the future, it 

s necessary to design a method which uses only a few sequences 

ith fewer time cost. In fact, we found that the length of the LCS 

ormed by the two shorter sequences will be relatively shorter and 

loser to the true upper bound. Therefore, when estimating the 

pper bound, we can only consider selecting two of the shorter 

equences, and calculate their LCS length as the upper bound of 
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he second part. 3) The current algorithm is not a parallel algo- 

ithm. Due to the large number of search nodes’ successors and 

he operation of computing diversity during the running of the al- 

orithm, we can speed up the execution of the algorithm through 

he strategy of parallel computing (calculating each successor of 

ne node at the same time, and calculating diversity among mul- 

iple sequences concurrently). 
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