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9 INTERVAL MATRICES WITH MONGE PROPERTY
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Abstract. We generalize Monge property of real matrices for interval matrices. We define
two classes of interval matrices with Monge property - in a strong and in a weak sense. We
study fundamental properties of both classes. We show several different characterizations of
the strong Monge property. For weak Monge property we give a polynomial characterization
and several sufficient and necessary conditions. For both classes we study closure properties.
We further propose a generalization of an algorithm by Deineko & Filonenko which for a
given matrix returns row and column permutations such that the permuted matrix is Monge
if the permutations exist.
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1. Introduction

In 1781 a French mathematician Gaspard Monge observed a fundamental, but a

very strong property while studying a variation of a transportation problem (see [3]).

It was shown in the past century that the presence of Monge property (named in

an honour to this great mathematician) simplifies many optimization problems. The

famous NP-complete travelling salesman problem becomes solvable by a linear al-

gorithm. Other optimization problems such as the assignment problem, the trans-

portation problem or the lot-sizing problem can be solved significantly faster using

algorithms based on Monge property. Since there is a geometrical interpretation of

Monge property concerning distances, several applications in comuptational geome-

try are known. There are also further results in mathematical statistics, linguistics,

bioinformatics, the graph theory or dynamic programming.

Interval analysis deals with an uncertainty or an inaccuracy in data. In almost every

The research has been supported by Czech Science Foundation Grant P403-18-04735S.
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area of expertise people encounter a situation where they are limited by the precision

of their data or their measuring devices. The problem becomes more severe when we

use computers to compute abstract problems as a part of a mathematical proof. In

these problems we cannot allow to neglect errors. In the interval analysis we envelope

our data into intervals and then perform calculations on these intervals instead of

the data itself. The methods of interval analysis ensure that the result is included

in the resulting interval. In other typical problem for interval analysis we receive an

interval of possible inputs and we want to find the range of all solutions.

Our work is the first study of an interval generalization of Monge property. For

interval matrices we generalize the property in two natural ways - in a strong and

in a weak sense. We show several characterizations of the interval matrices with the

strong Monge property, few of them inspired by characterizations for real Monge ma-

trices. We further state a polynomial characterization of matrices in the weak sense

and study necessary and sufficient conditions. We also study closure properties of

both classes of matrices. Finally, we present a permutation algorithm, which for a

given general interval matrix decides if there exist row and column permutations such

that the permuted matrix is Monge in the strong sense and returns the permutations

if the answer is positive.

2. Preliminaries

2.1. Interval analysis. Before we start with an introduction to Monge matrices,

we have to fix a notation and introduce basics of the interval analysis and interval

arithmetics. For further information on the interval analysis see [1],[9],[10].

By R we denote the set of real numbers. We also denote by IR the set of all closed

intervals over R.

Definition 2.1. (Interval matrix) An interval matrix A ∈ IR
m×n is

A =
[

A,A
]

=
{

A ∈ R
m×n : A ≤ A ≤ A

}

where A,A are lower resp. upper bound matrices of A.

Similarly, we can define an interval vector as v = [v, v] = {v ∈ Rm : v ≤ v ≤ v}.

Another way of defining an interval matrix is by using a so called center AC =
1
2 (A + A) and a radius A∆ = 1

2 (A − A). Then an interval matrix can be rewritten

as A =
[

AC −A∆, AC +A∆
]

. For two interval matrices M ,N ∈ IR
m×n we define

intersection and union operations.

Definition 2.2. (Interval matrix intersection) An interval matrix intersection

M ∩N is

(M ∩N)ij =

{

[l, u] if l ≤ u,

∅ if l > u,

2
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where l = max
{

mij , nij

}

and u = min {mij , nij}.

Definition 2.3. (Interval matrix union) For two interval matricesM ,N ∈ IR
m×n

an interval matrix union is M ∪N = {X ∈ Rm×n : X ∈ M or X ∈ N} .

Note that if M ∩N = ∅ then the interval matrix union is not an interval matrix.

We deal with this by enveloping the set into an interval.

Definition 2.4. (Envelope of interval matrix union) Let M ∪N be an interval

matrix union of two interval matrices M ,N ∈ IR
m×n. An envelope of interval

matrix union is !(M ∪N ) =
{

X ∈ Rm×n : min {M,N} ≤ X ≤ max
{

M,N
}}

.

Definition 2.5. (Corner matrices) For M ∈ IR
m×n an interval matrix, corner

matrices ↓ M, ↑ M are given by

(↑ M)ij =

{

mij

mij

}

, (↓ M)ij =

{

mij

mij

}

if i+ j is

{

even
odd

}

.

For a binary arithmetic operation ◦ ∈ {+,−, ·, /} defined on R, we can introduce

the corresponding interval operation as a ◦b = {a ◦ b : a ∈ a, b ∈ b} . We can rewrite

the definition into explicit formulae:

• a+ b =
[

a+ b, a+ b
]

,

• a− b =
[

a− b, a− b
]

,

• a · b =
[

min
{

a · b, a · b, a · b, a · b
}

,max
{

a · b, a · b, a · b, a · b
}]

,

• a/b =
[

min
{

a/b, a/b, a/b, a/b
}

,max
{

a/b, a/b, a/b, a/b
}]

if 0 /∈ b.

Let us note that for the interval division there is a known generalization where 0 ∈ b.

2.2. Real matrices with Monge property. All the results from this subsection

can be found in a survey by Burkard (see [4]).

Definition 2.6. (Monge matrix) Let M ∈ Rm×n. The matrix M is Monge if for

all i, j, k, ! : 1 ≤ i < k ≤ m, 1 ≤ j < ! ≤ n it holds

mij +mk! ≤ mi! +mkj .

Since Hoffman rediscovered Monge property in 1961, several equivalent character-

izations have been shown. We merge some of the characterizations into a theorem,

but first, we define a notion of submodular functions.

Definition 2.7. (Submodular function) Let Λ = (I,∧,∨) be a distributive lattice

where I = {1, ...,m} × {1, ..., n} and join (∧) and meet (∨) operations are defined

for x = (x1, x2), y = (y1, y2) as follows:

• (x1, x2) ∧ (y1, y2) = (min {x1, y1} ,min {x2, y2}),
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• (x1, x2) ∨ (y1, y2) = (max {x1, y1} ,max {x2, y2}).

Function f : I → R is said to be submodular on Λ if for all x, y ∈ I

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y).

Theorem 2.1. Let M ∈ Rm×n, then the following are equivalent:

(1) M is Monge matrix,

(2) mij +mk! ≤ mi! +mkj for all 1 ≤ i < k ≤ m, 1 ≤ j < ! ≤ n,

(3) mij +mi+1,j+1 ≤ mi,j+1 +mi+1,j for all 1 ≤ i < m, 1 ≤ j < n,

(4) A function f : I → R defined by f(i, j) = mij is submodular on Λ where

Λ = (I,∧,∨) is a distributive lattice.

We further present a list of operations under which Monge matrices are closed.

Theorem 2.2. Let M,N ∈ Rm×n be Monge. Then the following holds:

(1) MT is Monge,

(2) αM is Monge for α ≥ 0,

(3) M +N is Monge,

(4) for any u ∈ Rm, v ∈ Rn, matrix C ∈ Rm×n defined by cij = mij + ui + vj is

Monge.

The second and the third result in Theorem 2.2 imply that the set of nonnegative

Monge matrices forms a convex polyhedral cone. This cone can be described by 4

types of 0-1 matrices corresponding to the extremal rays. Let Hi denote a 0-1 matrix

where ith row contains all ones while the other entries are zeros and V j a 0-1 matrix

with jth columns set to ones and the rest to zeros. Further, let Lrs be a 0-1 matrix

where for lrsij = 1 for i = r, . . . ,m and j = 1, . . . , s. Otherwise lrsij = 0. Similarly

let Rpq be a 0-1 matrix with rpqij = 1 for i = 1, . . . , p and j = q, . . . , n, otherwise

rpqij = 0. Any Monge matrix can be represented by a nonnegative combination of

matrices Hi, V j , Lrs and Rpq.

Theorem 2.3. Let M ∈ Rm×n be Monge matrix, then there are coefficients

κi,λj , µrs and νpq such that

M =
m
∑

i=1

κiH
i +

n
∑

j=1

λjV
j +

m
∑

r=2

n−1
∑

s=1

µrsL
rs +

m−1
∑

p=1

n
∑

q=2

νpqR
pq.

The matrices Hp with p = 1, . . . ,m, V q with q = 1, . . . , n, Lrs with r = 2, . . . ,m,

s = 1, . . . , n − 1 and Rpq with p = 1, . . . ,m − 1, q = 2, . . . , n generate extreme rays

of the cone of nonnegative Monge matrices.
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3. Interval matrices with strong Monge property

In this section we introduce interval matrices with the strong Monge property.

We present a list of 5 equivalent characterizations, most of them similar to those in

Theorem 2.1.

Definition 3.1. (Strong Monge property) An interval matrix M ∈ IR
m×n has

the strong Monge property if every M ∈ M is Monge. We denote by ISM the set of

interval matrices with strong Monge property.

Before we state the equivalent characterizations we first need to define a general-

ization of submodular functions.

Definition 3.2. (Interval submodular functions) Let Λ = (I,∧,∨) be a distribu-

tive lattice where I = {1, ...,m} × {1, ..., n} with join (∧) and meet (∨) operations.

The operations are defined for x = (x1, x2), y = (y1, y2) as follows:

• (x1, x2) ∧ (y1, y2) = (min {x1, y1} ,min {x2, y2}),

• (x1, x2) ∨ (y1, y2) = (max {x1, y1} ,max {x2, y2}).

A function f : I → IR is submodular on lattice Λ if f(x∨ y)+ f(x∧ y) ≤ f(x)+ f(y)

for all x, y ∈ I.

Theorem 3.1. (Characterization of strong Monge property) Let M ∈ IR
m×n be

an interval matrix. Then the following are equivalent:

(1) M ∈ ISM,

(2) mij +mk! ≤ mi! +mkj for all 1 ≤ i < k ≤ m, 1 ≤ j < ! ≤ n,

(3) mij +mi+1,j+1 ≤ mi,j+1 +mi+1,j for all 1 ≤ i < m, 1 ≤ j < n,

(4) Corner matrices ↓ M and ↑ M are Monge,

(5) A function f : I → IR defined by f (i, j) = mij is submodular on Λ where

Λ = (I,∧,∨) is a distributive lattice.

Proof. (1) ↔ (2) ↔ (3): can be easily derived using Theorem 2.1 and Definition 3.1.

(3) ↔ (4): can be derived using Definition 3.1 and Definition 2.5.

(3) ↔ (5): Let M ∈ IR
m×n such that (3) holds. Let further x = (i, j + 1) ∈ I and

y = (i+ 1, j) ∈ I. Then

f(x ∧ y) = f((i, j + 1) ∧ (i+ 1, j)) = f((i, j)) = mij

and

f(x ∨ y) = f((i, j + 1) ∨ (i+ 1, j)) = f((i+ 1, j + 1)) = mi+1,j+1.

Therefore

f(x ∨ y) + f(x ∧ y) = mi+1,j+1 +mij ≤ mi,j+1 +mi+1,j = f(x) + f(y).
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Since the inequality holds for any i, j, f is submodular on Λ.

Let us now suppose that the function f is submodular on the lattice Λ. Then the

condition

f((i + 1, j) ∧ (i, j + 1)) + f((i + 1, j) ∨ (i, j + 1)) ≤ f((i + 1, j)) + f((i, j + 1)).

corresponds to

mij +mi+1,j+1 ≤ mi+1,j +mi,j+1

for every i, j, thus M ∈ ISM.

!

Let us remark that the result in Theorem 2.3 does not seem to be easily gen-

eralizable to the interval case. Trying to find an interval decomposition by taking

one possible decomposition for each M ∈ M and making an interval envelope of all

possible coefficients κi,λj , µrs, νpq leads to an overestimation in general as shown in

the example below.

Example 3.1. Let M ∈ ISM such that

M =

(

[0, 5] 5
[0, 8] 0

)

.

If the decomposition is to equal M then it must be in the form of

C(M) = [0, 3]

(

0 0
1 0

)

+ [0, 5]

(

1 0
1 0

)

+ 5

(

0 1
0 0

)

.

But for matrix

M =

(

1 5
6 0

)

we see that there is no possible decomposition of M between the coefficients of

C(M ).

The described overestimating decomposition can be computed by the linear pro-

gramming but since we do not need it further in the text, we omit the construction.

4. Interval matrices with the weak Monge property

In this section we introduce the interval matrices with the weak Monge property.

We offer a polynomial characterization and several necessary and sufficient condi-

tions.

Definition 4.1. (Weak Monge property) An interval matrix M ∈ IR
m×n has the

weak Monge property if there is Monge matrix M ∈ M . We denote by IWM the set

of interval matrices with the weak Monge property.
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We start off by showing that matrices with the weak Monge property are polyno-

mially recognizable by a reduction to a special linear program.

Theorem 4.1. Let M ∈ IR
m×n and let LP (M) be a linear program defined as

minimize const.
subject to mij +mi+1,j+1 −mi,j+1 −mi+1,j ≤ 0, (1)

mk! ≤ mk!, (2)
−mk! ≤ −mk!, (3)

where 1 ≤ i < m, 1 ≤ j < n,
1 ≤ k ≤ m, 1 ≤ ! ≤ n.

Then the matrix M ∈ IWM iff LP (M) has a feasible solution.

Proof. A feasible solution of LM(M) corresponds to a matrix M . Monge property

of the matrix is guaranteed by (1) and by (2) and (3) every entry mij ≤ mij ≤ mij

is from mij . Thus every feasible solution of LP (M) is Monge matrix M ∈ M and

therefore M ∈ IWM. If the linear program is not feasible, M does not have the

weak Monge property. !

Theorem 4.1 is important because we know that the recognition problem of ma-

trices with the weak Monge property is solvable in polynomial time [5]. For IWM we

did not find any other polynomial characterization. Let us note that all of the char-

acterizations of real Monge matrices can be restated for IWM, although none of them

can be used without any further modification to construct an efficient polynomial

recognition algorithm.

4.1. Necessary conditions. Although we know the recognition problem of IWM is

polynomial, the only characterization we found was by linear programming which is

categorized as one of the hardest problems in the hierarchy of polynomially solvable

problems (see [5]). Therefore we investigated necessary and sufficient conditions

of IWM.

The first necessary condition employs so called residual matrices.

Definition 4.2. Let M ∈ IR
m×n be an interval matrix. Then an interval residual

matrix MR ∈ IR
(m−1)×(n−1) is defined as

mR
ij =

[

mi+1,j +mi,j+1 −mij −mi+1,j+1,mi+1,j +mi,j+1 −mij −mi+1,j+1

]

.

The residual matrices carry an information about the tightness of inequalities from

the definition of Monge property.

Proposition 4.1. Let M ∈ IWM and MR be its residual matrix. Then there

exists MR ∈ MR such that MR is nonnegative.
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Proof. Let M ∈ IWM and M ∈ M such that M is Monge. Because of Monge

property of M we have mR
ij = mi+1,j +mi,j+1 −mij −mi+1,j+1 ≥ 0 for all i, j. If

we take matrix (MR)ij = mR
ij it clearly holds MR ∈ MR. !

Another necessary condition considers a presence of a special Monge matrix in the

correspoing interval matrix with the weak Monge property.

Proposition 4.2. Let M ∈ IWM
m×n. Then there exists M ∈ M such that M

is Monge and the number of entries mij = mij is at least max {m,n}.

Proof. Let M ∈ M be Monge matrix. By Theorem 2.3 we can rewrite M as

M =
m
∑

i=1

κiH
i +

n
∑

j=1

λjV
j +

m
∑

r=2

n−1
∑

s=1

µrsL
rs +

m−1
∑

p=1

n
∑

q=2

νpqR
pq.

Let us take M such that the number of entries mij = mij in M is the highest possible

and still lower than max {m,n}. Let us suppose that m > n. It means that there is

a row k in M where mkj 0= mkj for every column j. We take µ = min
j

{mkj −mkj}

and add µHi to M . The matrix M + µHi is also Monge, belongs to M and the

number of upper bounds of intervals in M + µHi is higher than in M .

For n > m we employ the matrices of type V j and the rest of the argument is

similar. !

To show that the bound in Proposition 4.2 can be achieved we give the following

example.

Example 4.1. Let M ∈ IR
4×4 :

M =









[3, 1000] [10, 120] [17, 20] [0, 24]
[2, 20] [7, 9] [0, 12] [17, 85]
[2, 5] [0, 6] [10, 14] [14, 100]
[0, 1] [3, 6] [5, 21] [7, 1000]









.

Matrix M ∈ M such that

M =









3 10 17 24
2 7 12 17
2 6 10 14
1 3 5 7









.

is Monge, therefore M ∈ IWM. Moreover, on the diagonal from the lower left corner

to the upper right corner the values are upper bounds of the corresponding intervals.

It is easy to check that for any Monge matrix N ∈ M , no other entry can be an

upper bound of M since it would violate at least one of neighbouring conditions of

Monge property.

8

Aaron
the number of entries mij = mij is at least max {m, n}.

Aaron
第k列最小差值

Aaron
μ=min{mkj−mkj}

Aaron
is Monge, therefore M ∈ IWM.

Aaron

Aaron
diagonal



4.2. Sufficient conditions of matrices with the weak Monge property. The

first two sufficient conditions use the decomposition into extremal rays of convex

cone (see Theorem 2.3).

Proposition 4.3. Let M ∈ IR
m×n. If it holds for every row i that

⋂

j

mij 0= ∅ or

for every column j that
⋂

i

mij 0= ∅, then M ∈ IWM.

Proof. Let us suppose that for every row i it holds that
⋂

j

mij = [αi,αi]. Then a

matrix

M = α1H
1 + α2H

2 + · · ·+ αnH
n

where αi ∈ [αi,αi] is Monge matrix by Theorem 2.3. Since M ∈ M , we conclude

that M ∈ IWM. For nonempty intersections of columns the argument is similar. !

Proposition 4.4. Let M ∈ IR
m×n. If it holds for all indices i, j that m∆

ij ≥ |mC
ij

then M ∈ IWM.

Proof. The condition m∆
ij ≥ |mC

ij is equivalent with 0 ∈ mij . Thus Monge matrix

0m×n ∈ M . !

Another class of sufficient conditions of matrices with the weak Monge property

is based on an idea that in a space of real matrices we start with MC and use an

easy procedure to move in steps from MC until we reach Monge matrix of a special

form. Depending on the direction and distance of each step we can compute how far

we have to move from MC in each interval entry to achieve the matrix. By this, we

can get a sufficient condition dependent on the width of intervals. To determine the

necessary width of intervals we employ residual matrices.

Theorem 4.2. Let M ∈ IR
m×n and let MR ∈ R(m−1)×(n−1) be the residual

matrix of MC meaning (MR)ij = mi+1,j +mi,j+1−mij −mi+1,j+1. If for all indices

i, j of M it holds that m∆
ij ≥ |

m−1
∑

k=i

n−1
∑

!=j

mR
k!| then M ∈ IWM.

Proof. Let MC ∈ Rm×n and let MR ∈ R(m−1)×(n−1) be its residual matrix. In

general, the residual matrix MR will not be nonnegative. Our goal is to set the

entries of MR to zero by changing the entries of MC . We set the entries to zero one

by one using a specific elimination order. We see that by subtracting ε from mC
ij the

value of mR
ij increases by ε. By this operation, entries mR

i−1,j−1,m
R
i−1,j and mR

i,j−1

are affected as well (see Figure 1). We start from the bottom-right corner of MR

and add the value of mR
m−1,n−1 to mC

m−1,n−1. This sets the residuum mR
m−1,n−1

to zero and propagates its value into the three neighbouring entries (see Figure 2).

In next step, we eliminate the residuum of the element mR
m−1,n−2 and continue in

9
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m11 . . . m1n

• • •

... • mij − ε •

...

• • •

mm1 . . . mmn





























































mij−εi

j

mR
i−1j−1−ε mR

i−1j+ε

mR
ij+εmR

ij−1−ε

�������� Subtracting ε from mC
ij and its effect on entries of MR.

• . . . •

...
...

• . . . • •

• . . . • •

































































The error propagation in MR.

αβ

γδ

+α+ β + γ + δ

+α

+α−α+α+ β

+α+ γ

�������� The residual propagation in MR.

the decreasing order of columns until we arrive at the beginning of the row, then

proceed with the row above in the same manner (see Figure 3).

By each step we eliminate one residuum and more importantly, no residuum already

set to zero is affected further in the process.

Not only this elimination order yields 0(m−1)×(n−1) residual matrix (therefore a cor-

responding Monge matrix) but it is also easy to describe the propagation of residual

values in MR. Setting to zero the residuum mR
ij = α adds α to mR

i−1,j and mR
i,j−1

and subtracts it from mR
i−1,j−1 (as shown in Figure 2). Now if the intervals of M

are large enough we can move from the central matrix MC far enough to eliminate

the residua. It is now easy to compute by induction the necessary condition for each

interval of M .
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










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





MC
=

�������. The order of changing values in MC to zero the entries of MR.

For the base step, from the way of propagation (ilustrated by Figure 2) it is clear

that it must hold that

• m∆
m−1,n−1 ≥ |mR

m−1,n−1|

• m∆
m−1,n−2 ≥ |mR

m−1,n−1 +mR
m−1,n−2|,

• m∆
m−2,n−1 ≥ |mR

m−1,n−1 +mR
m−2,n−1|,

• m∆
m−2,n−2 ≥ |mR

m−2,n−1 +mR
m−1,n−2 + 2mR

m−1,n−1 −mR
m−1,n−1|, therefore

m∆
m−2,n−2 ≥ |mR

m−2,n−1 +mR
m−1,n−2 +mR

m−1,n−1|.

For inductional step let us suppose the residuum mR
ij . It must hold that

m∆
ij ≥

∣

∣mR
ij +mR

i+1,j +mR
i,j+1 −mR

i+1,j+1

∣

∣ .

By induction we know that the residues are equal to

m∆
ij ≥

∣

∣

∣

∣

∣

∣

mR
ij +

m−1
∑

k=i+1

n−1
∑

!=j

mR
k! +

m−1
∑

k=i

n−1
∑

!=j+1

mR
k! −

m−1
∑

k=i+1

n−1
∑

!=j+1

mR
k!

∣

∣

∣

∣

∣

∣

which is equal to the form stated in the theorem. !

Let us note that the condition we just showed can be checked in O(mn) time

using dynamic programming.

The sufficient condition shown in the previous theorem is one of many modifications

of the same condition depending on the order we choose to zero the values in MR.

The advantage of this one-diagonal order is that it is easy to compute the width of

intervals. We present one more condition from this class. The previous condition

works well when the sum |
m−1
∑

k=i

n−1
∑

l=j

mR
ij | ∼ 0 or is at least small for every i, j. If the

errors are of the same sign, however, the sum has a tendency to grow a lot. This is

because we propagate the error only in one direction.

We can choose a point in the matrix and propagate the error in four different (diag-

onal) directions.
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Theorem 4.3. Let M ∈ IR
m×n and let MR ∈ R(m−1)×(n−1) be the residual

matrix of MC . If there are indices i, j of M such that

• m∆
rs ≥ |

i−1
∑

k=r

j−1
∑

!=s

mR
k!| for every (r < i) ∧ (s < j),

• m∆
rs ≥ |

i−1
∑

k=r

s−1
∑

!=j

mR
k!| for every (r < i) ∧ (s > j),

• m∆
rs ≥ |

r
∑

k=i

j−1
∑

!=s

mR
k!| for every (r > i) ∧ (s < j),

• m∆
rs ≥ |

r
∑

k=i

s
∑

!=j

mR
k!| for every (r > i) ∧ (s > j),

then M ∈ IWM.

Proof. Let i, j be indices of MC . Then we can take mR
i−1,j−1,m

R
i−1,j+1,m

R
i+1,j−1 and

mR
i+1,j+1 as starting points for residual elimination described in Theorem 4.2. We

can see in Figure 4 that the residua are not propagated between the blocks of MR.

The inequalities follow from Theorem 4.2. !

• • •

...
...

...
• • • • •

• . . . • • • • • • • . . . •
• . . . • • • • • • • . . . •
• . . . • • • • • • • . . . •

• • • • •
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...

...
• • •
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
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

















































������( The residual propagation does not interfere between the blocks.

5. Closure properties of interval matrices with Monge propert y

In this section we briefly introduce closure properties of both classes of interval

matrices as well as those interconnecting them.

5.1. Closure properties of matrices with the strong Monge property. As

mentioned in preliminaries the set of nonnegative real Monge matrices forms a convex

cone meaning the matrices are closed under linear combinations with nonnegative

coeficients. The fact that matrices with the strongMonge property are convex subsets

of the set of real Monge matrices promises similar results for ISM.
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Proposition 5.1. Let M ,N ∈ ISM and let α ∈ R
+
0 . Then also αM ∈ ISM and

M +N ∈ ISM.

Proof. Straightforward from Theorem 3.1.(3). !

When it comes to multiplication by interval α ∈ IR
+
0 , interval matrices with

strong Monge property are closed only under certain restriction dependent on the

lower bound of α and its radius.

Theorem 5.1. Let M ∈ ISM
+
0 and let α ∈ IR

+
0 . Then αM ∈ ISM

+
0 iff

α∆

αC
≤ ϕ where ϕ = min

i,j

(

mi,j+1 +mi+1,j −mij −mi+1,j+1

mi,j+1 +mi+1,j +mij +mi+1,j+1

)

.

Proof. For all indices i, j it must hold that

αmij +αmi+1,j+1 ≤ αmi,j+1 +αmi+1,j .

It holds for all α ∈ α that

αmij+αmi+1,j+1 ≤ α mij+α mi+1,j+1 ≤ α mi,j+1+α mi+1,j ≤ αmi,j+1+αmi+1,j .

We achieve the tightest inequality for

α mij + α mi+1,j+1 ≤ α mi,j+1 + α mi+1,j .

Adjusting the inequality, we get

α ≤ α

(

mi,j+1 +mi+1,j

mij +mi+1,j+1

)

.

Substituting α for αC + α∆, α for αC − α∆ and adjusting again the inequality we

get the formula

(5.1)
α∆

αC
≤

(

mi,j+1 +mi+1,j −mij −mi+1,j+1

mi,j+1 +mi+1,j +mij +mi+1,j+1

)

.

It is now clear that the inequality 5.1 holds for all i, j iff it holds for minimum over

all indices. !

Finally, we state two observations. The first one is about matrix transposition

and the second one about matrix products.

Proposition 5.2. For a matrix M ∈ ISM the transposition MT ∈ ISM.
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Proof. Straightforward from the definition of ISM. !

Example 5.1. Let us consider matrices

A =

(

5 5
0.1 0.1

)

B =

(

5 0.1
6 0.1

)

.

The matrix A 2 B /∈ ISM for 2 representing the Standard, the Hadamard and the

Kronecker (tensor) matrix product.

5.2. Closure properties of matrices with the weak Monge property. We

investigated closure properties of several operations on IWM. Most of the results

are easy to prove, therefore we state them in one theorem.

Theorem 5.2. Let P ∈ IR
m×n,M ,N ∈ IWM

m×n, α ∈ R
+
0 and α ∈ IR

+
0 . Then

the following holds.

(1) M +N ∈ IWM,

(2) M + P ∈ IWM iff MR + PR ≥ 0,

(3) !(M ∪ P ) ∈ IWM,

(4) αM ∈ IWM,

(5) αM ∈ IWM.

Proof. All the results are easy to prove from the definition of IWM. !

5.3. Closure properties interconnecting both classes.

Theorem 5.3. Let M ∈ ISM
m×n,N ∈ IWM

m×n, α ∈ R
+
0 and α ∈ IR

+
0 . Then

the following holds.

(1) M +N ∈ IWM,

(2) ∀i, j it holds that mij ∩nij 0= ∅ → M ∩N ∈ IWM,

(3) !(M ∪N) ∈ IWM.

Proof. All the results are easy to prove from the definition of IWM and ISM. !

6. Permutation algorithm for Monge permutable matrices

In many optimization problems (e.g. the travelling salesman problem, the trans-

portation problem,. . . ) the optimal solution of the problem is invariant to a row and

a column permutation of the cost matrix. It is therefore a good question to ask if

there is a pair of permutations such that the permuted matrix is Monge. We in-

troduce a generalization of a permutation algorithm by Deineko & Filonenko [6] for

real matrices. In O(m2 + n2 + mn) where m,n are the dimensions of the matrix

the algorithm decides if there are permutations of rows and columns such that the
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resulting matrix is from ISM. The question for matrices with weak Monge property

is still an open problem and does not seem to have a straightforward correspondence

with the algorithm given by Deineko & Filonenko.

6.1. Lemmata for the derivation of the algorithm. In this section we prove

lemmata that are necessary for the derivation of the permutation algorithm. We

denote by M (σ,π) a matrix M permuted by a row permutation σ and a column

permutation π. If there are permutations σ,π such that M(σ,π) ∈ ISM we say that

M is Monge permutable.

The first lemma shows that ISM is closed under an operation of flipping the matrix

upside down and left to right.

Lemma 6.1. Let M ∈ ISM
m×n. Define σ(i) = m− i + 1 and π(j) = n− j + 1.

Then M (σ,π) ∈ ISM.

Proof. For every pair of indices i, j we have that

mσ(i),π(j) +mσ(i+1),π(i+1) = mm−i+1,n−j+1 +mm−i,n−j .

From Monge property we have

mm−i+1,n−j+1 +mm−i,n−j ≤ mm−i,n−j+1 +mm−i+1,n−j ,

but the righthand side of the inequality is equal to

mm−i,n−j+1 +mm−i+1,n−j = mσ(i),π(j+1) +mσ(i+1),π(j).

By Theorem 3.1.2 we conclude that M (σ,π) ∈ ISM. !

The following lemma provides a better understanding of what happens if the order

of columns is ambiguous meaning that mij + mk! ≤ mi! + mkj and mi! + mkj ≤

mij + mk!. If this happens, the order of columns and rows does not really matter

because all four interval entries are actually real values and so are all entries vertically

and horizontally in between them.

Lemma 6.2. Let M ∈ ISM and let row indices i < k and column indices j < !.

If it holds that

mij +mk! ≤ mi! +mkj and mi! +mkj ≤ mij +mk!

then for all rows o such that i ≤ o < p ≤ k it holds

(1) moj ,mpj ,mo!,mp! ∈ R,
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(2) moj +mp! = mo! +mpj .

Proof. The following chain of inequalities

mij +mk! ≤ mi! +mkj ≤ mi! +mkj ≤ mij +mk!

turns into a chain of equalities since the first and last members are the same. Taking

mij +mk! = mij +mk! and subtracting mij and mk! we have

−2 ·m∆
k! = mk! −mk! = mij −mij = 2 ·m∆

ij ,

from which −m∆
k! = m∆

i! . But this means that mi!,mk! ∈ R. Similarly, mi!,mkj ∈

R. This leads to mij +mk! = mi! +mkj .

Let now rows o, p be in between rows i and k i.e. i ≤ o < p ≤ k. Since M ∈ ISM

the following chain of inequalities holds

mij +mo! ≤ moj +mi! ≤ moj +mi! ≤ mk! +moj.

We can rearrange the inequalites in the following way

mij −mi! ≤ moj −mo! ≤ moj −mo! ≤ mkj −mk!

and because the first and the last expression equals,

moj −mo! = moj −mo!.

This leaves us with −2 ·m∆
oj = 2 ·m∆

o! and from a similar argument as above we have

that moj ,mo! ∈ R and consequently, mij +mo! = moj +mi!. Similarly, we arrive

to moj +mp! = mpj +mo!. !

The permutation of rows is based upon a combination of conditions which have to

be satisfied for the matrix to be strongly Monge. The conditions are taken in a form

mij −mi! ≤ mkj −mk! where i < k, j < !.

For two rows i, k we take into account the first b and the last B columns.

Lemma 6.3. Let M ∈ IR
m×n. If M ∈ ISM then for every pair of rows i and k

such that i < k it holds

B ·





b
∑

j=1

mij



− b ·

(

n
∑

!=n−B+1

mi!

)

≤ B ·





b
∑

j=1

mkj



− b ·

(

n
∑

!=n−B+1

mk!

)

where 1 ≤ b < n− B + 1 ≤ n.
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Proof. For i < k, it holds for every j such that 1 ≤ j ≤ b and every ! such that

n−B + 1 ≤ ! ≤ n that

mij −mi! ≤ mkj −mk!.

By picking such an inequality for every pair (j, !) where j ∈ {1, . . . , b} and ! ∈

{n−B + 1, . . . , n} and adding all these inequalities together we get the formula

above. !

The following lemma gives an algorithm to compute the permutations of rows and

columns.

Lemma 6.4. Let u,v ∈ IR
n. Let σ be a permutation of {1, . . . , n} such that

whenever

σ(i) < σ(j) then ui − vi ≤ uj − vj .

Then in O(n2) we can compute σ or answer that there is no such permutation.

Proof. We construct a directed graphG = ({1, . . . , n} , E) where (i, j) ∈ E if ui−vi ≤

uj−vj . If there is a pair of vertices i, j ∈ G without an edge between them, it means

that

ui − vi > uj − vj and uj − vj > ui − vi

and by the definition of σ no mutual order of these indices yields the permutation;

so we stop. From now on, let us suppose that there is at least one edge between all

pairs of vertices in graph G.

Now let c1, . . . , ck be strongly connected components of G such that t(c1) < · · · <

t(ck), where t is some topological ordering of strongly connected components of G.

Now define σ as follows. While σ is not defined for all indices i ∈ {1, . . . , n}, pick

between indices with unspecified σ(i) the one for which the topological number of

the corresponding strongly connected components containing the vertex i is minimal.

Set σ(i) as the smallest number from {1, . . . , n} not assigned yet.

To prove that the construction is correct, let i, j be indices such that σ(i) < σ(j).

Then either vertices i, j are from the same component or i is from a component with

a smaller topological number than the component containing j. If i and j are from

the same component of G, it means by the contruction of G that there are edges

(i, j) and (j, i) therefore it holds that ui − vi ≤ uj − vj . If i is in a component with

a smaller topological number than j, it means that there is an edge (i, j). But the

edge (i, j) corresponds to the inequality ui − vi ≤ uj − vj .

There exists an algorithm for finding a topological ordering of strongly connected

components of a directed graph running in O(n+m) where n equals the number of

vertices and m equals the number of edges (see [8]). Since the number of edges m

is in the worst case approximately m ≈ n2, the algorithm runs in O(n2). Defining
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σ from the topological ordering t takes O(n), therefore the whole construction takes

O(n2). !

Finally, we prove a lemma about the first step of our algorithm. In this step

a pair of rows is determined. The first permutation ρ of the general algorithm is

based upon conditions between these two rows. We demand at least two columns to

be strictly ordered, otherwise the permutation ρ will have no effect (we want it to

prepermute the matrix). Two columns with a strict order are part of two different

so called ambiguity sets. According to the logical structure we state the lemma

in this subsection, however, the notion of ambiguity sets necessary in the lemma

becomes clear further in the text. We recommend to the reader to first go through

the derivation of the algorithm.

Lemma 6.5. Let M ∈ IR
m×n. Then a problem to decide if there is a row r

such that there are two ambiguity sets of columns for rows 1 and r can be computed

in O(mn). If for every row r there is only one ambiguity set of columns, then the

matrix has the strong Monge property.

Proof. For every row k and for all neighbouring pairs of columns (i.e. j, j + 1 for

1 ≤ j ≤ n− 1) we check if it holds that

(6.1) m1j −mkj < m1,j+1 −mk,j+1 or m1,j+1 −mk,j+1 < m1j −mkj .

Only one of these inequlities can hold at the same time because otherwise

m1j −mkj < m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 < m1j −mkj ≤ m1j −mkj

which leads to a contradiction m1j − mkj < m1j − mkj . If one of the inequalities

holds and the other is =, then w.l.o.g. consider

m1j −mkj < m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 = m1j −mkj .

From these two inequalities we can derive that

m1j −mkj < m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 = m1j −mkj

and therefore m1j −mkj < m1j −mkj which is again a contradiction.

This means that if one inequality holds with < the other must hold with >, therefore

the order of the columns is strict and they cannot be switched. A strict order of two

columns means that these columns cannot be in one ambiguity set, therefore we

return row k.
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It might happen that for every pair j, j + 1 and for row k neither of the inequalities

from 6.1 is strict. It means that

(6.2) m1j −mkj ≥ m1,j+1 −mk,j+1 and m1,j+1 −mk,j+1 ≥ m1j −mkj .

If both of the inequalities are strict for at least one pair j, j + 1, it means that no

order of columns j, j + 1 satisfy Monge property and in that case we stop.

If both of the inequalities hold with equality = for all pairs of columns j, j+1 in the

row k, it means that

m1j −mkj = m1,j+1 −mk,j+1 ≤ m1,j+1 −mk,j+1 = m1j −mkj ≤ m1j −mkj ,

thereforem1jmkj and also mk,j+1m1,j+1 are real values and therefore m1j−mkj =

m1,j+1 −mk,j+1. If this happens for all rows k then the matrix is already Monge

because every condition holds with equality.

The last case which remains is when one of the inequalities from 6.2 is strict > and

the second one is equal = for at least one row r. Then the order is strict again,

because there is only one way to permute these two columns in order to satisfy

Monge property. Therefore we return row r.

Applying this procedure to each of m− 1 rows the number of conditions to check

is at most 2(n− 1) for each row. We conclude that the problem can be computed in

O(mn). !

6.2. Special case algorithm. We first derive an algorithm for special case interval

matrices with nontrivial intervals (i.e. the width of interval is larger than 0).

The algorithm chooses two random rows i, k, and according to conditions

mij +mk! ≤ mi! +mkj

it chooses permutation ρ such that ρ(j) < ρ(!) if

mij −mkj ≤ mi! −mk!.

Notice that the permutation ρ is unique. Otherwise both inequalities

mij +mkj ≤ mi! −mk! and mi! +mk! ≤ mij −mkj

hold and by Lemma 6.2 the intervals are degenerate (i.e. mij ,mi!,mkj ,mk! ∈ R).

In the same manner we can now choose columns ρ(1) and ρ(n) and define row

permutation σ such that σ(i) < σ(k) if

mσ(i)ρ(1) −mσ(i)ρ(1) ≤ mσ(k)ρ(n) −mσ(k)ρ(n).
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By Lemma 6.2 the permutation σ is unique again.

Now if the permuted matrix M(σ, ρ) ∈ ISM, the algorithm returns (σ, ρ). If the

matrix does not have the strong Monge property, it means that there are four entries

which do not satisfy the corresponding inequality. But since the permutations σ, ρ are

unique, there is no other permutation of M that satisfies all necessary conditions.

Notice that for special case matrices there are actually two ways to permute the

initial matrix M . The first one is pair (σ, ρ) and the other is given by Lemma 6.1.

6.2.1. Pseudocode of the special case algorithm.

Algorithm 1. (Special case permutation algorithm)

Input: M ∈ IR
mxn an interval matrix with nontrivial intervals

Output: ”YES” if M is Monge permutable together with M(σ, ρ) ∈ ISM ,

”NO” otherwise

1 Determine permutation ρ such that

ρ(k) < ρ(!) implies that m1k −m2k ≤ m1! −m2!.

If no such permutation exists, output ”NO”.

2 Determine permutation σ such that σ(i) < σ(k) implies that

miρ(1) −miρ(n) ≤ mkρ(1) −mkρ(n).

3 Check if M(σ, ρ) ∈ ISM. Output ”YES” with σ, ρ if it does and ”NO”

otherwise.

6.3. General case algorithm. For general interval matrices the special case algo-

rithm might fail because according to the rule given for the construction of σ and ρ

the permutations might not be defined unambiguously. Therefore we have to employ

a slightly modified algorithm which performs one more permutation.

6.3.1. Derivation of the algorithm. Let us suppose that matrixM ∈ IR
m×n is Monge

permutable i.e. there are permutations σ and π such that M(σ,π) ∈ ISM. At first,

let us suppose that we already know the permutation σ and we would like to derive

the permutation π. We could find for every pair of rows all possible permutations

of columns such that Monge property is satisfied for the selected pair and after that

choose one permutation that satisfies Monge property for all pairs of rows at the

same time.

Since this approach is ineffective we construct a permutation only for the pair of

the first and the last row. If the permutation cannot be constructed, the matrix is

not Monge permutable which is a contradiction with the assumption. Therefore the
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permutation is either uniquely determined or the order of at least two columns is

ambiguous.

If the permutation is uniquely determined, it must satisfy Monge property for the

rest of row pairs, assuming the matrix is Monge permutable.

If the permutation is ambiguous, it means that there are two columns j, ! such that

m1j −mmj ≤ m1! −mm! and m1! −mm! ≤ m1j −mmj .

According to Lemma 6.2, m1j ,mmj ,m1!,mm! ∈ R and m1j +mm! = mmj +m1!

and the conditions also hold if we substitute 1, j for any other pair of rows. Again,

the permutation satisfies the strong Monge property, otherwise the matrix M is not

Monge permutable.

The question that remains is how to determine the permutation σ. If we knew what

the first and the last column in permutation π was, we could apply the same idea as

for permuting the columns. Therefore, we prepermute the columns by permutation ρ.

We choose almost random pair of rows i, k (we further show how) and apply the same

rule for permutation as in the special case algorithm i.e.

ρ(j) < ρ(!) implies mij +mk! ≤ mi! +mkj .

Because the prepermutation is in general ambiguous, it does not give us the first and

the last column. It divides the columns into so called ambiguity sets. Two columns

are in one ambiguity set if their order cannot be unambiguously determined. Even

though the order of columns cannot be determined inside one ambiguity set, for two

columns from two different sets the order is strictly given. Therefore, the first and

the last ambiguity sets contain the candidates for the first and the last column.

Even though we cannot exactly determine the first and the last column we can use

a combination of conditions for all columns from the first and the last ambiguity

set and base the construction of permutation σ upon this combination. Lemma 6.3

provides the condition, i.e. σ(i) < σ(k) implies

B ·





b
∑

j=1

mij



− b ·

(

n
∑

!=n−B+1

mi!

)

≤ B ·





b
∑

j=1

mkj



 − b ·

(

n
∑

!=n−B+1

mk!

)

.

Now the trick is that this process yields an equal permutation to the one based only

on the first and the last column.

To see this let τ be the permutation of rows given by the first and the last column

in the matrix M (σ,π). We want to prove that σ is equal to τ .

For a contradiction let us suppose that there are two rows i, k such that the order
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under permutation τ(k) < τ(i) and σ(i) < σ(k) differs. This means that mk1+min ≤

mi1 +min and

(6.3) B ·





b
∑

j=1

mij



− b ·

(

n
∑

!=n−B+1

mi!

)

≤ B ·





b
∑

j=1

mkj



− b ·

(

n
∑

!=n−B+1

mk!

)

.

There are two cases to consider. In the first case the order of k and i is unambigous

for the permutation τ . Then the inequality is strict mk1 + min < mi1 + min. It

must also hold for each column j, ! from the first resp. the last ambiguity set of σ

that mkj + mi! ≤ mk! + mij otherwise the matrix is not Monge permutable. But

combining all conditions together in the same way as in Lemma 6.3 we achieve a

strict inequality

(6.4) B ·





b
∑

j=1

mkj



− b ·

(

n
∑

!=n−B+1

mk!

)

< B ·





b
∑

j=1

mij



− b ·

(

n
∑

!=n−B+1

mi!

)

.

Now the righthand side of (6.3) is less or equal to the lefthand side of (6.4) and the

righthand side of (6.4) is less or equal to the lefthand side of (6.3) leading into a

contradiction

B ·





b
∑

j=1

mij



− b ·

(

n
∑

!=n−B+1

mi!

)

< B ·





b
∑

j=1

mij



 − b ·

(

n
∑

!=n−B+1

mi!

)

.

In the second case the order of rows i and k is ambiguous under τ but this means that

switching them does not violate any condition as was discussed before. Therefore

even though the permutations τ and σ does not have to be identical, they are equal

in the sense that we can use both of them for constructing π.

Last thing to discuss is the construction of prepermutation ρ. It is essential for the

construction of σ to have different candidates for both the first and the last column

otherwise the construction fails to determine the order of rows. We need to find

a pair of rows i, j such that the permutation divides the columns into at least two

ambiguity sets. Lemma 6.5 gives us a way to find these rows.

6.3.2. Pseudocode of the general case algorithm.
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Algorithm 2. General case permutation algorithm

Input: M ∈ IR
mxn

Output: ”YES” if M is Monge permutable together with M(σ,π) ∈ ISM ,

”NO” otherwise

1 Find a row r such that there are at least two column ambiguity sets for rows

1, r. If every row has one ambiguity set with row 1 output ”YES” with σ = id

and π = id. If there is a pair of columns j, j + 1 which cannot be permuted

output ”NO”.

2 Determine permutation ρ such that

ρ(k) < ρ(!) implies that m1k −mjk ≤ m1! −mj!.

If no such permutation exists, output ”NO”.

3 Determine b, B ∈ {1, ..n} such that b equals to the size of the first ambiguity set

of ρ and B equals to the size of the last ambiguity set of ρ.

4 Determine row permutation σ such that σ(i) < σ(k) implies that

B ·





b
∑

j=1

mij



 − b ·

(

n
∑

!=n−B+1

mi!

)

≤ B ·





b
∑

j=1

mkj



− b ·

(

n
∑

!=n−B+1

mk!

)

.

If no such permutation exists, output ”NO”.

5 Determine column permutation π such that

π(k) < π(!) implies that mσ(1),k −mσ(n),k ≤ mσ(1),! −mσ(n),!.

If no such permutation exists, output ”NO”.

6 Check if M(σ,π) ∈ ISM. Output ”YES” with σ,π if it does and ”NO”

otherwise.

6.4. Complexity of the algorithm. The correctness of both variants of the algo-

rithm follows from the derivations. It remains to determine the time complexity of

the algorithm.

Theorem 6.1. For M ∈ IR
m×n, Algorithm 1 runs in O(m2 + n2 +mn).

Proof. By Lemma 6.4 the permutation ρ can be constructed in O(n2) and σ in

O(m2). Using Theorem 3.1.(3) it can be checked in O(mn) time if the permuted

matrix is strongly Monge. Altogether, the time complexity is O(m2 +n2 +mn). !

Theorem 6.2. For M ∈ IR
m×n, Algorithm 2 runs in O(m2 + n2 +mn).
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Proof. The determination of row r takes O(mn) time according to Lemma 6.5. Con-

struction of both column permutation ρ,π takes O(n2) time and the construction

of σ takes O(m2) time as can be seen from a slight modification of Lemma 6.4.

We can easily derive b and B from ρ by checking mostly 2n conditions, therefore

the determination of b, B runs in O(n). Finally, by Theorem 3.1.(3) Monge recog-

nition procedure takes O(mn). Altogether, the time complexity of Algorithm 2 is

O(m2 + n2 +mn). !

7. Conclusion

We introduced two classes of interval Monge matrices - ISM and IWM. For ISM,
following mostly results of real Monge matrices, we generalized several characteriza-
tions. For IWM we offered a polynomial characterization and several necessary and
sufficient conditions. In Theorem 4.3 we indicated a larger class of conditions that
might be interesting to further investigate.
We presented lists of closure properties under operations on ISM and IWM and un-
der operations combining both classes of matrices.
We introduced generalization of Deineko & Filonenko permutation algorithm for in-
terval matrices, which determines if the interval matrix is Monge permutable, i.e.
there is a permutation of rows and columns such that the permuted matrix has the
strong Monge property.
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