
Theoretical Computer Science 796 (2019) 272–285

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Comparing incomplete sequences via longest common

subsequence !

Mauro Castelli a, Riccardo Dondi b,∗, Giancarlo Mauri c, Italo Zoppis c

a NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal
b Dipartimento di Scienze umane e sociali, Università degli Studi di Bergamo, Italy
c Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 October 2018
Received in revised form 26 July 2019
Accepted 14 September 2019
Available online 19 September 2019
Communicated by T. Calamoneri

Keywords:
Longest common subsequence
String algorithms
Approximation algorithms
Computational complexity
Fixed-parameter algorithms

Inspired by scaffold filling, a recent approach for genome reconstruction from incomplete
data, we consider a variant of the well-known longest common subsequence problem
for the comparison of two sequences. The new problem, called Longest Filled Common
Subsequence, aims to compare a complete sequence with an incomplete one, i.e. with some
missing elements. Longest Filled Common Subsequence (LFCS), given a complete sequence
A, an incomplete sequence B , and a multiset M of symbols missing in B , asks for a
sequence B∗ obtained by inserting the symbols of M into B so that B∗ induces a common
subsequence with A of maximum length.
We investigate the computational and approximation complexity of the problem and we
show that it is NP-hard and APX-hard when A contains at most two occurrences of each
symbol, and we give a polynomial time algorithm when the input sequences are over
a constant-size alphabet. We give a 3

5 −approximation algorithm for the Longest Filled
Common Subsequence problem. Finally, we present a fixed-parameter algorithm for the
problem, when it is parameterized by the number of symbols inserted in B that “match”
symbols of A.

 2019 Elsevier B.V. All rights reserved.

1. Introduction

Longest Common Subsequence (LCS) is a well-known approach to compare sequences and it has been applied in sev-
eral contexts where the goal is to retrieve the maximum number of elements that appear in the same order in two or
more sequences. Well-known fields of application of LCS include scheduling, data compression and computational biology.
LCS has been widely applied to compare molecular sequences in bioinformatics [2,3]. For example, the comparison of bi-
ological sequences provides a measure of their similarities and differences, aiming at understanding whether they encode
similar/different functionalities.

Different variants of LCS have been considered in the last years for the comparison of two genomes, for example the con-
strained longest common subsequence [4–8] or the repetition-free longest common subsequence and variants thereof [9–12].
These approaches assume that the input sequences are complete, that is there are no missing data in the considered

! A preliminary version of this paper appeared in CPM 2017 [1].

* Corresponding author.
E-mail addresses: mcastelli@novaims.unl.pt (M. Castelli), riccardo.dondi@unibg.it (R. Dondi), mauri@disco.unimib.it (G. Mauri), zoppis@disco.unimib.it

(I. Zoppis).

https://doi.org/10.1016/j.tcs.2019.09.022
0304-3975/ 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.09.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:mcastelli@novaims.unl.pt
mailto:riccardo.dondi@unibg.it
mailto:mauri@disco.unimib.it
mailto:zoppis@disco.unimib.it
https://doi.org/10.1016/j.tcs.2019.09.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.09.022&domain=pdf
Aaron
Longest Filled Common Subsequence, aims to compare a complete sequence with an incomplete one, i.e. with some missing elements.

Aaron
NP-hard and APX-hard

Aaron
polynomial time algorithm

Aaron
35−approximation algorithm

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 273

sequences. However, there are cases where the considered sequences are not complete. For example, Next Generation Se-
quencing technologies produce a huge amount of DNA/RNA fragments, called scaffold, while released genomes obtained by
assembling these fragments, are often incomplete [13].

An approach for the reconstruction of complete genomes is to complete scaffolds with missing genes, based on the
comparison of a scaffold with a reference genome [14–16]. Given an incomplete genome B , a multiset of missing genes
(symbols) M and a reference genome A, the goal is to insert the missing symbols in B so that the number of common
adjacencies between the resulting genome B∗ and A is maximized. We have a common adjacency when two genes a, b
are consecutive both in A and B∗ , independently from the order. Notice that other measures to compare a genome and a
scaffold have been introduced in [17,18]. We mention briefly that there is also a variant of the scaffold filling approach that
compares two incomplete genomes [15,16].

Inspired by methods for genome comparison based on LCS and by the scaffold filling approach, we introduce a new
variant of the LCS problem, called the Longest Filled Common Subsequence problem, for the comparison of a complete sequence
A and an incomplete sequence B . The goal is to find the maximum number of symbols that appear in the same order in A
and in a filling B∗ of B , that is of a sequence obtained from B by inserting the symbols of a multiset M of missing symbols
into B . Notice that while the scaffold filling problem aims to reconstruct a complete genome from an incomplete one by
maximizing the number of common adjacencies, here we aim to infer only those elements that appear in the same order
in the complete sequence A and in the filling B∗ .

The approach we introduce can be of interest when comparing two orders of the same set of data. An example is the
comparison of two similar, but different, schedules of a set of activities. Suppose we have a complete schedule A and an
incomplete schedule B and we would like to reconstruct the complete schedule B∗ starting from B . A possible approach is
to consider the insertion of missing activities (i.e. symbols) into B such that we obtain similar complete orders of activities
A and B∗ .

In this paper, we investigate different algorithmic and complexity aspects of the Longest Filled Common Subsequence
problem. We prove that the problem is NP-hard and APX-hard, even when the sequence A contains at most two occurrences
of each symbol of the alphabet. Notice that bounding the maximum number of occurrences of symbols in a sequence is
relevant in this case, as usually the number of copies of a gene inside a genome is bounded. On the positive side, we show
that if A and B are defined over an alphabet of constant size, then there is a polynomial-time algorithm for Longest Filled
Common Subsequence.

We consider two possible algorithmic directions to deal with the problem: approximation algorithms and fixed-parameter
algorithms. For the first direction, we present a polynomial-time approximation algorithm of factor 3

5 . For the second di-
rection, we present a fixed-parameter algorithm, where the parameter is the number of inserted symbols that lead to a
“match” with symbols of A. Such a parameter can be of interest when the number of missing elements, and in particular
those that lead to a “match” with symbols of A, is moderate, as the complexity of the algorithm depends exponentially only
on this parameter.

The rest of the paper is organized as follows. In Section 2, we introduce some basic definitions and we formally define
the Longest Filled Common Subsequence problem. Then, in Section 3 we investigate the computational and approxima-
tion complexity of the problem, showing that it is APX-hard (hence NP-hard) when each symbol in A has at most two
occurrences. In Section 4 we present a polynomial-time approximation algorithm of factor 3

5 . In Section 5, we present a
fixed-parameter algorithm where the parameter is the number of inserted symbols that induce a “match” with symbols of
sequence A and a polynomial-time algorithm when the size of the alphabet over which A and B are defined is a constant.
Finally, we conclude the paper with some open problems.

2. Preliminaries

In this section we introduce some basic definitions that will be useful in the rest of the paper and we give the formal
definition of the Longest Filled Common Subsequence problem. Let S be a sequence over an alphabet !, we denote by |S|
the length of S . Given a position i, with 1 ≤ i ≤ |S|, we denote by S[i] the symbol in position i of S . Given two positions
i, j in S , with 1 ≤ i ≤ j ≤ |S|, we denote by S[i, j] the substring of S that starts at position i and ends at position j. Given
two sequences S and T , we denote by S · T the sequence that results by concatenating S and T .

A subsequence of S is a sequence S ′ that is obtained from S by deleting some symbols (possibly none). A common
subsequence S of two sequences A and B is a subsequence of both A and B . A longest common subsequence of A and B is
a common subsequence of A and B having maximum length.

Given two sequences A and B , a common subsequence can be represented by its associated threading schema (see Fig. 1):
A and B are written on different lines, with the leftmost symbols aligned and positions of A and B containing an identical
symbol are connected with a line (at most one for each position), such that there is no pair of crossing lines. Given a
threading schema for sequences A, B , a line that connects two symbols in A and B is called a match and the two positions
incident in a line are said to be matched.

Given a sequence S and a multiset of symbols M, we define a filling of S with M as a sequence S ′ obtained by inserting
a subset M′ of symbols of M into S . Notice that in a filling of S with M not all the symbols of M have to be inserted
in S . Informally, we may not insert those symbols that do not induce matches, to simplify the algorithms we describe in
Section 4 and in Section 5.

Aaron
Next Generation Se- quencing technologies produce a huge amount of DNA/RNA fragments, called scaffold,

Aaron
the goal is to insert the missing symbols in B so that the number of common adjacencies between the resulting genome B∗ and A is maximized

Aaron
scaffold filling approach

Aaron
Longest Filled Common Subsequence problem

Aaron
the scaffold filling problem aims to reconstruct a complete genome from an incomplete one by maximizing the number of common adjacencies

Aaron
鄰近 adjacencies

Aaron
we would like to reconstruct the complete schedule B∗ starting from B

Aaron
NP-hard and APX-hard

Aaron
bounding the maximum number of occurrences of symbols in a sequence is relevant in this case

Aaron
意義重大的 relevant

Aaron
if A and B are defined over an alphabet of constant size, then there is a polynomial-time algorithm for Longest Filled Common Subsequence.

Aaron
approximation algorithms and fixed-parameter algorithms

Aaron
factor 35

Aaron
the parameter is the number of inserted symbols that lead to a “match” with symbols of A

Aaron
適當的 moderate

Aaron
leftmost symbols aligned

Aaron
identical

Aaron
no pair of crossing lines

Aaron
not all the symbols of M have to be inserted in S

Aaron
not insert those symbols that do not induce matches

274 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

Fig. 1. The threading schema of two sequences A and B: lines connect matched positions of A and B .

Fig. 2. A filling B∗ of sequence B in Fig. 1, where the symbol in position 2 (symbol a) and the symbol in position 6 (symbol c), both in gray, have been
inserted. A subsequence of A and B∗ is induced by the threading schema of A and B∗ , where straight lines represent matches by alignment, dashed lines
represent matches by insertion.

Algorithm 1: Algorithm that computes a subsequence of A that matches by insertion the maximum number of symbols
of M.

Data: A, M
Result: a subsequence A′ of A that matches the maximum number of symbols in M

1 di := number of occurrences of αi ∈ ! in A;
2 mi := number of occurrences of αi ∈ ! in M;
3 for each αi ∈ ! do
4 if di ≤ mi then
5 Define a matching by insertion for all the di occurrences of αi in A
6 else
7 Define a matching by insertion for the mi rightmost occurrences of αi in A
8 Define A′ as the subsequence of A induced by the positions matched by insertion.

Now, we present the formal definition of the Longest Filled Common Subsequence problem.

Problem 1. Longest Filled Common Subsequence (LFCS)
Instance: two sequences A and B over an alphabet !, and a multiset M over !.
Solution: a filling B∗ of B with M.
Measure: the length of a longest common subsequence of A and B∗ (to be maximized).

Given two sequences A, B and a multiset M over !, let B∗ be a filling of B with M. Consider a common subsequence
of A and B∗ , and their corresponding threading schema. We can distinguish two types of matches of a matched position of
A (see Fig. 2): (1) a match by insertion, if it is a match with a position of B∗ that contains a symbol of M inserted in B , or
(2) a match by alignment, if it is a match with a position of B∗ that have not been inserted into B .

We can easily compute in polynomial-time two upper bounds on the number of positions of A that can be matched
by alignment and by insertion, that will be useful in Section 4. The first upper bound is related to a longest common
subsequence L of A and B , which can be computed in polynomial time. In fact, the maximum number of positions of A
(and of a filling B∗ of B with M) that are matched by alignment is at most the length of L.

Next we show how to compute in polynomial-time an upper bound on the number of position of a sequence A that can
be matched by insertion.

Next, we prove the correctness of Algorithm 1.

Lemma 1. Given a sequence A, a multiset M on !, Algorithm 1 computes a subsequence of A that matches by insertion the maximum
number of symbols of M.

Proof. Let di be the number of occurrences of αi ∈ ! in A, and mi be the number of occurrences of αi ∈ ! in M. The
subsequence A′ of A returned by Algorithm 1, for each αi ∈ !, matches by insertion min(di, mi) positions of A containing αi .
Since any subsequence of A can match by insertion at most min(di, mi) positions of A containing αi , the lemma follows. !

3. Complexity of LFCS

In this section, we investigate the computational and approximation complexity of the LFCS problem, and we prove
that it is APX-hard when A contains at most two occurrences of each symbol in ! (we denote this restriction of LFCS
by 2-LFCS). We prove that 2-LFCS is APX-hard, by giving an L-reduction from the Maximum Independent Set problem

Aaron
threading schema

Aaron
Longest Filled Common Subsequence (LFCS)

Aaron
a match by insertion

Aaron
a match by alignment

Aaron
in polynomial-time two upper bounds on the number of positions of A that can be matched by alignment and by insertion

Aaron
a longest common subsequence L of A and B

Aaron
matches by insertion

Aaron
di ≤mi

Aaron
A

Aaron
M

Aaron
di

Aaron
mi rightmost

Aaron
min(di , mi) positions of A containing αi

Aaron
when A contains at most two

Aaron
2-LFCS

Aaron
by giving an L-reduction from the Maximum Independent Set problem

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 275

on Cubic Graphs (Max-ISC), which is known to be APX-hard [19] (see [20] for details on L-reduction). Given a cubic graph
G = (V , E),1 Max-ISC asks for a maximum cardinality subset V ′ ⊆ V such that, given vi, v j ∈ V ′ , it holds {vi, v j} /∈ E .

Given a cubic graph G = (V , E), with V = {v1, v2, . . . , vn} and |E| = m, in the following we show how to construct an
instance (A, B, M) of 2-LFCS . Define an order on the edges incident on a vertex vi ∈ V assuming {vi, v j} < {vi, vh} if
j < h. Given a vertex vi , and the edges {vi, v j}, {vi, vh}, {vi, vz} ∈ E , with j < h < z, we say that {vi, v j} ({vi, vh}, {vi, vz},
respectively) is the first (second, third, respectively) edge incident on vi .

First, we define the alphabet !:

! = {xi,p : vi ∈ V ,1 ≤ p ≤ 3} ∪ {yi,p : vi ∈ V ,1 ≤ p ≤ 2}∪

{zi,p : 1 ≤ i ≤ n + m − 1,1 ≤ p ≤ 4}
The input sequences A and B are built by concatenating several substrings.
For each vi ∈ V , we define the following substrings of the input sequences A, B:

A(vi) = yi,1 yi,2xi,1xi,2xi,3 B(vi) = xi,1xi,2xi,3 yi,1 yi,2

For each {vi, v j} ∈ E , with i < j (which is the p-th edge, 1 ≤ p ≤ 3, incident on vi and the q-th edge, 1 ≤ q ≤ 3, incident
on v j), define the following substrings of A, B:

A({vi, v j}) = xi,px j,q B({vi, v j}) = x j,qxi,p

Finally, define 2(n +m − 1) additional substrings S A,1, S A,2, . . . , S A,m+n−1, S B,1, S B,2, . . . , S B,m+n−1 where S A,i , S B,i , with
1 ≤ i ≤ m + n − 1, are defined as follows: S A,i = S B,i = zi,1zi,2zi,3zi,4.

Now, we are able to define the input sequences A and B , by concatenating the substrings previously defined, where
substrings associated with edges of G are concatenated assuming some edge ordering (we assume that {v1, v w } is the first
edge, while {vr, vt} is the last edge according to the ordering):

A = A(v1) · S A,1 · A(v2) · · · · · S A,n−1 · A(vn) · S A,n · A({v1, v w}) · · · · · S A,n+m−1 · A({vr, vt})

B = B(v1) · S B,1 · B(v2) · · · · · S B,n−1 · B(vn) · S B,n B({v1, v w}) · · · · · S B,n+m−1 · B({vr, vt})
Notice that each substring associated with an edge {vi , v j} appears exactly once in both A and B .
The multiset M is defined as follows: M = {xi,t : vi ∈ V , 1 ≤ t ≤ 3}.
First, we prove that (A, B, M) is an instance of 2-LFCS , that is we prove that each symbol has at most two occurrences

in A.

Lemma 2. Each symbol of ! occurs at most twice in A.

Proof. Notice that each symbol that appears in a substring S A,i , 1 ≤ i ≤ m +n −1, does not appear in any other subsequence
of A. Now, consider a symbol yi,t , with 1 ≤ i ≤ n and 1 ≤ t ≤ 2, that occurs in substring A(vi); yi,t does not appear in any
other substring of A. Finally, consider a symbol xi,t , with 1 ≤ i ≤ n and 1 ≤ t ≤ 3; xi,t has one occurrence in exactly two
subsequences of A: subsequence A(vi) and subsequence A({vi, v j}) (where {vi, v j} is the t-th edges incident on vi). !

Now, we present an outline of the reduction. First, we prove that a solution of 2-LFCS over instance (A, B, M) matches
by alignment each position of S A,i with a position of S B,i (Lemma 3). Then, we show that the possible matches of each
subsequence A(vi) can be essentially of two kinds: an I-configuration (related to a vertex in an independent set of the graph
G) and a C-configuration (related to a vertex not in an independent set of the graph G).

Let B∗ be a solution of 2-LFCS over instance (A, B, M). We denote by S B∗,i (B∗(vi), B∗({vi, v j}), respectively), the sub-
string of a solution B∗ corresponding (possibly after some insertion) to the substring S B,i (B(vi), B({vi, v j}), respectively),
of B .

Next, we show that we can assume that in a solution B∗ of 2-LFCS over instance (A, B, M), a longest common
subsequence of A and B∗ matches by alignment a position of a subsequence S A,i , 1 ≤ i ≤ m + n − 1, only with a position of
S B∗,i , 1 ≤ i ≤ m + n − 1.

Lemma 3. Given a cubic graph G, let (A, B, M) be the corresponding instance of 2-LFCS , and B∗ a solution of 2-LFCS over
(A, B, M). Then a longest common subsequence of A and B∗ contains each symbol zt,q, with 1 ≤ t ≤ m + n − 1 and 1 ≤ q ≤ 4.

1 We recall that a cubic graph is an undirected graph where each vertex has degree exactly three.

Aaron
Each symbol of occurs at most twice in A.

Aaron
instance (A,B,M) of 2-LFCS

Aaron
{vi,vj}<{vi,vh} if j<h

276 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

Proof. Consider a solution B∗ of 2-LFCS over instance (A, B, M) and assume that it does not contain a symbol zt,q , with
1 ≤ t ≤ m + n − 1 and 1 ≤ q ≤ 4.

First, observe that by construction a longest common subsequence of B∗ and A matches by alignment a position of A(vi)
either with a position of B(vi) or with a position of B({vi, v j}). We prove that a longest common subsequence between
A and B∗ matches by alignment a position of A(vi) only with a position of B(vi). Assume that i is the minimum value
such that a longest common subsequence S of A and B∗ matches by alignment a position of A(vi) and a position of
B∗({vi, v j}), then, by construction of (A, B, M), no position of S A,i can be matched. Now, starting from S we can compute
a common subsequence S ′ of A and B∗ , with |S ′| > |S|, by modifying the alignment of S as follows: (i) match by alignment
the positions of A(vi) and the positions of B∗(vi) containing symbols yi,1, yi,2; (ii) match by alignment the positions of
subsequences S A,i containing symbol zi,q , with 1 ≤ q ≤ 4, with position of subsequences S B,i containing symbol zi,q; (iii) any
other match is not modified. It follows that the number of positions in A(vi) matched by S ′ with respect to S is decreased
by at most three, since eventually positions of A(vi) containing symbols xi,1, xi,2, xi,3 will not be matched. The number of
positions in S A,i matched by S ′ with respect to S is increased by at least 4, since each position of S A,i is matched by S ′

and not by S . By iterating this procedure, we eventually find a longest common subsequence S ′ of A and B∗ , where if a
position of A(vi) is matched by alignment, then it is matched with a position of B(vi). Moreover, since |A({vi, v j})| = 2,
with {vi, v j} ∈ E , while |S A,t | = 4, we can assume that each position of A({vi , v j}) is possibly matched by alignment only
with positions of B({vi, v j}).

By the maximality of S ′ , this implies that each position of A containing a symbol zt,q , with 1 ≤ t ≤ m + n − 1 and
1 ≤ q ≤ 4, matches a position of B∗ containing symbol zt,q . !

Consider a vertex vi ∈ V and the corresponding substrings A(vi), B(vi) of A and B . Moreover, let {vi, v j}, {vi, vh},
{vi, vz} ∈ E be the three edges of G incident on vi and consider the corresponding substrings A({vi, v j}), A({vi, vh}),
A({vi, vz}) (B({vi, v j}), B({vi, vh}), B({vi, vz}), respectively), of A (of B , respectively). Informally, the reduction shows that
there are essentially two possible configurations (called I-configuration and C-configuration) of the substring B∗(vi) (and
possibly B∗({vi, v j}), B∗({vi, vh}) and B∗({vi, vz})) of a filling B∗ of B . A substring B∗(vi) having an I-configuration is
related to the vertex vi in an independent set of G , while a substring B∗(vi) having a C-configuration is related to the
vertex vi in a vertex cover of G . We define now the two possible configurations. An I-configuration for the substrings
B∗(vi), B∗({vi, v j}), B∗({vi, vh}) and B∗({vi, vz}) is defined as follows:

• B∗(vi) = B(vi) (hence there is no insertion in B(vi)).
• For each {vi, vt}, with t ∈ { j, h, z}, where {vi, vt} is the p-th edge incident on vi , 1 ≤ p ≤ 3, and the q-th edge incident

on vt , 1 ≤ q ≤ 3, B∗({vi, vt}) = xi,p x j,qxi,p (hence xi,p is inserted in B(vi)).

If B∗(vi), B∗({vi, v j}), B∗({vi, vh}), B∗({vi, vz}) have an I-configuration, a longest common subsequence of B∗(vi) and
A(vi) has length three (it matches the positions containing xi,1, xi,2, xi,3), and a longest common subsequence of A({vi , vt})
and B∗({vi, vt}), with t ∈ { j, h, z}, has length two (it matches the positions containing xi,p , x j,q).

A C-configuration for the substring B∗(vi) is defined as follows:

• B∗(vi) = xi,1xi,2xi,3 yi,1 yi,2xi,1xi,2xi,3 (hence B∗(vi) = B(vi) · xi,1xi,2xi,3).

If B∗(vi) has a C-configuration, a longest common subsequence of B∗(vi) and A(vi) has length five, it matches the
positions containing yi,1, yi,2, xi,1, xi,2, xi,3.

Next, we present the main lemmata of this section.

Lemma 4. Let G be a cubic graph, instance of Max-ISC, and let (A, B, M) be the corresponding instance of 2-LFCS . Then, given an
independent set I of G of size k, we can compute in polynomial time a solution B∗ of 2-LFCS over instance (A, B, M) inducing a
longest common subsequence with A of length 4(m + n − 1) + 6|I| + 5|V \ I| + |E|.

Proof. Consider an independent set I of G and the corresponding instance (A, B, M) of 2-LFCS . Define a solution B∗

of 2-LFCS over instance (A, B, M) as follows. For each vi ∈ I , where {vi, v j}, {vi, vh}, {vi, vz} ∈ E are the three edges of
G incident on vi , define an I-configuration for B∗(vi), B∗({vi, v j}), B∗({vi, vh}), B∗({vi, vz}). For each vi ∈ V \ I , define a
C-configuration for B∗(vi). For each edge {vi, v j} ∈ E if vi, v j ∈ V \ I , then B∗({vi, v j}) = B({vi, v j}); notice that in this case
a longest common subsequence of A({vi, v j}) and B∗({vi, v j}) has length one, as it matches exactly one position containing
either xi,p or x j,q . Finally, each position of A in the substring S A,i , with 1 ≤ i ≤ m + n − 1, is matched by alignment with
the corresponding position of S B∗,i .

Notice that the solution B∗ is well-defined, as each B∗({vi, v j}), with {vi, v j} ∈ E , can belong to an I-configuration of at
most one of B∗(vi) and B∗(v j), since at most one of vi , v j belongs to I .

Now, consider a longest common subsequence S of A and B∗ . S matches 4(m + n − 1) positions in substrings S A,1,
. . . , S A,m+n−1, since all the positions of these substrings are matched and, by construction, the overall length of S A,1 , . . . ,
S A,m+n−1 is 4(m + n − 1). By definition of I-configuration for each vi ∈ I , S matches 3 positions of A(vi) and 2 positions of

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 277

each A({vi, v j}), with {vi, v j} ∈ E . By definition of C-configuration, for each vi ∈ V \ I , S matches 5 positions of A(vi); for
each {vi, v j} ∈ E , with vi, v j ∈ V \ I , S matches one position of A({vi, v j}). Hence, S matches 4(m + n − 1) + 6|I| + 5|V \
I| + |E| positions of A and B∗ . !

Based on Lemma 3, we can prove the following result.

Lemma 5. Let G be a cubic graph, instance of Max-ISC, and let (A, B, M) be the corresponding instance of 2-LFCS . Then, given a
solution B∗ of 2-LFCS over instance (A, B, M) of length 4(m + n − 1) + 6p + 5(|V | − p) + |E|, we can compute in polynomial
time an independent set of G of size at least p.

Proof. Given an instance B∗ of 2-LFCS over instance (A, B, M), by Lemma 3 we can assume that each position of A in
the substring S A,i is matched by alignment with a position in the substring S B,i of a solution B∗ . Hence, it follows that the
positions of A(vi) can be matched only with positions of B∗(vi) and that the positions of A({vi, v j}) can be matched only
with positions of B∗({vi, v j}).

Now, assume that there exist two subsequences in B∗ , say B∗(vi) and B∗(v j), that are both equal to B(vi) and B(v j)
(that is no position of A(vi) and A(v j) is matched by insertion), where {vi, v j} ∈ E . Moreover, let {vi, v j} be the p-th
edge incident on vi and the q-th on v j , 1 ≤ p, q ≤ 3. By construction, since A({vi, v j}) has length 2, a longest common
subsequence of A and B∗ can match at most two positions of A({vi, v j}) (with positions of B∗({vi, v j})). We can compute
a solution B ′ of 2-LFCS over instance (A, B, M), such that B ′ induces with A a longest common subsequence not shorter
than that induced by B∗ with the following properties: at least one of B ′(vi), B ′(v j) is associated with a C-configuration,
assume w.l.o.g. B ′(vi), while B ′(v j) has an I-configuration. It follows that B ′(vi) = xi,1xi,2xi,3 yi,1 yi,2xi,1xi,2xi,3, and 5 posi-
tions of A(vi) are matched with 5 positions of B ′(vi) (notice that at most 3 positions of A(vi) are matched with 3 positions
of B∗(vi) since B∗(vi) is identical to B(vi)). Notice that both positions of A({vi, v j}) can be matched with positions of
B ′({vi, v j}): by alignment the position having value xi,p and by insertion the position having value x j,q (due to the I-
configuration of B ′(v j)). The number of positions matched by a longest common subsequence of A and B ′ with respect to a
longest common subsequence of A and B∗ is decreased by at most 1 for each of the substring A({vi, vh}) and A({vi, vz}),
with {vi, vh}, {vi, vz} ∈ E , and it is increased by at least 2, for A(vi). Hence, in the following we can assume that if B∗(vi)
and the substrings of B∗ associated with the edges incident in vi have an I-configuration, then for each {vi, v j} ∈ E , B∗(v j)
has a C-configuration.

We can assume that if B∗(vi) has not an I-configuration, then B∗(vi) has a C-configuration. Indeed, in a C-configuration
of B∗(vi), each position where a symbol xi,t , with 1 ≤ t ≤ 3, is inserted is matched by insertion and this implies that the
number of matched positions in a longest common subsequence of A(vi) and B∗(vi) (with a C-configuration) is 5. Any
other filling B∗(vi), B∗({vi, v j}), B∗({vi, vh}), B∗({vi, vz}), different from an I-configuration and a C-configuration, can match
either: (1) at most two positions with symbols yi,t , 1 ≤ t ≤ 2, of A(vi) and at most three with symbols xi,t , 1 ≤ t ≤ 3,
in {A(vi), A({vi, v j}), A({vi, vh}), A({vi, vz})} or (2) by alignment at most three positions with symbols xi,t , 1 ≤ t ≤ 3, of
A(vi), and at most two positions by insertion with symbols xi,t , 1 ≤ t ≤ 3, of {A({vi, v j}), A({vi, vh}), A({vi, vz})}, otherwise
it is I-configuration. Hence the number of matched positions containing symbols yi,t , 1 ≤ t ≤ 2, and xi,t , 1 ≤ t ≤ 3, is not
increased with respect to a C-configuration.

Then, we can define an independent set of the graph G as follows:

I = {v : i ∈ I : B∗(vi) has an I-configuration}
Since we have shown that if B∗(vi) and the substrings of B∗ associated with the edges incident in vi have an I-

configuration, then for each {vi, v j} ∈ E , B∗(v j) has a C-configuration, it follows that I is an independent set. A longest
common subsequence S of A and B∗ matches 4(m + n − 1) positions in sequences S A,1, . . . , S A,m+n−1; for each B∗(vi)
associated with an I-configuration, S matches 3 positions of A(vi) and 2 positions of each A({vi, v j}), with {vi, v j} ∈ E;
for each B∗(vi) associated with a C-configuration, S matches 5 positions of A(vi). Finally, S matches 1 position for each
A({vi, vt}) not included in an I-configuration. It follows that |I| ≥ p. !

By Lemmata 4 and 5, and by the APX-hardness of Max-ISC [19] we can conclude that the 2-LFCS problem is APX-hard.

Theorem 6. 2-LFCS is APX-hard.

Proof. By Lemma 4 and Lemma 5, and since in a cubic graph |E| = 3
2 |V | and |I| ≥ 1

4 |V |, it follows that we have de-
signed and L-reduction from Max-ISC to 2-LFCS (see [20]). Since Max-ISC is APX-hard [19], it follows that 2-LFCS is
APX-hard. !

4. Approximating LFCS

In this section we give a polynomial-time approximation algorithm for LFCS of factor 3
5 . The approximation algo-

rithm picks the largest number of matched positions returned by two polynomial-time algorithms, Approx-Algorithm-1 and

Aaron
a polynomial-time approximation algorithm for LFCS of factor 35

278 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

Fig. 3. The input sequence A and the positions matched by solution R1 (dashed) and by solution R2 (in gray). In the upper part, brackets represent the
subsets R1,a and R1,i of R1, and R2,a and R2,i of R2. In the lower part, the brackets represent the positions matched by O P T .

Approx-Algorithm-2. Notice that each algorithm does not return a filling of B with M, but two disjoint subsets of positions
of A that have to be matched by alignment and by insertion, respectively, by a subsequence of A and of a filling of B with
M. We can easily compute in polynomial time a filling B∗ of B with M so that there exists a common subsequence of A
and B∗ that matches these two subsets of positions.

Both algorithms consist of two phases.

Approx-Algorithm-1 In the first phase, Approx-Algorithm-1 computes in polynomial time a longest common subsequence
of A and B . Denote by R1,a the positions of A matched by alignment in the first phase and by A′ the subsequence
of A obtained by removing the positions of R1,a . The second phase greedily computes in polynomial time a set R1,i
of positions of A′ of maximum size that matches M by insertion, applying Algorithm 1 on (A′, M). Denote by R1 =
R1,a ∪ R1,i the set of positions returned by Approx-Algorithm-1.

Approx-Algorithm-2 In the first phase, Approx-Algorithm-2 computes a subset R2,i of positions of A of maximum size
that matches M by insertion by applying Algorithm 1 on (A, M). Denote by A′′ the subsequence of A obtained by
removing the positions of R2,i . The second phase computes a longest common subsequence of B and A′′; denote by
R2,a the set of positions of A′′ (and A) matched by this phase. Denote by R2 = R2,a ∪ R2,i the set of positions returned
by Approx-Algorithm-2.

Next, we show that the maximum number of positions matched by one of Approx-Algorithm-1 and Approx-Algorithm-2
gives a 3

5 -approximated solution. First, we introduce some notations (see Fig. 3). Let Bopt be an optimal solution of LFCS
on instance (A, B, M) (Bopt is a filling of B with M), and let O P T be a longest common subsequence of A and Bopt . We
consider the following sets of positions of O P T . Denote by O P Ta the set of positions of A matched by alignment in O P T
and by O P Ti the set of positions of A matched by insertion in O P T . Notice that by construction it holds O P Ta ∩ O P Ti = ∅.

Define O P Ta,o = O P Ta ∩ (R1,a ∪ R2,i) and O P Ti,o = O P Ti ∩ (R1,a ∪ R2,i). Informally, O P Ta,o (O P Ti,o , respectively) is
the set of positions of A matched in the first phase of Approx-Algorithm-1 or Approx-Algorithm-2 that are matched by
alignment (by insertion, respectively) in O P T .

Define O P Ta,e = O P Ta \ O P Ta,o and O P Ti,e = O P Ti \ O P Ti,o . Finally, define O P T ′
i,o = O P Ti,o \ R1,a and O P T ′

a,o =
O P Ta,o \ R2,i .

By definition of O P T , O P Ta,o , O P Ti,o , O P Ta,e and O P Ti,e , it holds |O P T | = |O P Ta,o| + |O P Ta,e| + |O P Ti,o| + |O P Ti,e|.
We will show that the largest of R1 and R2 gives a 3

5 -approximate solution, that is max(|R1|, |R2|) ≥ 3
5 |O P T |. We start

by showing two bounds on O P Ti and O P Ta .

Lemma 7. |R1,a| ≥ |O P Ta| and |R2,i | ≥ |O P Ti |.

Proof. First, we prove that |R1,a| ≥ |O P Ta|. Consider the set of positions in O P Ta . Since each position in O P Ta is a position
of A matched by alignment, it follows that the set O P Ta induces a common subsequence of A and B . Since the set R1,a of
positions of A induces a longest common subsequence of A and B , it follows that |R1,a| ≥ |O P Ta|.

Now, we prove that |R2,i| ≥ |O P Ti |. Consider the set of positions in O P Ti . Each position in O P Ti is matched by insertion,
hence it is matched with an inserted symbol of M. By Lemma 1, R2,i is a set of positions of A of maximum cardinality
that can be matched by insertion with symbols of M, hence |R2,i | ≥ |O P Ti |. !

As a consequence of Lemma 7, it follows that |R1,a| + |R2,i | ≥ |O P Ti | + |O P Ta| ≥ |O P T |. Hence the maximum of |R1|,
|R2| is (at least) 1

2 |O P T |. In the following, we show with a more refined analysis that the maximum of |R1|, |R2| is at least
3
5 |O P T |.

We start by proving some bounds on |R1,i | and |R2,a|, then we consider three cases depending on the values of |O P Ta,o|,
|O P Ti,o|, |O P Ta,e|, |O P Ti,e|, |O P T ′

i,o| and |O P T ′
a,o|. First, the following result holds.

Aaron
each algorithm does not return a filling of B with M, but two disjoint subsets of positions of A that have to be matched by alignment and by insertion

Aaron
a longest common subsequence of A and B

Aaron
applying Algorithm 1 on (A′,M)

Aaron
applying Algorithm 1 on (A,M)

Aaron
a longest common subsequence

Aaron
先找alignment後找insertion

Aaron
先找insertion後找alignment

Aaron
35-approximated solution

Aaron
|OPT|=|OPTa,o|+|OPTa,e|+|OPTi,o|+|OPTi,e|

Aaron
max(|R1|,|R2|)≥ 35|OPT|

Aaron
first phase

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 279

Lemma 8. |R1,i | ≥ |O P T ′
i,o| + |O P Ti,e| and |R2,a| ≥ |O P T ′

a,o| + |O P Ta,e|.

Proof. We start by showing that |R1,i | ≥ |O P T ′
i,o| +|O P Ti,e|. Consider the subsequences of A′ obtained by removing the set

of positions R1,a matched in the first phase of Approx-Algorithm-1. By Lemma 1, R1,i is a set of positions of A′ of maximum
cardinality matched by insertion with M. Since O P T ′

i,o , O P Ti,e are disjoint and O P T ′
i,o ∪ O P Ti,e is a set of positions of A′

matched by insertion, the first part of the lemma follows.
Now, we show that |R2,a| ≥ |O P T ′

a,o| + |O P Ta,e|. Consider the subsequence A′′ obtained from A by removing the set
R2,i of positions matched by insertion in the first phase of Approx-Algorithm-2. Since by construction O P T ′

a,o , O P Ta,e are
disjoint and O P T ′

a,o ∪ O P Ta,e is a set of positions of A′′ matched by alignment by a subsequence of A and Bopt , and since
by construction R2,a is a set of positions of A′′ of maximum size matched by alignment with positions of B , the second
part of the lemma follows. !

Now, in the analysis of the approximation factor of Approx-Algorithm-1 and Approx-Algorithm-2, we consider three
cases, depending on the values of O P Ti,e , O P Ti,o , O P T ′

i,o .

Case 1.
Assume that |O P Ti,e| + |O P T ′

i,o| ≥ 1
2 |O P Ti,o|, we show the following result.

Lemma 9. Assume that |O P Ti,e| + |O P T ′
i,o| ≥ 1

2 |O P Ti,o|, then |R1| ≥ 3
5 |O P T |.

Proof. By Lemma 8 it holds that |R1,i | ≥ |O P T ′
i,o| + |O P Ti,e|, hence

|R1,a| + |R1,i| ≥ |R1,a| + |O P T ′
i,o| + |O P Ti,e| ≥

3
5
(|R1,a| + |O P Ti,e|) + 2

5
(|R1,a| + |O P Ti,e|) + |O P T ′

i,o|.

By Lemma 7 it follows that |R1,a| ≥ |O P Ta| and, since |O P Ta| = |O P Ta,o| + |O P Ta,e|, it follows that |R1,a| ≥ |O P Ta,o| +
|O P Ta,e|, hence

3
5
(|R1,a| + |O P Ti,e|) + 2

5
(|R1,a| + |O P Ti,e|) + |O P T ′

i,o| ≥
3
5
(|O P Ta,o| + |O P Ta,e| + |O P Ti,e|) + 2

5
(|R1,a| + |O P Ti,e|) + |O P T ′

i,o|.

Hence, it holds

|R1,a| + |R1,i| ≥
3
5
(|O P Ta,o| + |O P Ta,e| + |O P Ti,e|) + 2

5
(|R1,a| + |O P Ti,e|) + |O P T ′

i,o|. (1)

Notice that |R1,a| + |O P T ′
i,o| ≥ |O P Ti,o|, since, by construction, each position in O P Ti,o is either in O P T ′

i,o or in R1,a . Then,

2
5
(|R1,a| + |O P T ′

i,o|) ≥ 2
5
|O P Ti,o|. (2)

Since we are assuming that |O P Ti,e| + |O P T ′
i,o| ≥ 1

2 |O P Ti,o|, it holds

2
5
(|O P Ti,e| + |O P T ′

i,o|) ≥ 1
5
|O P Ti,o|. (3)

Combining Inequalities 2 and 3 with Inequality 1, we can conclude that, under the hypothesis |O P Ti,e| + |O P T ′
i,o| ≥

1
2 |O P Ti,o|, it holds

|R1,a| + |R1,i| ≥
3
5
(|O P Ta,o| + |O P Ta,e| + |O P Ti,e|) + 2

5
(|R1,a| + |O P Ti,e|) + |O P T ′

i,o| ≥
3
5
(|O P Ta,o| + |O P Ta,e| + |O P Ti,e|) + 2

5
(|R1,a| + |O P T ′

i,o|) + 2
5
(|O P Ti,e| + |O P T ′

i,o|) ≥
3
5
(|O P Ta,o| + |O P Ta,e| + |O P Ti,o| + |O P Ti,e|).

It follows that, under the hypothesis |O P Ti,e| + |O P T ′
i,o| ≥ 1

2 |O P Ti,o|, it holds |R1| ≥ 3
5 |O P T |. !

Aaron

Aaron

280 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

Case 2.
Assume that |O P Ta,e| + |O P T ′

a,o| ≥ 1
2 |O P Ta,o|. Similarly to Case 1, we can prove the following result.

Lemma 10. Assume that |O P Ta,e| + |O P T ′
a,o| ≥ 1

2 |O P Ta,o|, then |R2| ≥ 3
5 |O P T |.

Proof. By Lemma 8 it follows that |R2,a| ≥ |O P T ′
a,o| + |O P Ta,e|, hence it holds

|R2| = |R2,i| + |R2,a| ≥ |R2,i| + |O P T ′
a,o| + |O P Ta,e| ≥

3
5
(|R2,i| + |O P Ta,e|) + 2

5
(|R2,i| + |O P Ta,e|) + |O P T ′

a,o|.

By Lemma 7, it follows that |R2,i | ≥ |O P Ti | and, since |O P Ti | = |O P Ti,o| + |O P Ti,e|, it follows that |R2,i | ≥ |O P Ti,o| +
|O P Ti,e|, hence

3
5
(|R2,i| + |O P Ta,e|) + 2

5
(|R2,i| + |O P Ta,e|) + |O P T ′

a,o| ≥

3
5
(|O P Ti,o| + |O P Ti,e| + |O P Ta,e|) + 2

5
(|R2,i| + |O P Ta,e|) + |O P T ′

a,o|.

Hence, the following inequality holds:

|R2,i| + |R2,a| ≥
3
5
(|O P Ti,o| + |O P Ti,e| + |O P Ta,e|) + 2

5
(|R2,i| + |O P Ta,e|) + |O P T ′

a,o|. (4)

By construction |R2,i | + |O P T ′
a,o| ≥ |O P Ta,o|, since each position of O P Ta,o is either in R2,i or in O P T ′

a,o . Then,

2
5
(|R2,i| + |O P T ′

a,o|) ≥ 2
5
|O P Ta,o|. (5)

Since we are assuming that |O P T ′
a,o| + |O P Ta,e| ≥ 1

2 |O P Ta,o|, it holds

2
5
(|O P T ′

a,o| + |O P Ta,e|) ≥ 1
5
|O P Ta,o|. (6)

Combining Inequalities 5, 6 with Inequality 4, we can conclude that, under the hypothesis |O P T ′
a,o| + |O P Ta,e| ≥

1
2 |O P Ta,o|, it holds

|R2,i| + |R2,a| ≥
3
5
(|O P Ti,o| + |O P Ti,e| + |O P Ta,e|) + 2

5
(|R2,i| + |O P Ta,e|) + |O P T ′

a,o| ≥

3
5
(|O P Ti,o| + |O P Ti,e| + |O P Ta,e|) + 2

5
(|R2,i| + |O P T ′

a,o|) + 2
5
(|O P Ta,e| + |O P T ′

a,o|) ≥

3
5
(|O P Ti,o| + |O P Ti,e| + |O P Ta,e| + |O P Ta,o|).

It follows that, under the hypothesis |O P T ′
a,o| + |O P Ta,e| ≥ 1

2 |O P Ta,o|, it holds |R2| ≥ 3
5 |O P Ta,o|. !

Case 3.
Assume that both Case 1 and Case 2 do not hold. Then,

|O P Ti,e| + |O P T ′
i,o| <

1
2
|O P Ti,o| and |O P Ta,e| + |O P T ′

a,o| <
1
2
|O P Ta,o|.

Since |O P Ti,e| + |O P T ′
i,o| < 1

2 |O P Ti,o|, it follows that |O P Ti,e| < 1
2 |O P Ti,o| and, since |O P Ta,e| + |O P T ′

a,o| < 1
2 |O P Ta,o|, it

follows that |O P Ta,e| < 1
2 |O P Ta,o|. But then, since |O P T | = |O P Ta,o| + |O P Ti,o| + |O P Ta,e| + |O P Ti,e|, it follows that

|O P T | ≤ 3
2
(|O P Ta,o| + |O P Ti,o|)

We show that |R1| ≥ |O P Ta,o| + |O P Ti,o|, thus implying that |R1| ≥ 3
5 |O P T |.

Lemma 11. |R1,a ∪ R1,i | ≥ |O P Ta,o| + |O P Ti,o|.

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 281

Proof. Consider the sequence A′ obtained by removing the set R1,a of matched positions in the first phase of Approx-
Algorithm-1. Now, consider the position of R2,i . It follows that the positions of R2,i \ R1,a belongs to A′ and thus can be
aligned by insertion in the second phase of Approx-Algorithm-1. Since R1,i is a set of positions of A′ having maximum size
that matches (by insertion) M, it holds |R1,i | ≥ |R2,i \ R1,a|, and, since R1,a ∩ R1,i = ∅, it holds |R1,a ∪ R1,i | ≥ |R1,a ∪ R2,i |.
By construction |R1,a ∪ R2,i | ≥ |O P Ta,o| + |O P Ti,o|, hence |R1,a ∪ R1,i | ≥ |O P Ta,o| + |O P Ti,o|. !

By Lemma 11, |R1,a ∪ R1,i | ≥ |O P Ta,o| +|O P Ti,o|. Since in this case we have shown that |O P T | ≤ 3
2 (|O P Ta,o| +|O P Ti,o|),

it follows that |R1| = |R1,a ∪ R1,i | ≥ 2
3 |O P T | ≥ 3

5 |O P T |. From Lemma 9, Lemma 10 and Lemma 11, it follows the main result
of this section.

Theorem 12. Given an instance (A, B, M) of LFCS , the largest solution returned by Approx-Algorithm-1 and Approx-Algorithm-2
is an approximate solution of factor 3

5 .

Proof. From Lemma 9, Lemma 10 and Lemma 11, it follows that max(|R1|, R2|) ≥ 3
5 |O P T |.

We can compute a filling B1 of B with M that matches at least |R1| positions with A as follows: we consider the
positions in R1,a as matched by alignment, we insert symbols of M in B in order to match by insertion the positions in
R1,i . It follows that a longest common subsequence of A and B1 matches at least |R1| positions.

Similarly, we can compute a filling B2 of B with M that matches at least |R2| positions of A. We insert symbols of
M in B so that the positions in R1,i are matched by insertion. Consider the subsequence A′′ obtained after the removal
of positions in R1,i ; a longest common subsequence of A′′ and B matches at least |R2,a| positions. It follows that a longest
common subsequence of A and B2 matches at least |R2| positions. !

5. Exact algorithms

In this section, we give two exact algorithms for LFCS . First, we present an FPT algorithm for LFCS parameterized
by the number k of positions of A matched by insertions. Then, we give an algorithm for LFCS when the alphabet has
constant size. The two algorithms are similar and both based on dynamic programming.

Here we assume that the input sequences A and B have been extended by adding two symbols $A, $B /∈ !, respectively,
in position 0 of A and B , respectively. Hence we assume that position 0 of A and of a filling B∗ of B with M is not matched
by alignment or by insertion by any solution of LFCS of length greater than zero.

5.1. An FPT algorithm

The algorithm we present is based on the color-coding technique [21]. Next, we present the definition of perfect families
of hash functions for a multiset of symbols, on which our color-coding approach is based.

Definition 13. Let M be a multiset of positions and let F be a family of hash functions from M to a set {c1, . . . , ck} of
colors. F is called perfect if for any subset W ⊆ M, such that |W | = k, there exists a function f ∈ F which is injective on
W .

A perfect family F of hash functions from M to {c1, . . . , ck}, having size O (log |M|2O (k)), can be constructed in time
O (2O (k)|M| log |M|) (see [21]).

Consider a perfect family of hash functions F : M → {c1, . . . , ck}. Let f ∈ F be an injective function, and define L[i, j, C, l],
with C ⊆ {c1, . . . , ck}, 0 ≤ i, l ≤ |A| and 0 ≤ j ≤ |B|, as follows:

• L[i, j, C, l] = 1 if and only if there exists a common subsequence of A[0, i] and of a filling B∗ of B[0, j] with M having
length l, such that there exist |C | symbols of M inserted in B[0, j], each one associated with a distinct color of C and
matched by insertion with a position of A

• else L[i, j, C, l] = 0.

Next, we define the recurrence to compute L[i, j, C, l], where i ≥ 1 and j ≥ 1.

L[i, j, C, l] = max

L[i − 1, j, C, l] if i ≥ 1
L[i, j − 1, C, l] if j ≥ 1
L[i − 1, j − 1, C, l − 1] if A[i] = B[j] and j ≥ 1
L[i − 1, j, C \ {c}, l − 1] if A[i] = α and there exists

α ∈ M with f (α) = c ∈ C

(7)

Aaron
dynamic programming

Aaron
two exact algorithms

Aaron
position 0 of A and B

Aaron
greater than zero

Aaron
color-coding technique

Aaron
from M to a set {c1,...,ck} of colors

Aaron
|W | = k

Aaron
O(log|M|2O(k)),

Aaron
O(2O(k)|M|log|M|)

Aaron
0≤i,l≤|A|

Aaron
0≤ j≤|B|

Aaron
a common subsequence of A[0,i] and of a filling B∗ of B[0, j] with M having length l

Aaron
|C| symbols of M

Aaron
不一樣 distinct

Aaron
A[i]=B[j]

Aaron
A[i]=αandthereexists α∈Mwith f(α)=c∈C

282 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

For the base case, since we have extended A and B so that position 0 in A and in the filling of B cannot be matched by
insertions or by alignment, it holds L[0, 0, C, l] = 1, if C = ∅ and l = 0, else L[0, 0, C, l] = 0. Next, we prove the correctness
of the recurrence.

Lemma 14. Let F : M → {c1, . . . , ck} be a perfect family of hash functions, let f ∈ F be an injective function and let C be a subset of
{c1, . . . , ck}. Then there exists a common subsequence of length l, l ≥ 0, of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|,
with M′ ⊆ M such that each symbol of M′ matched by insertion is associated with a distinct color in C if and only if L[i, j, C, l] = 1.

Proof. We prove the lemma by induction on i + j. By construction, the lemma holds in the base case, when i + j = 0, that
is i = 0 and j = 0. We assume that the lemma holds for i + j − 1, and we show that it holds for i + j.

First, consider a common subsequence having length l of A[0, i] and of a filling B[0, j], 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|,
with M′ ,= ∅, such that each symbol of M′ matched by insertion is associated with a distinct color in C , we prove that
L[i, j, C, l] = 1.

Assume that A[i] is not matched, or that it is matched by alignment with B[t], with t < j. In the former case, there exists
a length l common subsequence of A[0, i − 1] and of a filling of B[0, j], 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|, with M′ , such that each
symbol of M′ matched by insertion is associated with a distinct color in C , hence by induction hypothesis L[i −1, j, C, l] = 1
and thus, by the first case of Recurrence 7, it holds L[i, j, C, l] = 1. In the latter case, there exists a common subsequence
having length l of A[0, i] and of a filling of B[0, t], 0 ≤ i ≤ |A| and 0 ≤ t < j ≤ |B|, with M′ , such that each symbol of M′

matched by insertion is associated with a distinct color in C , hence by induction hypothesis L[i, t, C, l] = 1, with t < j, and
L[i, j − 1, C, l] = 1. By the second case of Recurrence 7 it follows that L[i, j, C, l] = 1.

Assume that A[i] is matched by alignment with B[j]. It follows that there exists a length l − 1 common subsequence of
A[0, i − 1] and of a filling of B[0, j − 1], 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|, with M′ , such that each symbol of M′ matched by
insertion is associated with a distinct color in C , hence by induction hypothesis L[i − 1, j − 1, C, l − 1] = 1. Since A[i] = B[j],
it follows by the third case of Recurrence 7 that L[i, j, C, l] = 1.

Now, consider the case that A[i] is matched by insertion with a symbol α ∈ M′ . By our assumption, α is associated
with a color c ∈ C and each symbol of M′ matched by insertion is associated with a distinct color in C . We distinguish
two cases. If A[i] is matched by insertion with a symbol inserted in B in position t < j, then by induction hypothesis there
exists a common subsequence having length l of A[0, i], 1 ≤ i ≤ |A|, and of a filling of B[0, j − 1], 0 ≤ j ≤ |B|, with M′

such that each symbol of M′ matched by insertion is associated with a distinct color in C . Hence, by induction hypothesis
L[i, j − 1, C, l] = 1 and by the second case of Recurrence 7 L[i, j, C, l] = 1. If A[i] is matched by insertion with a symbol
inserted in B in position j, then there exists a common subsequence having length l − 1 of A[0, i − 1], 1 ≤ i ≤ |A|, and of a
filling of B[0, j], 0 ≤ j ≤ |B|, with M′ \ {α}, such that each symbol of M′ \ {α} matched by insertion is associated with a
distinct color in C \ {c}. Hence, by induction hypothesis L[i − 1, j, C \ {c}, l − 1] = 1 and, since A[i] is matched by insertion
with a symbol α ∈ M′ associated with color c ∈ C , it follows by the fourth case of Recurrence 7 that L[i, j, C, l] = 1.

Now, we prove that if L[i, j, C, l] = 1 there exists a common subsequence having length l of A[0, i], 0 ≤ i ≤ |A|, and of a
filling of B[0, j], 0 ≤ j ≤ |B|, with M′ such that each symbol of M′ matched by insertion is associated with a distinct color
in C . First, assume that L[i − 1, j, C, l] = 1. Then, by induction hypothesis, there exists a length l common subsequence of
A[0, i − 1], 1 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|, with M′ , such that each position of A matched by insertion is
associated with a distinct color in C . Then, the same result holds also for A[0, i], B[0, j] and M′ , such that each symbol of
M′ matched by insertion is associated with a distinct color of C . A similar proof holds when L[i, j − 1, C, l].

Assume that L[i − 1, j − 1, C, l − 1] = 1, with A[i] = B[j]. Then, by induction hypothesis, there exists a common subse-
quence having length l − 1 of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|, with M′ , such that each symbol of
M′ matched by insertion is associated with a distinct color in C . Then, by defining a match by alignment between position
i in A and position j in B , there exists a length l common subsequence of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j],
0 ≤ j ≤ |B|, with M′ such that each symbol of M′ matched by insertion is associated with a distinct color in C .

Finally, assume that L[i − 1, j, C \ {c}, l − 1], with A[i] = α, such that there exists α ∈ M′ associated with color c ∈ C . By
induction hypothesis there exists a common subsequence having length l −1 of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j],
0 ≤ j ≤ |B|, with M′ , such that each symbol of M′ matched by insertion is associated with a distinct color in C \ {c}. Then,
by defining for position i of A a match by insertion with c ∈ C , it follows that there exists a common subsequence having
length l − 1 of A[0, i], 1 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|, with M′ , such that each symbol of M′ matched by
insertion is associated with a distinct color in C . !

Now, we are able to prove the main result of this section.

Theorem 15. Let A, B be two sequences and M a multiset of symbols. Then it is possible to compute in time 2O (k)poly(|A| + |B| +
|M|) if there exists a solution B∗ of LFCS over instance (A, B, M) such that a longest common subsequence S of A and B∗ has
length l and it matches by insertion k positions of A.

Proof. The correctness of the algorithm follows from Lemma 14 and from the fact that entry L[|A|, |B|, C, l] = 1 if and only
if there exists a solution of LFCS over instance (A, B, M) having length l that matches by insertion k positions of A.

Aaron
it holds L[0,0,C,l] = 1, if C = ∅ and l = 0, else L[0,0,C,l] = 0

Aaron
a common subsequence of length l

Aaron
M′ matched by insertion is associated with a distinct color in C

Aaron
a longest common subsequence S of A and B∗ has length l and it matches by insertion k positions of A.

Aaron
L[i−1, j,C,l]=1

Aaron
A[i] is not matched

Aaron
it is matched by alignment with B[t]

Aaron
L[i,t,C,l] = 1

Aaron
L[i,j−1,C,l]=1

Aaron
A[i] is matched by alignment with B[j]

Aaron
L[i−1,j−1,C,l−1]=1

Aaron
1

Aaron
2

Aaron
4

Aaron
currence 7 that L[i, j,C,l]=1. ′

Aaron
3

Aaron
α is associated with a color c ∈ C and each symbol of M′ matched by insertion is associated with a distinct color in C

Aaron
L[i, j − 1,C,l] = 1

Aaron
L[i−1,j,C\{c},l−1]=1

Aaron
t < j

Aaron
position j

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 283

Next, we consider the time complexity of the algorithm. A perfect family of hash functions that color-codes the symbols
of M can be computed in time 2O (k) poly(|M|). Then, the algorithm iterates through 2O (k) poly(|M|) color-codings. For
each color-coding, the table L[i, j, C, l] is computed in time O (2k|A|2|B|k) (since l ≤ |A|), since for each of the 2k|A|2|B|
entries we need to look for at most k possible entries. The overall complexity is then 2O (k) poly(|A| + |B| + |M|). !

5.2. A polynomial-time algorithm for constant-size alphabet

In this subsection, we give a polynomial-time algorithm for LFCS when the alphabet ! = {α1, . . . , αd}, for some con-
stant d. We denote this restriction of the LFCS problem by LFCS(d). We assume that the number of occurrences in M
of each symbol of ! is bounded by |A|, as at most |A| insertion can lead to a match by insertion.

Similarly to the previous subsection, define L[i, j, l, a1, . . . , ad], with 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B|, as a function equal to 1 if
there exists a common subsequence of length l of A[0, i] and of a filling of B[0, j] with at , 1 ≤ t ≤ d, occurrences of symbol
αt and M contains at least at occurrences of symbol αt . The recurrence to compute function L is defined as follows:

L[i, j, l,a1, . . . ,ad] = max

L[i − 1, j, l,a1, . . . ,ad] if i ≥ 1
L[i, j − 1, l,a1, . . . ,ad] if j ≥ 1
L[i − 1, j − 1, l − 1,a1, . . . ,ad] + 1 if A[i] = B[j]

and i, j ≥ 1
L[i − 1, j, l − 1,b1, . . . ,bd] if A[i] = αt , 1 ≤ t ≤ d,

bi = ai with i ,= t,
bt = at − 1 and
M contains at

occurrences of αt

(8)

In the base case, that is when i = 0 and j = 0, it holds L[0, 0, l, a1, . . . , ad] = 1, if and only if l = 0 and ai = 0, with
1 ≤ i ≤ d.

Next, we prove the correctness of the recurrence.

Lemma 16. Let A, B be two sequences and let M be a multiset of symbols. Then there exists a common subsequence of A[1, i] and of a
filling of B[1, j] having length l where ai , with 1 ≤ i ≤ d, occurrences of symbol αi are inserted in B if and only if L[i, j, l, a1, . . . , ad] =
1.

Proof. We prove the lemma by induction on i + j. By construction, the lemma holds in the base case, when i + j = 0, that
is i = 0 and j = 0. We assume that the lemma holds for i + j − 1, and we show that it holds for i + j.

Consider a common subsequence having length l of A[0, i] and of a filling B[0, j], 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|, with ai
inserted occurrences of symbol αi , with 1 ≤ i ≤ d, we prove that L[i, j, l, a1, . . . , ad] = 1.

Assume that A[i] is not matched, or that it is matched by alignment with B[t], with t < j. In the former case, there
exists a length l common subsequence of A[0, i − 1] and of a filling of B[0, j], 0 ≤ i ≤ |A| and 0 ≤ j ≤ |B|, with ai inserted
occurrences of symbol αi , with 1 ≤ i ≤ d. By induction hypothesis L[i − 1, j, l, a1, . . . , ad] = 1 and thus by the first case of
Recurrence 8, it holds L[i − 1, j, l, a1, . . . , ad] = 1. In the latter case, there exists a common subsequence having length l of
A[0, i] and of a filling of B[0, t], 0 ≤ i ≤ |A| and 0 ≤ t < j ≤ |B|, with ai inserted occurrences of symbol αi , with 1 ≤ i ≤ d. By
induction hypothesis L[i, j −1, l, a1, . . . , ad] = 1 and by the second case of Recurrence 8 it follows that L[i, j, l, a1, . . . , ad] = 1.

Assume that A[i] is matched by alignment with B[j]. Then, there is a common subsequence of A[0, i − 1] and of a filling
of B[0, j −1] with ai inserted occurrences of symbol αi , with 1 ≤ i ≤ d. By induction hypothesis L[i −1, j −1, l, a1, . . . , ad] =
1. Since A[i] = B[j], it follows by the third case of Recurrence 8 that L[i, j, l, a1, . . . , ad] = 1.

Now, consider the case that A[i] is matched by insertion with a symbol αi ∈ M′ . We distinguish two cases. If A[i] is
matched by insertion with a symbol inserted in B in position t < j, then by induction hypothesis there exists a common
subsequence having length l of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j − 1], 0 ≤ j ≤ |B|, with ai inserted occurrences of
symbol αi , with 1 ≤ i ≤ d. Hence, by induction hypothesis L[i, j −1, l, a1, . . . , ad] = 1 and by the second case of Recurrence 8
L[i, j, l, a1, . . . , ad] = 1.

If A[i] is matched by insertion with a symbol αt inserted in B in position j, then there exists a common subsequence of
A[0, i − 1], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|, with ai inserted occurrences of symbol αi , with 1 ≤ i ≤ d, that
has length l − 1. Hence, by induction hypothesis L[i − 1, j − 1, l − 1, b1, . . . , bd] = 1, where bi = ai , with t ,= i, and bt = at − 1.
It follows by the fourth case of Recurrence 8 that L[i, j, l, a1, . . . , ad] = 1.

Now, we prove that if L[i, j, l, a1, . . . , ad] = 1 there exists a common subsequence having length l of A[0, i], 0 ≤ i ≤ |A|,
and of a filling of B[0, j], 0 ≤ j ≤ |B|, with ai inserted occurrences of symbol αi , with 1 ≤ i ≤ d.

First, assume that L[i − 1, j, l, a1, . . . , ad] = 1. By induction hypothesis, there exists a length l common subsequence of
A[0, i − 1], 1 ≤ i ≤ |A|, (hence of A[0, i]) and of a filling of B[0, j], 0 ≤ j ≤ |B|, with ai inserted occurrences of symbol αi ,
with 1 ≤ i ≤ d. A similar proof holds when L[i, j − 1, l, a1, . . . , ad] = 1.

Aaron
2O(k)poly(|M|)

Aaron
O(2k|A|2|B|k)

Aaron
2O(k)poly(|A|+|B|+|M|)

Aaron
={α1,...,αd}

Aaron
A[i]=B[j]

Aaron
when i=0 and j=0, it holds L[0,0,l,a1,...,ad]=1, if and only if l=0 and ai =0

Aaron
A[i] is not matched

Aaron
it is matched by alignment with B[t], with t < j

Aaron
1

Aaron
2

Aaron
L[i − 1, j,l,a1,...,ad] = 1

Aaron
L[i, j−1,l,a1,...,ad] = 1

Aaron
A[i] is matched by alignment with B[j].

Aaron
4

Aaron
3

Aaron
hat A[i] is matched by insertion with a symbol αi ∈ M′

Aaron
t < j

Aaron
L[i, j−1,l,a1,...,ad]=1

Aaron
position j

Aaron
L[i−1, j−1,l−1,b1,...,bd]=1

284 M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285

Assume that L[i − 1, j − 1, l − 1, a1, . . . , ad] = 1, with A[i] = B[j]. Then, by induction hypothesis, there exists a common
subsequence having length l − 1 of A[0, i − 1], 0 ≤ i ≤ |A|, and of a filling of B[0, j − 1], 0 ≤ j ≤ |B|, with ai inserted
occurrences of symbol αi , with 1 ≤ i ≤ d. Then, by defining a match by alignment between position i in A and position j in
B , there exists a common subsequence having length l of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|, with ai
inserted occurrences of symbol αi , with 1 ≤ i ≤ d.

Finally, assume that L[i − 1, j, l − 1, b1, . . . , bd] = 1, with A[i] = αt , where bp = ap , with p ,= t , and at = bt + 1. By
induction hypothesis there exists a common subsequence having length l − 1 of A[0, i − 1], 0 ≤ i ≤ |A|, and of a filling of
B[0, j], 0 ≤ j ≤ |B|, with bi inserted occurrences of symbol αi , with 1 ≤ i ≤ d. Then, by defining for position i of A a match
by insertion with αt , it follows that there exists a common subsequence having length l of A[0, i], 1 ≤ i ≤ |A|, and of a
filling of B[0, j], 0 ≤ j ≤ |B|, with ai inserted occurrences of symbol αi , with 1 ≤ i ≤ d. !

We can conclude that LFCS(d) is polynomial-time solvable.

Theorem 17. Let A, B be two sequences and M a multiset of symbols, where |!| = d. Then it is possible to compute in time
O (|A||d+2|B|) an optimal solution of LFCS(d).

Proof. An optimal solution of LFCS(d) can be computed with Recurrence 8, by computing the maximum value l such that
L[i, j, l, a1, . . . , ad] = 1, where each at , 1 ≤ t ≤ d, is at most the number of occurrences of αt in M. The time complexity
to compute each entry L[i, j, l, a1, . . . , ad] is constant (since d is a constant). The number of entries of L[i, j, l, a1, . . . , ad]
is |A|d+2|B|, since there exist at most |A|d values a1, . . . , ad , as each ai , with 1 ≤ i ≤ d, is bounded by the number of
occurrences of αi in A, hence by |A|, and l ≤ |A|. !

6. Conclusion

We have introduced a variant of the LCS problem, called Longest Filled Common Subsequence (LFCS), to compare a
sequence A with an incomplete sequence B to be filled with a multiset M of symbols. We have shown that the problem
is APX-hard (hence NP-hard), even when each symbol occurs at most twice in the input sequence A. Then, we have given
an approximation algorithm of factor 3

5 for the problem. Finally, we have given a fixed-parameter algorithm, where the
parameter is the number of symbols in M matched by insertion, and a polynomial-time algorithm when the size of the
alphabet ! is bounded by a constant.

There are some interesting open problems related to LFCS . It would be interesting to extend LFCS to the comparison
of two incomplete sequences, similar to what has been done for Scaffold Filling [15]. We conjecture that this extension
of LFCS can be also approximated within constant factor. Consider a longest common subsequence s1 of A and B and
a sequence s2 that maximizes the number of positions matched by insertion. We conjecture that the longest of s1 , s2 is
a 1

2 -approximated solution for the extension of LFCS to two incomplete sequences and that Lemma 7 holds also in this
case. Moreover, we conjecture that LFCS on two incomplete sequences can be solved in polynomial time for constant-size
alphabet, in particular by extending the recurrence of Section 5.2 adding occurrences of symbols that can be inserted into
A.

Moreover, it would be interesting to design more efficient parameterized algorithms for LFCS , for example by consid-
ering the algebraic technique used for the repetition-free longest common subsequence [10].

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgement

This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) by the project GADgET
(DSAIPA/DS/0022/2018). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research
core funding No. P5-0410).

References

[1] M. Castelli, R. Dondi, G. Mauri, I. Zoppis, The longest filled common subsequence problem, in: J. Kärkkäinen, J. Radoszewski, W. Rytter (Eds.), 28th An-
nual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland, in: LIPIcs, vol. 78, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017, pp. 14:1–14:13.

[2] T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, J. Mol. Biol. 147 (1) (1981) 195–197, https://doi .org /10 .1016 /0022 -
2836(81)90087 -5.

[3] T. Jiang, M. Li, On the approximation of shortest common supersequences and longest common subsequences, SIAM J. Comput. 24 (5) (1995)
1122–1139, https://doi .org /10 .1137 /S009753979223842X.

[4] A.N. Arslan, Ö. Egecioglu, Algorithms for the constrained longest common subsequence problems, Int. J. Found. Comput. Sci. 16 (6) (2005) 1099–1109.

http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F43617374656C6C69444D5A3137s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F43617374656C6C69444D5A3137s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F43617374656C6C69444D5A3137s1
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1137/S009753979223842X
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib41453035s1
https://doi.org/10.1016/0022-2836(81)90087-5
Aaron
O(|A||d+2|B|)

Aaron
APX-hard (hence NP-hard)

Aaron
a fixed-parameter algorithm

Aaron
alphabet is bounded by a constant

Aaron
We conjecture that the longest of s1, s2 is a 12-approximated solution for the extension of LFCS to two incomplete sequences

M. Castelli et al. / Theoretical Computer Science 796 (2019) 272–285 285

[5] P. Bonizzoni, G.D. Vedova, R. Dondi, Y. Pirola, Variants of constrained longest common subsequence, Inf. Process. Lett. 110 (20) (2010) 877–881.
[6] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constrained sequence problems, Inf. Process. Lett. 90 (4) (2004)

175–179.
[7] Z. Gotthilf, D. Hermelin, M. Lewenstein, Constrained LCS: hardness and approximation, in: Combinatorial Pattern Matching, 19th Annual Symposium,

CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings, 2008, pp. 255–262.
[8] Y. Tsai, The constrained longest common subsequence problem, Inf. Process. Lett. 88 (4) (2003) 173–176, https://doi .org /10 .1016 /j .ipl .2003 .07.001.
[9] S.S. Adi, M.D.V. Braga, C.G. Fernandes, C.E. Ferreira, F.V. Martinez, M. Sagot, M.A. Stefanes, C. Tjandraatmadja, Y. Wakabayashi, Repetition-free longest

common subsequence, Discrete Appl. Math. 158 (12) (2010) 1315–1324.
[10] G. Blin, P. Bonizzoni, R. Dondi, F. Sikora, On the parameterized complexity of the repetition free longest common subsequence problem, Inf. Process.

Lett. 112 (7) (2012) 272–276.
[11] P. Bonizzoni, G.D. Vedova, R. Dondi, G. Fertin, R. Rizzi, S. Vialette, Exemplar longest common subsequence, IEEE/ACM Trans. Comput. Biol. Bioinform.

4 (4) (2007) 535–543.
[12] C.E. Ferreira, C. Tjandraatmadja, A branch-and-cut approach to the repetition-free longest common subsequence problem, Electron. Notes Discrete

Math. 36 (2010) 527–534.
[13] P. Chain, et al., Genomics. Genome project standards in a new era of sequencing, Science 326 (2009) 236–237.
[14] A. Muñoz, C. Zheng, Q. Zhu, V.A. Albert, S. Rounsley, D. Sankoff, Scaffold filling, contig fusion and comparative gene order inference, BMC Bioinform.

11 (2010) 304, https://doi .org /10 .1186 /1471 -2105 -11 -304.
[15] N. Liu, H. Jiang, D. Zhu, B. Zhu, An improved approximation algorithm for scaffold filling to maximize the common adjacencies, IEEE/ACM Trans.

Comput. Biol. Bioinform. 10 (4) (2013) 905–913, https://doi .org /10 .1109 /TCBB .2013 .100.
[16] L. Bulteau, A.P. Carrieri, R. Dondi, Fixed-parameter algorithms for scaffold filling, Theor. Comput. Sci. 568 (2015) 72–83.
[17] B. Zhu, Genomic scaffold filling: a progress report, in: D. Zhu, S. Bereg (Eds.), Frontiers in Algorithmics, 10th International Workshop, FAW 2016,

Qingdao, China, June 30-July 2, 2016, Proceedings, in: Lecture Notes in Computer Science, vol. 9711, Springer, 2016, pp. 8–16.
[18] L. Bulteau, G. Fertin, C. Komusiewicz, Beyond adjacency maximization: scaffold filling for new string distances, in: J. Kärkkäinen, J. Radoszewski, W.

Rytter (Eds.), 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland, in: LIPIcs, vol. 78, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 27:1–27:17.

[19] P. Alimonti, V. Kann, Some APX-completeness results for cubic graphs, Theor. Comput. Sci. 237 (1–2) (2000) 123–134, https://doi .org /10 .1016 /S0304 -
3975(98)00158 -3.

[20] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and Approximation: Combinatorial Optimization Prob-
lems and Their Approximability Properties, Springer-Verlag, Heidelberg, 1999.

[21] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.

http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A47656E6572616C436F6E73747261696E656432303130s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A436F6E73747261696E656432303034s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A436F6E73747261696E656432303034s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F476F747468696C66484C3038s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F476F747468696C66484C3038s1
https://doi.org/10.1016/j.ipl.2003.07.001
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52464C43533A416469s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52464C43533A416469s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52657065746974696F6E4672656532303132s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52657065746974696F6E4672656532303132s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A4578656D706C61724C43533037s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A4578656D706C61724C43533037s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52464C43533A4665727265697261s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A52464C43533A4665727265697261s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib47656E6F6D6550726F6As1
https://doi.org/10.1186/1471-2105-11-304
https://doi.org/10.1109/TCBB.2013.100
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib6269623A4243443A53636166666F6C64696E67s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F6661772F5A68753136s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F6661772F5A68753136s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F42756C74656175464B3137s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F42756C74656175464B3137s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib44424C503A636F6E662F63706D2F42756C74656175464B3137s1
https://doi.org/10.1016/S0304-3975(98)00158-3
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib41757369656C6C6F2D4372657363656E7A69s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib41757369656C6C6F2D4372657363656E7A69s1
http://refhub.elsevier.com/S0304-3975(19)30566-3/bib416C6F6E3A5975737465723A5A7769636B3A31393935s1
https://doi.org/10.1016/S0304-3975(98)00158-3
Aaron
N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.

	Comparing incomplete sequences via longest common subsequence
	1 Introduction
	2 Preliminaries
	3 Complexity of LFCS
	4 Approximating LFCS
	5 Exact algorithms
	5.1 An FPT algorithm
	5.2 A polynomial-time algorithm for constant-size alphabet

	6 Conclusion
	Acknowledgement
	References

