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Abstract

　　Given a string S = a1a2a3
...an, the longest increasing 

subsequence (LIS) problem is to find a subsequence of S 
such that the subsequence is increasing and its length is 
maximum. In this paper, we propose and solve two variants 
of the LIS problem. The first one is the minimum height 
LIS where the height means the difference between the 
largest and smallest elements. We propose an algorithm 
with O(n log n) time and O(n) space for solving it. The 
second one is the sequence constrained LIS (SCLIS) that 
given a string S and a constraint C, we are to find the LIS of 
S containing C as its subsequence. We propose an algorithm
with O(n log(n+|C|)) time for solving it. And then we solve 
the SCLIS with preprocessing. We propose a preprocessing 
algorithm with O(n2 log log n) time on S so that with a 
given sequence of positions, we can answer the SCLIS 
query in O(|C|+|OUTPUT |) time where the constraint is the 
subsequence on the given positions of S.

Keywords:	Algorithm, Longest Increasing Subsequence, 
Height, Constraint.

1 Introduction

　　Given a  s t r ing S =a 1a 2a 3
. . .a n,  an  increasing 

subsequence (IS) is a subsequence [23] ai1
ai2

ai3
...aik

 that 
aip

 < aiq
 if ip < iq, for 1 ≤ p < q ≤ k. For example, consider 

S = 41573, three of its increasing subsequences are 13, 457 
and 157. The longest increasing subsequence (LIS) problem 
is to find the longest among all increasing subsequences. 
Note that the LIS of a given string may not be unique. For 
example, both 457 and 157 are LIS,s of S = 41573.
　　The LIS problem is interesting in both combinatorial 
perspective, such as pattern recognition, and biological 
applications. Delcher et al. [8] used LIS to help finding 
the whole genome alignment. A straightforward method 
of finding the LIS is to obtain the longest common 
subsequence of the input string and the sorted input string, 
with time complexity O(n2). Schensted [19] is the first one 
who defined the LIS problem and proposed an algorithm 
with O(n log n) time. Hunt and Szymanski [10] improved 
the algorithm to O(n log log n) time. And later, many papers 
[1][3-5][15][16][26] studied the LIS problem by using 
the van Emde Boas priority queue [22], which supports 
insertion, deletion, finding, predecessor, and successor 

operations in O(log log |∑|) time, where ∑ is the alphabet 
set of the input string. In LIS, if the input is an integer string 
where each integer is in {1, 2, 3,..., n}, then |∑| = n, and the 
LIS algorithm needs only O(n log log n) time since |∑| = n. 
The longest decreasing subsequence problem can also be 
solved similarly. The length distribution of the LIS has been 
analyzed by Aldous and Diaconis [2]. In their result, the 
average length of the LIS of a string with length n is about 
2　 .
　　Kim showed that finding the LIS is equivalent to 
finding the maximum independent set in a permutation 
graph [12]. A permutation graph has no duplicated symbol, 
but the input string of the LIS problem might have. It seems 
that the duplicated symbols in the input string do not affect 
the complexity of the algorithm. After a preprocessing 
with O(n) time, the duplicated symbols can be mapped 
to other symbols which would not affect the resulting of 
increasing subsequence or the decreasing subsequence. 
In the preprocessing, when we come to a symbol a with 
its ith occurrence, we change it to a-iε in the increasing 
subsequence case and to a+iε in the decreasing subsequence 
case for small ε.
　　Various variants of the LIS problem have also been 
discussed [4][5][11][18][21][24][25]. In this paper, we 
first define two LIS variants and then propose effcient 
algorithms to solve them. The first one is the minimum 
height LIS where the height means the difference between 
the largest and smallest elements found in the solution. The 
second one is the sequence constrained LIS (SCLIS) that 
given a string S and a constraint C, we are to find the LIS of 
S containing C as its subsequence.
　　The rest of this paper is organized as follows. In 
Section 2, we will review some other previous work 
related to the LIS problem. In Section 3, we solve the 
minimum height LIS problem. In Section 4, we solve the 
sequence constrained LIS problem. Finally, Section 5 gives 
conclusions and some future work.

2 Previous Results

　　Finding the LIS in streaming data has the limitation 
that the passed data can only be retained a limited number 
of times, Liben-Nowell et al. [14] gave an algorithm with 
log(1 +　 ) passes, O( log l ) or O(log log |∑|) updating time, 
and O(l1+ε log |∑|) space, where l is the length of the LIS.
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　　A variant of the LIS problem is to find the heaviest 
increasing subsequence (HIS). Given a string S formed by 
∑, where each symbol α in ∑ has a weight w(α), the weight 
of a subsequence is the sum of the weights of all symbols 
contained in the subsequence. The HIS problem is to find 
the increasing subsequence with the maximum weight. 
As the equivalence of LIS and the maximum independent 
set of the permutation graph, HIS is equivalent to the 
maximum weight independent set of the permutation graph. 
Several papers [6][9][13][26] have devoted to the study of 
the maximum weight independent set problem in graphs, 
including permutation graphs.
　　A simple extension of the LIS problem is to find the 
LIS of every substring. In our previous work [21], we 
design an effcient preprocessing method, with O(n2) time, 
to solve it. After the preprocessing has been performed, the 
required answering time is linear to the output size.
　　Another extension of the LIS problem is the longest 
common increasing subsequence (LCIS) problem. Given 
two strings A = a1a2a3 ... am, B = b1b2b3 ... bn where each 
pair of symbols in A and B are comparable, the common 
increasing subsequence of A and B is G = g1g2g3 ... gl where 
g1 = ai1

 = bj1
 , g2 = ai2

 = bj2
 , ..., gl = ail

 = bjl
 and for all 1 

≤ p < q ≤ l, ip < iq, jp < jq, gp < gq. The LCIS of A and B is 
the longest among all common increasing subsequences 
of A and B. Yang et al. [25] proposed an algorithm for 
solving this problem in O(n2) time. In 2005, several 
papers tightened the upper bound. Katriel and Kutz 
[11] gave an algorithm with O(nl log n + Sort) time, 
where Sort is the time required for sorting string B into 
nondecreasing order. Chan et al. [5] gave an algorithm 
with O(min(r log l, nl+r) log log n+Sort)) time, where r is 
the number of matched pairs between A and B. Brodal et 
al. [4] gave an algorithm with O((m + nl) log log |∑| + Sort) 
time. For small ∑, the algorithm has a tighter bound O(m) 
when |∑| = 2, O(m + n log n) when |∑| = 3. Yoshifumi [18] 
gives a linear space algorithm for the LCIS problem.
　　For the LCIS of multiple sequences, Chan et al. 
[5] gave an algorithm with O(min(Nr2,Nr log p logNr) + 
NSort∑(n)) time, where N is the number of input sequences, 
and Sort∑(n) denotes the time required for sorting all 
sequences. Brodal et al.[4] proposed an algorithm with 
O(min(Nr2, r logN-1 r log log r)+NSort∑(n)) time.
　　Yang et al. [24] proposed the constrained LIS problem. 
They defined two types of constraints, the first one is 
that the difference between two neighboring elements in 
the increasing subsequence must be in [LV ,UV ] and their 
positional distance in the original string must be in [LI ,UI 
]. We call the difference between two neighboring elements 
as the cliff in this paper. They proposed an algorithm 
with O(n log(UI －LI )) time and O(n) space. The second 
constraint stipulates that the slope of two neighboring 

elements in LIS must be greater than a predefined value, 
where the slope is defined as their difference divided by 
their positional distance in the original string. They solved it 
in O(n log r) time and O(n) space where r is the output size.

3 Minimum Height LIS

　　The height of an increasing sequence is defined as the 
difference between the largest and the smallest elements. 
In fact, the minimum height constraint is the minimum 
sum of the cliff constraint. Given a string S = a1a2 ... an, 
the minimum height LIS (MHLIS) problem is to find an 
LIS with the minimum height. For example, suppose S = 
4683571, then its MHLIS is 457 or 467.
　　The representative increasing subsequence (RIS) of 
a string S is the principle row of the row tower, defined by 
Albert et al. [1]. The ith element in RIS of S is the minimum 
ending number of increasing subsequences with length i. 
For example, S = 41573 has increasing subsequences {4, 1, 5, 
7, 3}, {45, 47, 15, 17, 13, 57} and {457, 157}. The ending 
numbers of increasing subsequences with length 2 are {5, 
7, 3}, thus the minimum is 3. So the RIS of S is 137. Note 
that the RIS may not be a subsequence of the original string. 
If an element is smaller than the ith element of the RIS, it 
can not be the ending number of increasing subsequence 
with length i+1. So the length of the LIS ending at a certain 
element x can be found by searching for the largest element 
that is smaller than x in the previous RIS, and then adding 
one to the position. Likewise, insertion of a new element x 
to RIS R is to find the minimum element in R greater than or 
equal to x and replace it by x. If x is greater than all elements 
in R, then we append x to the end of R, so its length is 
increased by one.
　　Let li denote the length of the LIS ending at ai. We call 
an IS ending at ai maximal if its length is li. We record the 
maximal ending number smaller than ai of maximal IS,s 
with length li －1 in a1a2 ... ai－1 as the previous element of 
ai in MHLIS. We will prove the correctness of this approach 
in the following.
　　Our algorithm for finding the MHLIS is given as 
follows.
Step 1: Maintain l balanced binary search trees q1, q2, ... 

, ql, where each qj , 1 ≤  j ≤ l, records the ending 
numbers of all maximal IS,s with length j, and l 
denotes the length of the LIS.

Step 2: 	Whenever an element ai is read, find the LIS 
ending at ai by the following steps.

Step 2.1: If i = 1, we add a1 into q1 and set RIS to a1. 
Otherwise, perform binary search on the previous 
RIS to find the smallest element greater than or 
equal to ai. The position index of the found element 
is the length li of the LIS ending at ai.



175Minimum Height and Sequence Constrained Longest Increasing Subsequence

Step 2.2: Add ai to qli
 . If li is greater than 1, suppose 

the predecessor of ai in qli－1 is pi, record the 
predecessor of ai in the MHLIS ending at ai as pi.

Step 2.3: Insert ai into the previous RIS. 
　　For example, for S = 4683571, the result is shown in 
Figure 1. When we are going to add 7, the previous RIS is 
358. 7 will replace 8 which is in position 3, and the current 
RIS becomes 357. We add 7 to q3 and the largest element 
smaller than 7 in q2 is 6, so we set the predecessor of 7 to 6. 
The minimum height of the increasing subsequences ending 
at 7 is the height of 6 which is 2 plus the additional height
of 7－6 = 1, so the total height is 3.
　　Now, we prove the correctness of our algorithm.

Theorem 1. Our approach finds the MHLIS ending at ai.

　　Proof. Suppose the LIS we find is b1b2 ... bli－1ai. If we 
say that d1d2 ... dli－1ai has smaller height, we have dk ≥ bk+1, 
dk is not on the right of bk. Here we use the term “not on the 
right” because bk may be the same as dk. We will show this 
by induction.
　　For k = 1, we have ai－d1 < ai－b1, so d1 > b1. If d1 is 
on the right of b1, then b1d1d2 ... dli－1ai is an IS with length 
li+1, which is a contradiction. Thus, d1 is not on the right 
of b1. Also, b1 is on the left of b2, so d1 is on the left of b2. 
Suppose d1 < b2, and we have d1 > b1, then b2 would choose 
d1 instead of b1, which is a contradiction. So d1 ≥ b2.
　　Suppose the assumption holds for k = m, that is dm ≥ bm+1 
and dm is not on the right of bm. For k = m + 1, dm+1 > bm+1 
because dm ≥ bm+1, dm+1 > dm. If dm+1 is on the right of bm+1, 
then b1b2 ... bm+1dm+1 ... dli－1ai is an IS with length l+1, 
which is a contradiction. So dm+1 is not on the right of bm+1. 
Also, bm+1 is on the left of bm+2, so dm+1 is on the left of bm+2. 
Suppose dm+1 < bm+2, and we have dm+1 > bm+1, then bm+2 
would choose dm+1 instead of bm+1, which is a contradiction. 
So dm+1 ≥ bm+2. By the induction hypothesis, this assumption 
is true for all k.
　　Recall that we assume there exists d1d2 ... dli－1ai with 
smaller height. From above, we have dli－2 ≥ bli－1, and dli－1 > 
dli－2, so dli－1 > bli－1. But since we select bli－1 instead of dli－1, 
we have bli－1 ≥ dli－1 which is a contradiction. So there is no 
other IS of length li with smaller height □.

　　By Theorem 1, we can find the MHLIS ending at a 
certain element. We maintain the minimum height element 
in every binary search tree. To get the MHLIS, we start 
from the minimum height element in ql and trace back the 
LIS by continuously switching to the predecessor of the 
current element.
　　The time complexity is analyzed as follows. For each 
ai, we spend O(log n) time on deciding the length l of the 
LIS by binary search on the RIS, and O(1) time on inserting 
ai into the RIS. Finding predecessor in the set of ending 
numbers of IS’s with length l － 1 takes O(log n) time. 

Inserting into the set of ending numbers of length l IS’s 
and the RIS both takes O(log n) time. Finally, calculating 
the height of the LIS ending at ai takes constant time if 
the predecessor and the height of the LIS ending at the 
predecessor are given. Tracing out the predecessor takes 
O(n) time by following the predecessor link. So totally we 
need O(n log n) time to find the MHLIS. And the space 
requirement is O(n).

4 6 8 3 5 7 1
R/S 4 46 468 368 358 357 157
L=1 4 4 4 34 34 34 134
L=2 6 6 6 56 56 56
L=3 8 8 8 78 78
H 0 2 4 0 1 3 0

Figure 1 The Minimum Height LIS for S = 4683571

4 Sequence Constrained LIS

　　Given a string S =a1a2
... an and an increasing constraint 

C = c1c2 ... ck, the sequence constrained longest increasing 
subsequence (SCLIS) problem is to find an LIS containing 
C as its subsequence. For example, if S = 1529367 and C = 59, 
then the SCLIS is 159 while the LIS is 12367. Because we 
are finding an IS and the constraint is a subsequence of the 
IS, the constraint has to also be increasing.
　　Note that if there is no duplicated symbol in the input 
string, the problem becomes finding the occurrence of 
the constraints in the input sequence as follows. Let the 
constraint C be on positions p1, p2, ... , pk in S. To simplify 
the discussion, we add two dummy constraints c0 = -∞ in 
front of S and C and ck+1 = ∞ at the rear of S and C. Cut the 
input sequence by pi for 1 ≤ i ≤ k, and find the LIS of each 
substring starting at pi and ending at the previous element 
of pi+1 with value also starting at ci and smaller than ci+1, 
0 ≤ i ≤ k. Then the IS,s are concatenated together. The 
concatenated IS is the answer. So the lower bound of the 
time complexity is the time required for finding the LIS.
　　This problem can be solved by the similar layered 
approach for solving the constrained longest common 
subsequence (CLCS) problem [7][17][20]. First, we put the 
symbol ci as the symbol of the ith floor, where the 0th floor 
means no constraint is satisfied. Because all constraints 
need be satisfied, in the region after constraint ci has been 
satisfied but constraint ci+1 is not satisfied yet, this part of 
IS in the final SCLIS should be with value larger than or 
equal to ci but smaller than ci+1. Otherwise, ci+1 is unable to 
concatenate to the current increasing subsequence. Besides, 
we only insert an element when all constraints smaller than 
it are already inserted.
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　　In the ith floor, we maintain an RIS Ri of the elements 
greater than or equal to ci and less than ci+1. Originally when 
we insert an element into the RIS, we replace the smallest 
element larger than or equal to it. But now, if the element 
we are going to replace is one of the constraints, which is 
the first element in each layer, we do not replace it.
　　Our SCLIS algorithm is to insert the elements of S 
one by one from left to right into our data structure and the 
algorithm for inserting a new element is given as follows:
Input: The element to be inserted, e, and the constraint C.
Step1: Find the position of e in C. If e = ci, go to step 2.1. 

If e is between ci and ci+1, go to step 2.2.
Step 2.1: If Ri－1 is not NULL, set predecessor of e to the 

last element of Ri－1. If Ri－1 is not NULL or i = 1, 
insert e into Ri. And skip step 2.2.

Step 2.2: If ci is already in Ri or i = 0, insert e to Ri, set 
predecessor of e to the predecessor of e in Ri.

　　Step 2.1 means that we only accept constraint ci when 
all previous constraints have been satisfied. For example, 
in Figure 2, the first 7 can not be added since 3 has not 
been added yet. In Step 2.2, we only add e to Ri when ci 
has appeared. It is based on the same reason, if ci has not 
appeared yet, the elements with value greater than ci can 
never be in the final SCLIS. Take the first 4 in Figure 2 as 
an example, it can not be added because 3 is not in R1 yet.
　　The time complexity of this approach is analyzed as 
follows. If we use arrays to implement this approach. Step 
1 takes O(log |C|) time by binary search on C. Step 2.1 
takes constant time. Step 2.2 takes O(log n) time for doing 
binary search on Ri. So the time required for inserting one 
element is O(log n). There are n elements to be inserted, so 
the total construction time is O(n log(n + |C|)). The output 
operation can be achieved in O(n) time by continuously 
lookup the predecessor table. The space complexity of the 

Table 1 The Constrained RIS Table

2 1 6 2 4 5 3 9
RIS 2, X 1, X 16, 1 12, 1 124, 2 1245, 4 1235, 2 12359, 5
2 2, X 2, X 26, 2 26, X 24, 2 245, 4 235, 2 2359, 5
1 1, X 16, 1 12, 1 124, 2 1245, 4 1235, 2 12359, 5
6 6, X 6, X 6, X 6, X 6, X 69, 6
2 2, X 24, 2 245, 4 235, 2 2359, 5
4 4, X 45, 4 45, X 459, 5
5 4, X 5, X 59, 5
3 3, X 39, 3
9 9, X

7 4 3 7 3 1 5 7 9 8
1

3 3 3 35
7 7 7 79 78

Figure 2 The Constrained LIS for S = 7437315798 and C = 37

R,s is O(n) because each element is in at most one of the 
R,s and the predecessor table takes O(n) space. Note that if 
the constraint is NULL, the problem becomes the original 
LIS problem (without constraint), so the lower bound of the 
time complexity is the time required for finding the LIS.
　　Next, we extend this problem to be the preprocess-
query variation. Given a string S, we first preprocess it so 
that we can answer the SCLIS more effciently when a query 
on the constraint C with positions p1, p2, ... , pk, is asked.
　　Our idea to this variation is to concatenate the LIS,s 
between two neighboring constraints with value between the 
two constraints. Our previous method can be transformed 
into a preprocessing method easily. We suppose every 
element is the only constraint and record the RIS,s and the 
predecessors when we add the elements sequentially into 
every layer. For example, for S2 = 21624539, the result is 
shown in Table 1 where X means aj has no predecessor. 
Note that in the same column, the predecessors are different, 
so we need to record them separately.
　　In the query phase, we first scan the constraint to 
see if is increasing. If not, we just output the result as an 
empty string. Otherwise, we start to find out the SCLIS 
by following the predecessor links starting from the pkth 
layer. When we are on the pjth layer and we reach the first 
element, which is the constraint of the layer, we jump 
vertically to the pj－1th layer and continue by following the 
predecessor link. When we have satisfied all constraints, we
use the predecessor link in the RIS layer to continue the 
trace back. For example, for S2 in Table 1, if the constraint 
is the second and fourth element, which is 12. We start from 
the fourth layer and get 2459, then we jump to the second 
layer and get 1, then we jump to the RIS layer and get X. 
So the SCLIS is 12459.
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　　The time complexity of our algorithm is analyzed 
as follows. Our preprocessing algorithm fills in the table 
by column major. If we spend O(n log n) time to sort the 
elements in the input string. We can map the elements 
to ∑ = {1, 2, ... , n}. Then we can use one van Emde 
Boas priority queue(vEBpq) to record the RIS,s for each 
row. When we add a new element, we also record the 
predecessor of the newly added element. We need one 
predecessor query, one insertion and at most one deletion in 
each cell, so totally we need O(n2 log log n) time to do the 
preprocessing. In the query phase, checking if the constraint 
is increasing takes O(|C|) time. Following the predecessor 
links to trace back the SCLIS takes O(|OUTPUT|) time. So 
the total query time is O(|C|+|OUTPUT|), which is optimal. 
The space complexity is O(n2) because each vEBpq takes 
O(n) space and the predecessor table takes O(n2) space.

5 Conclusion and Future Works

　　In this paper, we propose and solve two variants of the 
LIS problem, the minimum height LIS (MHLIS) problem 
and the sequence constrained LIS (SCLIS) problem. We 
first propose an algorithm with O(n log n) time and O(n) 
space for solving the MHLIS problem. Since the LIS of 
a given string may not be unique, we propose a possible 
way to decide which one is better among them. This can 
be applied to the situation that there are many available 
boxes and we desire to pack as many as possible by putting 
one inside another so that the thickness of the boxes is 
minimized and thus the minimum space is occupied.
　　For solving the SCLIS problem, we proposed an O(n 
log(n + |C|)) time algorithm. This can also be applied to the 
situation similar to the above. That is, we want to pack as 
many boxes as possible while some specific boxes must be 
packed in. In addition, we also discuss the online SCLIS 
problem. We propose a preprocessing algorithm with O(n2 

log log n) time so that each query can be answered in O(|C| 
+ |OUTPUT|) time. The possible future work may involve 
trying to improve the algorithmic effciency or to prove 
that our algorithm is optimal, solving other cliff based 
constraints like min-max, max-min, etc. And among all, 
exploring more applications of the LIS problem, either with 
or without variant.
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