
173Minimum Height and Sequence Constrained Longest Increasing Subsequence

Abstract

　　Given a string S = a1a2a3
...an, the longest increasing

subsequence (LIS) problem is to find a subsequence of S
such that the subsequence is increasing and its length is
maximum. In this paper, we propose and solve two variants
of the LIS problem. The first one is the minimum height
LIS where the height means the difference between the
largest and smallest elements. We propose an algorithm
with O(n log n) time and O(n) space for solving it. The
second one is the sequence constrained LIS (SCLIS) that
given a string S and a constraint C, we are to find the LIS of
S containing C as its subsequence. We propose an algorithm
with O(n log(n+|C|)) time for solving it. And then we solve
the SCLIS with preprocessing. We propose a preprocessing
algorithm with O(n2 log log n) time on S so that with a
given sequence of positions, we can answer the SCLIS
query in O(|C|+|OUTPUT |) time where the constraint is the
subsequence on the given positions of S.

Keywords:	Algorithm, Longest Increasing Subsequence,
Height, Constraint.

1 Introduction

　　Given a s t r ing S =a 1a 2a 3
. . .a n, an increasing

subsequence (IS) is a subsequence [23] ai1
ai2

ai3
...aik

 that
aip

 < aiq
 if ip < iq, for 1 ≤ p < q ≤ k. For example, consider

S = 41573, three of its increasing subsequences are 13, 457
and 157. The longest increasing subsequence (LIS) problem
is to find the longest among all increasing subsequences.
Note that the LIS of a given string may not be unique. For
example, both 457 and 157 are LIS,s of S = 41573.
　　The LIS problem is interesting in both combinatorial
perspective, such as pattern recognition, and biological
applications. Delcher et al. [8] used LIS to help finding
the whole genome alignment. A straightforward method
of finding the LIS is to obtain the longest common
subsequence of the input string and the sorted input string,
with time complexity O(n2). Schensted [19] is the first one
who defined the LIS problem and proposed an algorithm
with O(n log n) time. Hunt and Szymanski [10] improved
the algorithm to O(n log log n) time. And later, many papers
[1][3-5][15][16][26] studied the LIS problem by using
the van Emde Boas priority queue [22], which supports
insertion, deletion, finding, predecessor, and successor

operations in O(log log |∑|) time, where ∑ is the alphabet
set of the input string. In LIS, if the input is an integer string
where each integer is in {1, 2, 3,..., n}, then |∑| = n, and the
LIS algorithm needs only O(n log log n) time since |∑| = n.
The longest decreasing subsequence problem can also be
solved similarly. The length distribution of the LIS has been
analyzed by Aldous and Diaconis [2]. In their result, the
average length of the LIS of a string with length n is about
2　 .
　　Kim showed that finding the LIS is equivalent to
finding the maximum independent set in a permutation
graph [12]. A permutation graph has no duplicated symbol,
but the input string of the LIS problem might have. It seems
that the duplicated symbols in the input string do not affect
the complexity of the algorithm. After a preprocessing
with O(n) time, the duplicated symbols can be mapped
to other symbols which would not affect the resulting of
increasing subsequence or the decreasing subsequence.
In the preprocessing, when we come to a symbol a with
its ith occurrence, we change it to a-iε in the increasing
subsequence case and to a+iε in the decreasing subsequence
case for small ε.
　　Various variants of the LIS problem have also been
discussed [4][5][11][18][21][24][25]. In this paper, we
first define two LIS variants and then propose effcient
algorithms to solve them. The first one is the minimum
height LIS where the height means the difference between
the largest and smallest elements found in the solution. The
second one is the sequence constrained LIS (SCLIS) that
given a string S and a constraint C, we are to find the LIS of
S containing C as its subsequence.
　　The rest of this paper is organized as follows. In
Section 2, we will review some other previous work
related to the LIS problem. In Section 3, we solve the
minimum height LIS problem. In Section 4, we solve the
sequence constrained LIS problem. Finally, Section 5 gives
conclusions and some future work.

2 Previous Results

　　Finding the LIS in streaming data has the limitation
that the passed data can only be retained a limited number
of times, Liben-Nowell et al. [14] gave an algorithm with
log(1 +　) passes, O(log l) or O(log log |∑|) updating time,
and O(l1+ε log |∑|) space, where l is the length of the LIS.

Minimum Height and Sequence Constrained Longest Increasing Subsequence

Chiou-Ting Tseng, Chang-Biau Yang, Hsing-Yen Ann
Department of Computer Science and Engineering

National Sun Yat-sen University
Taiwan, R.O.C.

cbyang@cse.nsysu.edu.tw

174 Journal of Internet Technology Volume 10 (2009) No.2

　　A variant of the LIS problem is to find the heaviest
increasing subsequence (HIS). Given a string S formed by
∑, where each symbol α in ∑ has a weight w(α), the weight
of a subsequence is the sum of the weights of all symbols
contained in the subsequence. The HIS problem is to find
the increasing subsequence with the maximum weight.
As the equivalence of LIS and the maximum independent
set of the permutation graph, HIS is equivalent to the
maximum weight independent set of the permutation graph.
Several papers [6][9][13][26] have devoted to the study of
the maximum weight independent set problem in graphs,
including permutation graphs.
　　A simple extension of the LIS problem is to find the
LIS of every substring. In our previous work [21], we
design an effcient preprocessing method, with O(n2) time,
to solve it. After the preprocessing has been performed, the
required answering time is linear to the output size.
　　Another extension of the LIS problem is the longest
common increasing subsequence (LCIS) problem. Given
two strings A = a1a2a3 ... am, B = b1b2b3 ... bn where each
pair of symbols in A and B are comparable, the common
increasing subsequence of A and B is G = g1g2g3 ... gl where
g1 = ai1

 = bj1
 , g2 = ai2

 = bj2
 , ..., gl = ail

 = bjl
 and for all 1

≤ p < q ≤ l, ip < iq, jp < jq, gp < gq. The LCIS of A and B is
the longest among all common increasing subsequences
of A and B. Yang et al. [25] proposed an algorithm for
solving this problem in O(n2) time. In 2005, several
papers tightened the upper bound. Katriel and Kutz
[11] gave an algorithm with O(nl log n + Sort) time,
where Sort is the time required for sorting string B into
nondecreasing order. Chan et al. [5] gave an algorithm
with O(min(r log l, nl+r) log log n+Sort)) time, where r is
the number of matched pairs between A and B. Brodal et
al. [4] gave an algorithm with O((m + nl) log log |∑| + Sort)
time. For small ∑, the algorithm has a tighter bound O(m)
when |∑| = 2, O(m + n log n) when |∑| = 3. Yoshifumi [18]
gives a linear space algorithm for the LCIS problem.
　　For the LCIS of multiple sequences, Chan et al.
[5] gave an algorithm with O(min(Nr2,Nr log p logNr) +
NSort∑(n)) time, where N is the number of input sequences,
and Sort∑(n) denotes the time required for sorting all
sequences. Brodal et al.[4] proposed an algorithm with
O(min(Nr2, r logN-1 r log log r)+NSort∑(n)) time.
　　Yang et al. [24] proposed the constrained LIS problem.
They defined two types of constraints, the first one is
that the difference between two neighboring elements in
the increasing subsequence must be in [LV ,UV] and their
positional distance in the original string must be in [LI ,UI
]. We call the difference between two neighboring elements
as the cliff in this paper. They proposed an algorithm
with O(n log(UI －LI)) time and O(n) space. The second
constraint stipulates that the slope of two neighboring

elements in LIS must be greater than a predefined value,
where the slope is defined as their difference divided by
their positional distance in the original string. They solved it
in O(n log r) time and O(n) space where r is the output size.

3 Minimum Height LIS

　　The height of an increasing sequence is defined as the
difference between the largest and the smallest elements.
In fact, the minimum height constraint is the minimum
sum of the cliff constraint. Given a string S = a1a2 ... an,
the minimum height LIS (MHLIS) problem is to find an
LIS with the minimum height. For example, suppose S =
4683571, then its MHLIS is 457 or 467.
　　The representative increasing subsequence (RIS) of
a string S is the principle row of the row tower, defined by
Albert et al. [1]. The ith element in RIS of S is the minimum
ending number of increasing subsequences with length i.
For example, S = 41573 has increasing subsequences {4, 1, 5,
7, 3}, {45, 47, 15, 17, 13, 57} and {457, 157}. The ending
numbers of increasing subsequences with length 2 are {5,
7, 3}, thus the minimum is 3. So the RIS of S is 137. Note
that the RIS may not be a subsequence of the original string.
If an element is smaller than the ith element of the RIS, it
can not be the ending number of increasing subsequence
with length i+1. So the length of the LIS ending at a certain
element x can be found by searching for the largest element
that is smaller than x in the previous RIS, and then adding
one to the position. Likewise, insertion of a new element x
to RIS R is to find the minimum element in R greater than or
equal to x and replace it by x. If x is greater than all elements
in R, then we append x to the end of R, so its length is
increased by one.
　　Let li denote the length of the LIS ending at ai. We call
an IS ending at ai maximal if its length is li. We record the
maximal ending number smaller than ai of maximal IS,s
with length li －1 in a1a2 ... ai－1 as the previous element of
ai in MHLIS. We will prove the correctness of this approach
in the following.
　　Our algorithm for finding the MHLIS is given as
follows.
Step 1: Maintain l balanced binary search trees q1, q2, ...

, ql, where each qj , 1 ≤ j ≤ l, records the ending
numbers of all maximal IS,s with length j, and l
denotes the length of the LIS.

Step 2: 	Whenever an element ai is read, find the LIS
ending at ai by the following steps.

Step 2.1: If i = 1, we add a1 into q1 and set RIS to a1.
Otherwise, perform binary search on the previous
RIS to find the smallest element greater than or
equal to ai. The position index of the found element
is the length li of the LIS ending at ai.

175Minimum Height and Sequence Constrained Longest Increasing Subsequence

Step 2.2: Add ai to qli
 . If li is greater than 1, suppose

the predecessor of ai in qli－1 is pi, record the
predecessor of ai in the MHLIS ending at ai as pi.

Step 2.3: Insert ai into the previous RIS.
　　For example, for S = 4683571, the result is shown in
Figure 1. When we are going to add 7, the previous RIS is
358. 7 will replace 8 which is in position 3, and the current
RIS becomes 357. We add 7 to q3 and the largest element
smaller than 7 in q2 is 6, so we set the predecessor of 7 to 6.
The minimum height of the increasing subsequences ending
at 7 is the height of 6 which is 2 plus the additional height
of 7－6 = 1, so the total height is 3.
　　Now, we prove the correctness of our algorithm.

Theorem 1. Our approach finds the MHLIS ending at ai.

　　Proof. Suppose the LIS we find is b1b2 ... bli－1ai. If we
say that d1d2 ... dli－1ai has smaller height, we have dk ≥ bk+1,
dk is not on the right of bk. Here we use the term “not on the
right” because bk may be the same as dk. We will show this
by induction.
　　For k = 1, we have ai－d1 < ai－b1, so d1 > b1. If d1 is
on the right of b1, then b1d1d2 ... dli－1ai is an IS with length
li+1, which is a contradiction. Thus, d1 is not on the right
of b1. Also, b1 is on the left of b2, so d1 is on the left of b2.
Suppose d1 < b2, and we have d1 > b1, then b2 would choose
d1 instead of b1, which is a contradiction. So d1 ≥ b2.
　　Suppose the assumption holds for k = m, that is dm ≥ bm+1
and dm is not on the right of bm. For k = m + 1, dm+1 > bm+1
because dm ≥ bm+1, dm+1 > dm. If dm+1 is on the right of bm+1,
then b1b2 ... bm+1dm+1 ... dli－1ai is an IS with length l+1,
which is a contradiction. So dm+1 is not on the right of bm+1.
Also, bm+1 is on the left of bm+2, so dm+1 is on the left of bm+2.
Suppose dm+1 < bm+2, and we have dm+1 > bm+1, then bm+2
would choose dm+1 instead of bm+1, which is a contradiction.
So dm+1 ≥ bm+2. By the induction hypothesis, this assumption
is true for all k.
　　Recall that we assume there exists d1d2 ... dli－1ai with
smaller height. From above, we have dli－2 ≥ bli－1, and dli－1 >
dli－2, so dli－1 > bli－1. But since we select bli－1 instead of dli－1,
we have bli－1 ≥ dli－1 which is a contradiction. So there is no
other IS of length li with smaller height □.

　　By Theorem 1, we can find the MHLIS ending at a
certain element. We maintain the minimum height element
in every binary search tree. To get the MHLIS, we start
from the minimum height element in ql and trace back the
LIS by continuously switching to the predecessor of the
current element.
　　The time complexity is analyzed as follows. For each
ai, we spend O(log n) time on deciding the length l of the
LIS by binary search on the RIS, and O(1) time on inserting
ai into the RIS. Finding predecessor in the set of ending
numbers of IS’s with length l － 1 takes O(log n) time.

Inserting into the set of ending numbers of length l IS’s
and the RIS both takes O(log n) time. Finally, calculating
the height of the LIS ending at ai takes constant time if
the predecessor and the height of the LIS ending at the
predecessor are given. Tracing out the predecessor takes
O(n) time by following the predecessor link. So totally we
need O(n log n) time to find the MHLIS. And the space
requirement is O(n).

4 6 8 3 5 7 1
R/S 4 46 468 368 358 357 157
L=1 4 4 4 34 34 34 134
L=2 6 6 6 56 56 56
L=3 8 8 8 78 78
H 0 2 4 0 1 3 0

Figure 1 The Minimum Height LIS for S = 4683571

4 Sequence Constrained LIS

　　Given a string S =a1a2
... an and an increasing constraint

C = c1c2 ... ck, the sequence constrained longest increasing
subsequence (SCLIS) problem is to find an LIS containing
C as its subsequence. For example, if S = 1529367 and C = 59,
then the SCLIS is 159 while the LIS is 12367. Because we
are finding an IS and the constraint is a subsequence of the
IS, the constraint has to also be increasing.
　　Note that if there is no duplicated symbol in the input
string, the problem becomes finding the occurrence of
the constraints in the input sequence as follows. Let the
constraint C be on positions p1, p2, ... , pk in S. To simplify
the discussion, we add two dummy constraints c0 = -∞ in
front of S and C and ck+1 = ∞ at the rear of S and C. Cut the
input sequence by pi for 1 ≤ i ≤ k, and find the LIS of each
substring starting at pi and ending at the previous element
of pi+1 with value also starting at ci and smaller than ci+1,
0 ≤ i ≤ k. Then the IS,s are concatenated together. The
concatenated IS is the answer. So the lower bound of the
time complexity is the time required for finding the LIS.
　　This problem can be solved by the similar layered
approach for solving the constrained longest common
subsequence (CLCS) problem [7][17][20]. First, we put the
symbol ci as the symbol of the ith floor, where the 0th floor
means no constraint is satisfied. Because all constraints
need be satisfied, in the region after constraint ci has been
satisfied but constraint ci+1 is not satisfied yet, this part of
IS in the final SCLIS should be with value larger than or
equal to ci but smaller than ci+1. Otherwise, ci+1 is unable to
concatenate to the current increasing subsequence. Besides,
we only insert an element when all constraints smaller than
it are already inserted.

176 Journal of Internet Technology Volume 10 (2009) No.2

　　In the ith floor, we maintain an RIS Ri of the elements
greater than or equal to ci and less than ci+1. Originally when
we insert an element into the RIS, we replace the smallest
element larger than or equal to it. But now, if the element
we are going to replace is one of the constraints, which is
the first element in each layer, we do not replace it.
　　Our SCLIS algorithm is to insert the elements of S
one by one from left to right into our data structure and the
algorithm for inserting a new element is given as follows:
Input: The element to be inserted, e, and the constraint C.
Step1: Find the position of e in C. If e = ci, go to step 2.1.

If e is between ci and ci+1, go to step 2.2.
Step 2.1: If Ri－1 is not NULL, set predecessor of e to the

last element of Ri－1. If Ri－1 is not NULL or i = 1,
insert e into Ri. And skip step 2.2.

Step 2.2: If ci is already in Ri or i = 0, insert e to Ri, set
predecessor of e to the predecessor of e in Ri.

　　Step 2.1 means that we only accept constraint ci when
all previous constraints have been satisfied. For example,
in Figure 2, the first 7 can not be added since 3 has not
been added yet. In Step 2.2, we only add e to Ri when ci
has appeared. It is based on the same reason, if ci has not
appeared yet, the elements with value greater than ci can
never be in the final SCLIS. Take the first 4 in Figure 2 as
an example, it can not be added because 3 is not in R1 yet.
　　The time complexity of this approach is analyzed as
follows. If we use arrays to implement this approach. Step
1 takes O(log |C|) time by binary search on C. Step 2.1
takes constant time. Step 2.2 takes O(log n) time for doing
binary search on Ri. So the time required for inserting one
element is O(log n). There are n elements to be inserted, so
the total construction time is O(n log(n + |C|)). The output
operation can be achieved in O(n) time by continuously
lookup the predecessor table. The space complexity of the

Table 1 The Constrained RIS Table

2 1 6 2 4 5 3 9
RIS 2, X 1, X 16, 1 12, 1 124, 2 1245, 4 1235, 2 12359, 5
2 2, X 2, X 26, 2 26, X 24, 2 245, 4 235, 2 2359, 5
1 1, X 16, 1 12, 1 124, 2 1245, 4 1235, 2 12359, 5
6 6, X 6, X 6, X 6, X 6, X 69, 6
2 2, X 24, 2 245, 4 235, 2 2359, 5
4 4, X 45, 4 45, X 459, 5
5 4, X 5, X 59, 5
3 3, X 39, 3
9 9, X

7 4 3 7 3 1 5 7 9 8
1

3 3 3 35
7 7 7 79 78

Figure 2 The Constrained LIS for S = 7437315798 and C = 37

R,s is O(n) because each element is in at most one of the
R,s and the predecessor table takes O(n) space. Note that if
the constraint is NULL, the problem becomes the original
LIS problem (without constraint), so the lower bound of the
time complexity is the time required for finding the LIS.
　　Next, we extend this problem to be the preprocess-
query variation. Given a string S, we first preprocess it so
that we can answer the SCLIS more effciently when a query
on the constraint C with positions p1, p2, ... , pk, is asked.
　　Our idea to this variation is to concatenate the LIS,s
between two neighboring constraints with value between the
two constraints. Our previous method can be transformed
into a preprocessing method easily. We suppose every
element is the only constraint and record the RIS,s and the
predecessors when we add the elements sequentially into
every layer. For example, for S2 = 21624539, the result is
shown in Table 1 where X means aj has no predecessor.
Note that in the same column, the predecessors are different,
so we need to record them separately.
　　In the query phase, we first scan the constraint to
see if is increasing. If not, we just output the result as an
empty string. Otherwise, we start to find out the SCLIS
by following the predecessor links starting from the pkth
layer. When we are on the pjth layer and we reach the first
element, which is the constraint of the layer, we jump
vertically to the pj－1th layer and continue by following the
predecessor link. When we have satisfied all constraints, we
use the predecessor link in the RIS layer to continue the
trace back. For example, for S2 in Table 1, if the constraint
is the second and fourth element, which is 12. We start from
the fourth layer and get 2459, then we jump to the second
layer and get 1, then we jump to the RIS layer and get X.
So the SCLIS is 12459.

177Minimum Height and Sequence Constrained Longest Increasing Subsequence

　　The time complexity of our algorithm is analyzed
as follows. Our preprocessing algorithm fills in the table
by column major. If we spend O(n log n) time to sort the
elements in the input string. We can map the elements
to ∑ = {1, 2, ... , n}. Then we can use one van Emde
Boas priority queue(vEBpq) to record the RIS,s for each
row. When we add a new element, we also record the
predecessor of the newly added element. We need one
predecessor query, one insertion and at most one deletion in
each cell, so totally we need O(n2 log log n) time to do the
preprocessing. In the query phase, checking if the constraint
is increasing takes O(|C|) time. Following the predecessor
links to trace back the SCLIS takes O(|OUTPUT|) time. So
the total query time is O(|C|+|OUTPUT|), which is optimal.
The space complexity is O(n2) because each vEBpq takes
O(n) space and the predecessor table takes O(n2) space.

5 Conclusion and Future Works

　　In this paper, we propose and solve two variants of the
LIS problem, the minimum height LIS (MHLIS) problem
and the sequence constrained LIS (SCLIS) problem. We
first propose an algorithm with O(n log n) time and O(n)
space for solving the MHLIS problem. Since the LIS of
a given string may not be unique, we propose a possible
way to decide which one is better among them. This can
be applied to the situation that there are many available
boxes and we desire to pack as many as possible by putting
one inside another so that the thickness of the boxes is
minimized and thus the minimum space is occupied.
　　For solving the SCLIS problem, we proposed an O(n
log(n + |C|)) time algorithm. This can also be applied to the
situation similar to the above. That is, we want to pack as
many boxes as possible while some specific boxes must be
packed in. In addition, we also discuss the online SCLIS
problem. We propose a preprocessing algorithm with O(n2

log log n) time so that each query can be answered in O(|C|
+ |OUTPUT|) time. The possible future work may involve
trying to improve the algorithmic effciency or to prove
that our algorithm is optimal, solving other cliff based
constraints like min-max, max-min, etc. And among all,
exploring more applications of the LIS problem, either with
or without variant.

References

[1]	 M. H. Albert, A. Golynski, A. M. Hamel, A. Lopez-
Ortiz, S. S. Rao and M. A. Safari, Longest Increasing
Subsequences in Sliding Windows, Theoretical
Computer Science, 2004, pp.405-414.

[2]	 D. Aldous and P. Diaconis, Longest Increasing
Subsequences: From Patience Sorting to the Baik-

Deift-Johansson Theorem, BAMS: Bulletin of the
American Mathematical Society, Vol.36, 1999,
pp.413-432.

[3]	 S. Bespamyatnikh and M. Segal, Enumerating Longest
Increasing Subsequences and Patience Sorting,
Information Processing Letters, Vol.76, No.1-2, 2000,
pp.7-13.

[4]	 G. S. Brodal, K. Kaligosi, I. Katriel and M. Kutz,
Faster Algorithms for Computing Longest Common
Increasing Subsequences, Tech, Rep. BRICS-RS-
05-37, BRICS, Department of Computer Science,
University of Aarhus, December, 2005.

[5]	 W. T. Chan, Y. Zhang, S. P. Y. Fung, D. Ye and H.
Zhu, Efficient Algorithms for Finding a Longest
Common Increasing Subsequence, The 16th Annual
International Symposium on Algorithms and
Computation, Hainan, China, 2005, pp.665-674.

[6]	 M. S. Chang and F. H. Wang, Efficient Algorithms for
the Maximum Weight Clique and Maximum Weight
Independent Set Problems on Permutation Graphs,
Information Processing Letters, Vol.43, No.6, 1992,
pp.293-295.

[7]	 F. Y. L. Chin, A. D. Santis, A. L. Ferrara, N. L. Ho and
S. K. Kim, A Simple Algorithm for the Constrained
Sequence Problems, Information Processing Letters,
Vol.90, No.4, 2004, pp.175-179.

[8]	 A. L. Delcher, S. Kasif, R. D. Fleischmann, J.
Peterson, O. White and S. L. Salzberg, Alignment of
Whole Genomes, Nucleic Acids Research, Vol.27,
No.11, 1999, pp.2369-2376.

[9]	 W. L. Hsu, Maximum Weight Clique Algorithms
for Circular-Arc Graphs and Circle Graphs, SIAM
Journal on Computing, Vol.14, No.1, 1985, pp.224-
231.

[10]	 J. W. Hunt and T. G. Szymanski, A Fast Algorithm
for Computing Longest Common Subsequences,
Communications of the ACM, Vol.20, No.5, 1977,
pp.350-353.

[11]	 I . Katr iel and M. Kutz, A Faster Algori thm
for Computing a Longest Common Increasing
Subsequence , Research Report MPI-I-2005-
1-007, Max-Planck-Ins t i tu t für Informat ik ,
Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, March, 2005.

[12]	 H. Kim, Finding a Maximum Independent Set in a
Permutation Graph, Information Processing Letters,
Vol.36, No.1, 1990, pp.19-23.

[13]	 D. T. Lee and M. Sarrafzadeh, Maximum Independent
Set of a Permutation Graph in k Tracks, International
Journal of Computational Geometry and Appli-
cations, Vol.3, No.3, 1993, pp.291-304.

178 Journal of Internet Technology Volume 10 (2009) No.2

[14]	 D. Liben-Nowell, E. Vee and A. Zhu, Finding
Longest Increasing and Common Subsequences in
Streaming Data, 11th International Computing and
Combinatorics Conference, Kunming, China, 2005,
pp.263-272.

[15]	 E. Mäkinen, On the Longest Upsequence Problem for
Permutations, Tech. Rep. A-1999-7, Department of
Computer Science, University of Tampere, 1999.

[16]	 F. Malucelli, T. Ottmann and D. Pretolani, Efficient
Labelling Algorithms for the Maximum Noncrossing
Matching Problem, Discrete Applied Mathematics,
Vol.47, No.2, 1993, pp.175-179.

[17]	 C. L. Peng, An Approach for Solving the Constrained
Longest Common Subsequence Problem, Master
Thesis, Department of Computer Science and
Engineering, National Sun Yat-Sen University,
Taiwan, July, 2003.

[18]	 Y. Sakai, A Linear Space Algorithm for Computing
a Longest Common Increasing Subsequence ,
Information Processing Letters, Vol.99, No.5, 2006,
pp.203-207.

[19]	 C. Schensted, Longest Increasing and Decreasing
Subsequences, Canadian Journal of Mathematics,
Vol.13, 1961, pp.179-191.

[20]	 Y. T. Tsai, The Constrained Longest Common
Subsequence Problem, Information Processing
Letters, Vol.88, 2003, pp.173-176.

[21]	 C. T. Tseng, S. H. Shiau and C. B. Yang, An Optimal
Algorithm for Finding the Longest Increasing
Subsequence of Every Substring, Proceeding of
the 5th Conference on Information Technology and
Applications in Outlying Islands, 2006, p.14.

[22]	 P. van Emde Boas, R. Kaas and E. Zijlstra, Design
and Implementation of an Efficient Priority Queue,
Theory of Computing Systems, Vol.10, 1976, pp.99-
127.

[23]	 C. B. Yang and R. C. T. Lee, Systolic Algorithms for
the Longest Common Subsequence Problem, Journal
of the Chinese Institute of Engineers, Vol.10, No.6,
1987, pp.691-699.

[24]	 I. H. Yang and Y. C. Chen, Fast Algorithms for
the Constrained Longest Increasing Subsequence
Problems, Proceeding of the 25th Workshop on
Combinatorial Mathematics and Computation
Theory, 2008, pp.226-231.

[25]	 I. H. Yang, C. P. Huang and K. M. Chao, A Fast
Algorithm for Computing a Longest Common
Increasing Subsequence, Information Processing
Letters, Vol.93, No.5, 2005, pp.249-253.

[26]	 M. S. Yu, L. Y. Tseng and S. J. Chang, Sequential
and Parallel Algorithms for the Maximum-Weight
Independent Set Problem on Permutation Graphs,

Independent Processing Letters, Vol.46, No.1, 1993,
pp.7-11.

Biographies

Chiou-Ting Tseng received the B.S.
degree and M.S. degree in computer
science and engineering from National
Sun Yat-sen University, Kaohsiung,
Taiwan, in 2003 and 2006, respectively.
He is currently a Ph.D. candidate of
the Department of Computer Science

and Engineering at the National Sun Yat-sen University.
His research interests include computer algorithms,
bioinformatics and sequence analysis.

Chang-Biau Yang received the B.S.
degree in electronic engineering from
National Chiao Tung Universi ty,
Hsinchu, Taiwan, in 1982, and the
M.S. degree in computer science from
National Tsing Hua University, Hsinchu,
Taiwan, in 1984. Then, he received the

Ph.D. degree in computer science from National Tsing
Hua University in 1988. He is currently a professor in
the Department of Computer Science and Engineering,
National Sun Yat-sen University. His research interests
include computer algorithms, interconnection networks,
and bioinformatics.

Hsing-Yen Ann received the B.S.
degree and M.S. degree in applied
mathematics from National Sun Yat-sen
University, Kaohsiung, Taiwan, in 1996
and 1998, respectively. From 1999 to
2004 he joined as an assistant researcher
in the Telecommunication Laboratories,

Chunghwa Telecom Co., Ltd., Taoyuan, Taiwan. He is
currently a Ph.D. candidate of the Department of Computer
Science and Engineering at the National Sun Yat-sen
University. His research interests include bioinformatics,
sequence analysis, pattern matching and software
engineering.

