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We design an algorithm to count the number of distinct palindromes in a word w in time
O (|w|), by adapting an algorithm to detect all occurrences of maximal palindromes in a
given word and using the longest previous factor array. As a direct consequence, this shows
that the palindromic richness (or fullness) of a word can be checked in linear time.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, palindromes were studied in many pa-
pers in combinatorics on finite and infinite words. For in-
stance, constructions of infinite words using palindromic
closure (see, e.g., [7,8]) and the study of palindromic com-
plexity of infinite words (see, e.g., [1,5,8]) have been de-
veloped. In [8], Droubay et al. observed that any finite
word w of length |w| contains at most |w| + 1 distinct
palindromes (including the empty word). A word w with
this maximal number |w| + 1 of distinct palindromes is
called rich or full by various authors. Subsequently, the no-
tion of palindromic richness has been extended to infinite
words and several connected results have been obtained
in both the finite and infinite contexts (see, e.g., [11, Sec-
tion 6.2.2] for a recent survey, [12] for a unified study of
structural and combinatorial properties of rich words and
[5,16]). S. Labbé indicated to us that a word w can be rich
in palindromes (in the sense that it contains many dis-
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tinct palindromes) without being full of palindromes (in
the sense that it cannot contain more). Nevertheless, from
now on, we use only the term “rich” since, as far as we
know, it is used more often in previous papers than the
term “full”.

The aim of the present paper is to answer a recent
question raised during JORCAD’08 (Journées Rouennaises
de Combinatoire et Algorithmique en l’honneur de Jean-
Pierre Duval): does there exist a linear-time algorithm to
determine whether a word is rich? (Note that the time
complexity of our algorithms is evaluated with respect to
the length of the processed word.) We answer the previ-
ous question in the affirmative by providing a linear-time
algorithm on a random access machine that computes the
number of distinct palindromes in a word.

Since 1973 and the first algorithm due to Slisenko [18],
many algorithms for searching for palindromes have been
developed. Manacher proposed an algorithm to find the
shortest palindromic prefix of a given finite word [14].
Galil was interested in “palindrome recognition in real-
time by a multitape Turing machine” [10]. Different par-
allel algorithms to find palindromes were also designed
[2,4]. Since then, palindromes and their applications have
continued to be studied [15,17,19].
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But as far as we know, the aim of all these algorithms
is to detect all occurrences of palindromes in a word. Here
we are concerned with a slightly different problem, which
is to determine all distinct palindromes in a given word.
For instance, the word aa contains 4 occurrences of palin-
dromes (the empty word; a, which occurs twice; and aa)
but only 3 distinct palindromes. Actually the two problems
are closely related, and we next show how to adapt known
algorithms to detect all palindromes for our purpose.

Section 2 explains the key element of our algorithm,
a result of Droubay et al. [8] showing that the number of
distinct palindromes occurring in a word is equal to the
number of prefixes of w having a unioccurrent longest
palindromic suffix (following [8] and other papers deal-
ing with rich words, we use the term “unioccurrent” for
“uniquely occurring”). Thus, we first compute an array LPS
that stores, for each prefix p of a word w , the length of
the longest palindromic suffix of p (Sections 3 and 4). Sec-
ond, we determine the number of distinct palindromes in
w using the key element (Section 5). Actually, the array
LPS is computed in Section 3 from another array LMP that
stores, for each prefix p, the length of the longest maxi-
mal palindrome that is a suffix of p, i.e., the length of the
longest palindromic suffix of p that cannot be extended as
a longer palindrome in w . Section 4 explains how a known
algorithm for computing the number of occurrences of
palindromes in a word can be used to compute LMP. Our
resulting algorithm is summarized in Section 6 and an ex-
ample is provided.

2. Distinct palindromes

We assume that the reader is familiar with basic no-
tions on words (see our references for instance). Here
we work over an arbitrary alphabet A and we let ε de-
note the empty word. Given a finite word w = w1 w2 · · · wn
over A with each wi in A, the length of w , denoted by
|w|, is n. The length of the empty word is 0. The word
wn wn−1 · · · w2 w1, denoted by w̃ , is called the reversal of
w . The word w is a palindrome if w = w̃ . Recall that a
word v is a factor (resp. a prefix, a suffix) of w if w = pvs
(resp. w = vs, w = pv) for some words p and s.

The following observation is the key element of our al-
gorithm.

Proposition 1. (See [8].) The number of distinct palindromes in
w is equal to the number of prefixes of w having a unioccurrent
longest palindromic suffix.

Let us explain this proposition. If two palindromes are
suffixes of the same prefix of a word w , then the shorter
one is also a prefix of the longer one, and so occurs pre-
viously in w . More precisely (see Fig. 1), if p1 and p2 are
suffixes of the same prefix, the shorter one, say p1, is a
suffix of the longer one, p2. Moreover, if p2 is a palin-
drome, p̃1 is a prefix of p2. When p1 is a palindrome,
this means that p̃1 = p1 is a prefix of p2. In other words,
any first occurrence u of a palindrome in a word w is the
longest palindromic suffix of a prefix p of w .

Moreover by the definition of unioccurrence, u is unioc-
current in p, and hence we get Proposition 1.
Fig. 1. Palindrome p1 is a suffix of palindrome p2, hence p1 is also a
prefix of p2.

3. Longest palindromic suffixes

The total number of occurrences of all palindromes in
a word can be quadratic in the length of the word, as
is the case for the word an . Hence algorithms (such as
Gusfield’s [13]) that compute all palindromes in a word
actually compute maximal palindromes; a notion we now
define. Given a word w = w1 · · · wn with each wi in A and
integers i, j with 1 � i � j � n, we let w[i.. j] denote the
factor wi wi+1 · · · w j−1 w j . (An occurrence of) a palindrome
p = w[i.. j] is said to be maximal in w if p is a prefix or a
suffix of w (that is i = 1 or j = n), or if w[i − 1.. j + 1] is
not a palindrome.

One can observe that the longest palindromic suffix
ending at a position i is not necessarily maximal in w . For
instance, in the word w = abba, the longest palindromic
suffix bb ending at position 3 is not maximal. Conversely
the longest maximal palindrome ending at position i (if
it exists) is not necessarily the longest palindromic suf-
fix ending at position i. For instance, the longest maximal
palindrome ending at position 7 in bbbaabbb is bb but the
longest palindrome ending at this position is bbaabb. De-
spite the two previous facts, Proposition 4 below shows
that if, for each position i of a word w , we know the
longest maximal palindrome in w ending at position i then
we can determine the longest palindromic suffix at each
position.

Definition 2. Let w be a word. For all i such that 1 � i �
|w|, we let LMP[i] denote the length of the longest max-
imal palindrome in w ending at position i whenever it
exists, and −1 otherwise:

LMP[i] = max
({−1} ∪ {

�
∣∣ w[i − � + 1..i] is a maximal

palindrome in w
})

.

Definition 3. Let w be a word. For all i such that 1 � i �
|w|, we let LPS[i] denote the length of the longest palin-
dromic suffix ending at position i:

LPS[i] = max
{
�

∣∣ w[i − � + 1..i] is a palindrome
}
.

Proposition 4. Let w be a word of length n. Then LPS[n] =
LMP[n], and for all i such that 1 � i < n, we have LPS[i] =
max(LMP[i], LPS[i + 1] − 2).

The array LPS can be computed in linear time from the array
LMP.

Proof. By the definition of maximal palindromes, the
longest palindromic suffix of w is maximal, and hence
LPS[n] = LMP[n].

Let i be such that 1 � i < n. Assume that LPS[i + 1] � 1,
that is LPS[i + 1] = 1. All palindromic suffixes of w[1..i]
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are maximal, since otherwise the suffix of w[1..i + 1]
of length LPS[i] + 2 > 1 would be a palindrome. Hence
LPS[i] = LMP[i] = max(LMP[i], LPS[i + 1] − 2).

Assume that LPS[i +1] � 2. This hypothesis implies that
the suffix of w[1..i] of length LPS[i + 1] − 2 is a palin-
drome, and hence by the definition of LPS, LPS[i] � LPS[i +
1] − 2. Moreover, if LPS[i] �= LMP[i], that is the length of
a palindromic suffix of w[1..i] is greater than LMP[i], then
LPS[i] + 2 � LPS[i + 1], and finally LPS[i] = LPS[i + 1] − 2.
Once again LPS[i] = max(LMP[i], LPS[i + 1] − 2).

The last statement in the proposition follows imme-
diately from the given formula to compute LPS[i] (see
lines 4–7 of the algorithm described in Section 6). �
4. Longest maximal palindromic suffixes

In order to prove that array LPS can be computed in
linear time, we need to prove the following proposition.
This section is devoted to its proof.

Proposition 5. The array LMP can be computed in linear time.

We first link the notion of longest maximal palindromes
ending at a position and the notion of the longest common
prefix of two words. Then we explain how to exploit an
algorithm given in Gusfield’s book [13].

Definition 6. Let w be a word and let i, j be integers
with 1 � i, j � |w|. We let lcpw,w̃(i, j) denote the length
of the longest common prefix of the suffix of w beginning
at position i and the suffix of the reversal w̃ of w begin-
ning at position j, i.e., the maximal integer k such that
w[i..i + k − 1] = w̃[ j.. j + k − 1].

Let us say that a palindrome is an even (resp. odd)
palindrome if its length is even (resp. odd). For a palin-
drome p = p1 · · · pm with pi ∈ A, let us recall that the
centre of p is the integer i such that pi pi+1 · · · pm =
pi−1 pi−2 · · · p1 if m is even, and pi pi+1 · · · pm = pi pi−1 · · ·
p1 otherwise.

Note that there is a basic link between maximal palin-
dromes and longest common prefixes. Let w be a word of
length n and let k be an integer such that 1 � k � n. The
maximal odd palindrome centred at position k has length
2� − 1 with � = lcpw,w̃(k,n − k + 1) and ends at position
k + � − 1. The maximal even palindrome centred at po-
sition k has length 2� with � = lcpw,w̃(k,n − k + 2) and
ends at position k + � − 1. In other words, for each i such
that 1 � i � n and for each maximal palindrome of length
L ending at position i, there exists a position k such that
L = 2lcpw,w̃(k,n − k + 1) − 1 and i = k + L+1

2 − 1 if L is
odd, or L = 2lcpw,w̃(k,n − k + 2) and i = k + L

2 − 1 if L is
even, and so we get the following result.

Proposition 7. For any word w and any integer i with 1 � i �
|w|, LMP[i] is the greatest element of the union of the following
three sets:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{−1},{
2lcpw,w̃

(
k, |w| − k + 1

) − 1
∣∣

∀k, i = k + lcpw,w̃

(
k, |w| − k + 1

) − 1
}
,{

2lcpw,w̃

(
k, |w| − k + 2

) ∣∣
∀k, i = k + lcpw,w̃

(
k, |w| − k + 2

) − 1
}
.

Gusfield gave a linear-time algorithm that computes all
maximal palindromes occurring in a word [13, p. 197].
Actually, his algorithm considers each position as the cen-
tre of odd and even palindromes and computes, for each
position k, the lengths � (lcpw,w̃(k,n − k + 1)) and �′
(lcpw,w̃(k,n −k +2)) corresponding to odd and even palin-
dromes of length 2�−1 and 2�′ centred at position k. Thus
using Proposition 7, we can compute the array LMP in lin-
ear time. Proposition 5 is proved.

5. Unioccurrent longest palindromic suffixes

Using Propositions 4 and 5, the longest palindromic suf-
fix ending at each position of a word can be computed
in linear time. By Proposition 1, we need to determine,
still in linear time, the prefixes of w having a unioccur-
rent longest palindromic suffix. We show how this can be
done below.

For each position i in a word w (1 � i � |w|), LPF[i] de-
notes the length of the longest previous factor at position
i, which is the length of the longest factor of w starting at
position i that previously occurs in w . More formally:

LPF[i] = max
{
�

∣∣ w[i..i + � − 1] is a factor of

w[1..i + � − 2] ∪ {0}}.
In [6], Crochemore and Ilie proved that the array LPF can
be computed in linear time. Let us observe the following.

Fact 8. For each i, 1 � i � |w|, the palindrome w[i − LPS[i] +
1..i] is unioccurrent in w[1..i] if and only if LPF[i − LPS[i] +
1] < LPS[i].

Indeed, for any prefix pv of w , the factor v is unioccur-
rent in pv if and only if the length of the longest previous
factor at |p| + 1 that previously occurs in w is less than
|v|.

Corollary 9. The number of non-empty distinct palindromes in
w is

#
{

i
∣∣ 1 � i � |w| and LPF

[
i − LPS[i] + 1

]
< LPS[i]}

and this quantity can be computed in linear time.

Proof. The first part is a direct consequence of Fact 8 and
Proposition 1. Since LPF and LPS can be computed in linear
time (resp. by Crochemore and Ilie’s algorithm [6] and by
Proposition 4), we obtain the desired result. �
6. Complete algorithm

We now summarize our algorithm CountDistinctPalin-

dromes(w) that counts and returns the number of distinct
palindromes in a word w .
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Algorithm 1. CountDistinctPalindromes(w)

1. n ← |w|
	 Compute the longest previous factors

2. LPF ← ComputeLPF(w)

	 Construct the longest maximal palindromic suffixes of w
3. LMP ← LongestMaxPalSuf(w)

	 Compute the longest palindromic suffixes of w
4. LPS[n] ← LMP[n]
5. for i ← n − 1 downto 1 do
6. LPS[i] ← max(LMP[i], LPS[i + 1] − 2)

7. end for
	 Compute the number of unioccurrent longest palindromic suffixes
of w including the empty word

8. NbPal ← 1
9. for i ← 1 to n do

10. if LPF[i − LPS[i] + 1] < LPS[i] then
11. NbPal ← NbPal + 1
12. end if
13. end for
14. return NbPal

Using Gusfield’s book [13] together with Propositions 4
and 7 and Corollary 9, we get the following result.

Theorem 10. The algorithm CountDistinctPalindromes(w)

returns the number of distinct palindromes occurring in a word
w in linear time.

Notice that the algorithm can be adapted to report all
distinct palindromes. Indeed, since the first occurrence of
a palindrome is a unioccurrent longest palindromic suffix
(see the discussion about Proposition 1), one can modify
line 11 of the above algorithm to report the palindrome
w[i − LPS[i] + 1..i], or just the pair (i − LPS[i] + 1, i) to
store all distinct palindromes in linear space.

Example 11.

a) Let w = abbabaababa.

i 1 2 3 4 5 6 7 8 9 10 11

w a b b a b a a b a b a

LMP 1 1 1 4 3 3 1 −1 3 8 5
LPS 1 1 2 4 3 3 2 4 6 8 5
LPF 0 0 1 2 2 1 3 4 3 2 1

b) Let w ′ = abbabaabbba.

i 1 2 3 4 5 6 7 8 9 10 11

w ′ a b b a b a a b b b a

LMP 1 1 1 4 3 3 1 4 2 2 5
LPS 1 1 2 4 3 3 2 4 2 3 5
LPF 0 0 1 2 2 1 3 2 3 2 1

The number of distinct palindromes in w is 11, and in w ′
is 10 since for w ′ , LPF[9 − LPS[9]+ 1] = 2 which is not less
than LPS[9] = 2.

7. Discussion and conclusion

We have presented a linear-time method to count all
distinct palindromes in a given word. Our algorithm can
be used to fulfill our initial aim, which was to decide
in linear time whether a word w is rich, i.e., if it con-
tains |w| non-empty distinct palindromes. It can also be
used to compute the palindromic defect defined in [5] (the
palindromic defect of a word w is the difference between
|w| + 1 and the number of distinct palindromes in w) in
linear time. A previous algorithm based on the same key
element but without time optimization was recently pro-
vided by A. Blondin-Massé, S. Brlek, A. Garon and S. Labbé
for computing this defect [3].

The algorithm we presented uses different algorithms
based on suffix trees (see Gusfield [13] mentioned in the
proof of Proposition 7) and suffix arrays (see Crochemore
and Ilie [6] in the proof of Corollary 9). Notice also that the
lcpw,w̃ can also be computed using a suffix array (see, e.g.,
[9]) and the LPF with a suffix tree (as mentioned in [6]).

It seems to be an open problem to find an on-line al-
gorithm to decide if a word is rich (or full), or to compute
the palindromic closure of a word. Such an algorithm could
exist since a word wa is rich if and only if w is rich and
the longest palindromic suffix of wa is unioccurrent in wa.
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