
J Comb Optim
DOI 10.1007/s10878-017-0170-9

The longest commonly positioned increasing
subsequences problem

Xiaozhou He1 · Yinfeng Xu1,2

© Springer Science+Business Media, LLC 2017

Abstract Based on the well-known longest increasing subsequence problem and
longest common increasing subsequence (LCIS) problem, we propose the longest
commonly positioned increasing subsequences (LCPIS) problem. Let A = 〈a1, a2,
. . . , an〉 and B= 〈b1, b2, . . . , bn〉be two input sequences.LetAsub =

〈
ai1 , ai2 , . . . , ail

〉

be a subsequence of A and Bsub =
〈
b j1 , b j2 , . . . , b jl

〉
be a subsequence of B such that

aik ≤ aik+1 , b jk ≤ b jk+1(1 ≤ k < l), and aik and b jk (1 ≤ k ≤ l) are commonly posi-
tioned (have the same index ik = jk) in A and B respectively but these two elements
do not need to be equal. The LCPIS problem aims at finding a pair of subsequences
Asub and Bsub as long as possible. When all the elements of the two input sequences
are positive integers, this paper presents an algorithm with O(n log n log logM) time
to compute the LCPIS, where M = min{max1≤i≤nai ,max1≤ j≤nb j }. And we also
show a dual relationship between the LCPIS problem and the LCIS problem.

Keywords Longest increasing subsequence · Common positions · Algorithms · Dual
relationship · Longest common increasing subsequence

1 Introduction

The two classic computer science problems—longest increasing subsequence (LIS)
problem and the longest common subsequence (LCS) problem—have been studied

B Xiaozhou He
xiaozhouhe126@qq.com

Yinfeng Xu
yinfengxu126@163.com

1 Business School, Sichuan University, Chengdu, China
2 State Key Lab for Manufacturing Systems Engineering, Xi’an, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0170-9&domain=pdf
http://orcid.org/0000-0002-6880-107X
Aaron
longest common increasing subsequence (LCIS) problem

Aaron
longest commonly positioned increasing subsequences (LCPIS) problem.

Aaron
Asub

Aaron
Bsub

Aaron
aik and bjk (1 ≤ k ≤ l) are commonly posi- tioned (have the same index ik = jk)

Aaron
do not need to be equal

Aaron
O (n log n log log M)

Aaron
M = min{max1≤i≤nai,max1≤j≤nbj}

J Comb Optim

for decades. The LCS problem, which is to find the length of the longest subsequence
common to both two given sequences, has been studied by many such as Masek and
Paterson (1980) and Bergroth et al. (2000). The LIS problem is to find the length of
the longest subsequence of a given sequence such that all elements of the subsequence
are in ascending order (Crochemore and Porat 2010; Fredman 1975).

Based on the two classical problems above, there is the longest common increasing
subsequence (LCIS) problem which is to find a longest common subsequence that is
monotone increasing of two given sequences. Let m and n (m ≤ n) be the lengths
of two input sequences respectively, and let l be the length of the output LCIS. Yang
et al. (2005) defined this problem and solved it using an algorithm within O(mn)
time and space. Then, when m = n and r , the number of ordered pairs of positions
at which the two sequences match, is relatively small, Chan et al. (2007) gave an
improved algorithm which runs in O(min(r log l, nl + r) log log n + n log n) time.
Later, if l is small, Kutz et al. (2011) solved the problem with an algorithm running
in O((m + nl) log log σ + m logm) time and O(m) space, where σ is the size of the
alphabet.

In this paper we propose the longest commonly positioned increasing subsequences
(LCPIS) problem. This problem aims at finding a pair of increasing subsequences as
long as possible from two input sequences such that the subsequences are constituted
by certain pairs of elements which are commonly positioned (i.e., have the same index)
in the two input sequences. This problem may appear in the model abstracted from
the analysis of securities market when we study the relationship between the prices
of two securities. A typical scenario is analyzing the long-time relationship between a
security and a relative index such as a mining company’s stock price and the industrial
production index. If we want to buy this stock and hold it for a long time, it would
be better that the stock price has a rising trend in a long period, during which time
we do not require that price continuously increases without breaks because some
short-term price fluctuation does not have impact on the ultimate profit. Thus this
long-term rising trend can be described by a long enough increasing subsequence of
the price sequence. As the mining company performance is positively correlated with
the industrial production index, we assume that the stock and the index have the same
trend. Therefore, we abstract their similar rising trend in a long period by using a pair
of commonly positioned increasing subsequences of the stock price sequence and the
index sequence. This kind of scenario motivates this LCPIS problem.

By using the subsequence to reflect the similarity of two sequences, LCS and LCIS
describe the similarity on the element values of the two sequences, while LCPIS shows
the similarity on the position of the elements of the two sequences.

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉 be two input sequences. Based
on the characteristic of the LCPIS, we can find it by processing A and B synchronously
in terms of the indexes. Then we can compute a LCPIS by applying the well-known
LIS-algorithmwhichmaintains a list such that the j th element of this list is the smallest
ending number of j-length increasing subsequence (Fredman 1975). Obviously, we
must do some modification to the LIS-algorithm to fit this LCPIS algorithm, since
each element of the LCPIS consists of two numbers. From this, we notice that the
efficiency of solving a LCPIS problem may be improved if there is any improvement
on the solution of the LIS problem.

123

Aaron
longest common increasing subsequence (LCIS) problem

Aaron
the longest commonly positioned increasing subsequences (LCPIS)

Aaron
analysis of securities market

Aaron
證券市場 securities market

Aaron
long-time relationship between a security and a relative index

Aaron
stock price has a rising trend in a long period

Aaron
not require that price continuously increases without breaks

Aaron
a long enough increasing subsequence of the price sequence

Aaron
a pair of commonly positioned increasing subsequences

Aaron
the similarity on the position of the elements of the two sequences.

Aaron
j th element of this list is the smallest ending number of j-length increasing subsequence

J Comb Optim

The paper is organized as follows. In the next section, we state problem definitions.
Based on the well-known LIS algorithm, Sect. 3 presents the algorithm for this LCPIS
problem. In Sect. 4, we give some supplementary proof of the correctness of the
algorithm and prove the time complexity. In Sect. 5, we present the dual relationship
between the LCPIS problem and the LCIS problem.

2 Definitions

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉 be two input sequences. And let
Asub =

〈
ai1 , ai2 , . . . , ail

〉
andBsub =

〈
b j1 , b j2 , . . . , b jl

〉
be respectively a subsequence

A and B. We give the following definitions.
LCPIS We give the definition of the LCPIS compared with the previous LCS and

LCIS which also describe sequence similarity.

(i) Asub and Bsub are a pair of LCPIS of A and B if Asub and Bsub are sequences
as long as possible such that ik = jk, 1 ≤ k ≤ l and aik ≤ aik+1 , bik ≤ bik+1 , 1 ≤
k < l.

(ii) Asub and Bsub are a LCS of A and B if Asub = Bsub, i.e., aik = b jk , 1 ≤ k ≤ l,
as long as possible.

(iii) Asub and Bsub are a LCIS of A and B if Asub = Bsub as long as possible such
that aik ≤ aik+1 , 1 ≤ k < l.

Example 1 Let A = 〈1, 3, 6, 4, 5, 2, 5, 9, 7, 8〉 and B = 〈2, 4, 3, 5, 3, 7, 2, 1, 6, 8〉
be two sequences both consisting of ten positive integers. Asub = 〈1, 3, 4, 7, 8〉 and
Bsub = 〈2, 4, 5, 6, 8〉 are a pair of LCPIS of A and B, where the elements of Asub and
Bsub are the first, second, fourth, ninth and tenth numbers of A and B respectively.
By contrast, 〈3, 5, 7, 8〉 is a LCIS, and 〈4, 5, 2, 8〉 is a LCS. $%

Couple For 1 ≤ i ≤ n, we say that (ai , bi), where ai and bi are commonly
positioned (have the same index) in A and B respectively, is a couple. We also say
that ai and bi are the first number and the second number of this couple, respectively.

Partial order relaitons For any two couples (ap, bp) and (aq , bq), we say that
(ap, bp) is weaker than (aq , bq) or (aq , bq) is stronger than (ap, bp) if and only if
ap ≤ aq and bp ≤ bq .

We process A and B synchronously in terms of the index. Hence we can draw on
the method used to solve the LIS problem, and thus, wemake somemodification to the
LIS-problem-algorithm used by Fredman (1975) to fit this LCPIS problem. Fredman
maintains a table T (j) (1 ≤ j ≤ n) to store the smallest ending number of all the
j-length increasing subsequences and compute T (j) (1 ≤ j ≤ n) by setting them as
the first row of the Young tableau. Similarly, we give the following definition.

Smallest ending couple First we call the couple made up of the two ending numbers
of a pair of CPIS the ending couple. Then we say that an ending couple is a smallest
ending couple of all pairs of j-length CPIS if there is not any other ending couple of
a pair of j-length CPIS weaker than it.

There are likely more than one smallest ending couples of all pairs of j-length CPIS
since not every two couples are comparable, which is the main difference between
LCPIS and LIS when designing an algorithm.

123

Aaron
1,3

Aaron
4

Aaron
7,8

Aaron
2,4

Aaron
5

Aaron
6,8

Aaron
ai and bi are commonly positioned (have the same index)

Aaron
ap ≤aq andbp ≤bq

Aaron
T(j) (1 ≤ j ≤ n)

Aaron
store the smallest ending number of all the j -length increasing subsequences

Aaron
an ending couple is a smallest ending couple of all pairs of j-length CPIS

Aaron
There are likely more than one smallest ending couples of all pairs of j -length CPIS

J Comb Optim

Smallest ending sets We define a series of smallest ending sets U j , 1 ≤ j ≤ n,
where Uj (1 ≤ j ≤ n) is the set of all the smallest ending couples of all pairs of
j-length CPIS.

Remark Assuming that the output LCPIS is of L-length,Uj (L < j ≤ n) is an empty
set.

For the sake of finding a pair of LCPIS, we use an array Link[i] (1 ≤ i ≤ n) to
record the index of the couple immediately preceding (ai , bi) in a pair of CPIS in the
step that (ai , bi) proceeds.

3 Algorithm

Lemma 1 For arbitrary two couples in any set, their first numbers (or their second
numbers) are not equal.

Proof It is easy to prove this lemma by contradiction. Assume that there is two couples
such as (ap, bp) and (aq , bq) (p < q) in a set such that their first number is equal:
ap = aq . Thus, if bp ≤ bq , then (ap, bp) is weaker than (aq , bq)whichmeans (aq , bq)
can rank after (ap, bp) in one CPIS. Else if bp > bq , then (ap, bp) is stronger than
(aq , bq). In this case, although (ap, bp) and (aq , bq) can be ending couples of CPIS
of the same length, (ap, bp) is not a smallest ending couple. So the assumption does
not hold and similar result goes to the ‘second number’. $%

Lemma 2 If we sort the couples in any set with their first numbers, then the second
numbers of these couples are in the descending order.

Proof Let the smallest ending couples of all pairs of k-length CPIS in Uk be
{(ai1 , bi1), (ai2 , bi2), . . . , (ait , bit)}. So we can sort the couples in Uk as 〈(a j1 , b j1),

(a j2 , b j2), . . . , (a jt , b jt)〉 such that a j1 < a j2 < · · · < a jt and our aim is to prove
b j1 > b j2 > · · · > b jt . For any two couples (a jp , b jp) and (a jq , b jq) (1 ≤ p < q ≤ t)
inUk , there must be b jp > b jq since a jp < a jq . Otherwise, (a jq , b jq) is not a smallest
ending couple. Thereby, b j1 > b j2 > · · · > b jt is proved. $%

To put (ai , bi), 1 ≤ i ≤ n one by one into the proper set, by Lemma 2, we can
construct n vEB trees T1, T2, . . . , Tn to store the smallest ending couples belonging to
U1,U2, . . . ,Un respectively and insert (ai , bi), 1 ≤ i ≤ n in the corresponding tree.
Since we use vEB tree, this algorithm can only be implemented when the elements
of the input sequences are all integers. Without loss of generality, we assume that
the largest number of A is smaller than that of B. Thus, in each tree we index the
smallest ending couples by their first numbers. So the universe size of each tree is
M = max1≤i≤nai . A vEB tree is the data structure proposed by van Emde Boas
(1977) that can support operations of an ordered integral array W . Four operations
that vEB tree can implement are in the following: (let the largest number in W be V)

• insert (x) which adds x to W in O(log log V) time;
• delete (x) which removes x from W in O(log log V) time;

123

Aaron
Link[i]

Aaron
preceding

Aaron
proceeds

Aaron
their first numbers (or their second numbers) are not equal.

Aaron
the second numbers of these couples are in the descending order.

Aaron
construct n vEB trees T1 , T2 , . . . , Tn to store the smallest ending couples belonging to U1, U2, . . . , Un

Aaron
smaller

Aaron
M = max1≤i≤nai

J Comb Optim

• predecessor (x) which returns the largest number ofw less than x in O(log log V)

time;
• successor (x) which returns the smallest number of W greater than x in

O(log log V) time.

In the first implement of the algorithm, we store (a1, b1) into T1, and set T2, . . . , Tn
be empty vEB trees. Then as i proceeds from 2 until n, perform a binary search on
the trees that are non-empty at the beginning of that loop, which are assumed to be
T1, . . . , Tk (1 ≤ k ≤ i), to find the largest index t such that Tt (1 ≤ t ≤ k) has a
couple weaker than (ai , bi), then insert (ai , bi) into Tt+1 and remove couples that are
no longer smallest ending couples from Tt+1 in the loop.

Before giving the algorithm, we prove some lemmas for the feasibility of the inser-
tion:

Claim In each loop, for any (ai , bi) in the non-empty tree Tp, there is at least one
couple in the tree Tp−1 weaker than (ai , bi).

Proof In the process of inserting (ai , bi) into tree Tp in previous loop,wemust first find
a couple in Tp−1 weaker than (ai , bi). We assume this weaker couple to be (a j , b j).
If (a j , b j) is still in Tp−1 in the loop the Claim discuss, then (a j , b j) is the couple we
need. Else if (a j , b j) has been removed, which means (a j , b j) is no longer a smallest
ending couple in Tp−1, then there must be another couple (ak, bk) inserted into Tp−1
and weaker than (a j , b j). Thus, (ak, bk) is also weaker than (ai , bi). $%

Lemma 3 In each loop, for any couple (ai , bi) and any two non-empty trees Tp and
Tq (1 ≤ p < q ≤ n):

(i) if there is a couple in Tp weaker than (ai , bi), then there is a couple in each tree
among T1, . . . , Tp weaker than (ai , bi);

(ii) if there is no couple in Tq weaker than (ai , bi), then there is no couple in
Tq , . . . , Tn weaker than (ai , bi).

Proof It is easy to prove (i) by using Claim 1 repeatedly. We can prove (ii) by contra-
diction. If there is a couple in Tr (r > q) weaker than (ai , bi), then by using (i) q − p
times, there is a couple in Tq weaker than (ai , bi), which contradicts the assumption.

$%

Corollary 1 We assume that T1, . . . , Tk(k ≤ i − 1) are non-empty trees and the rest
are empty after (a1, b1), . . . , (ai−1, bi−1) have been processed. There are three cases
when inserting (ai , bi):

(i) If there is no couple in T1 weaker than (ai , bi), then there is no couple in all the
trees weaker than (ai , bi). So (ai , bi) cannot be a smallest ending couple of a
pair of CPIS longer than 1 and (ai , bi) should be inserted into T1.

(ii) Else if there is a couple in Tk weaker than (ai , bi), then (ai , bi) is the smallest
ending couple of a pair of k + 1-length CPIS the other k numbers of this pair
come from T1, . . . , Tt respectively. Thus, (ai , bi) should be inserted into Tk+1 as
its first element.

123

Aaron
store (a1, b1) into T1, and set T2, . . . , Tn be empty vEB trees

Aaron
find the largest index t such that Tt (1 ≤ t ≤ k) has a couple weaker than (ai , bi)

Aaron
there is at least one couple in the tree Tp−1 weaker than (ai , bi).

Aaron
往後移

Aaron
inserting (ai , bi)

Aaron
T1

Aaron
Tk

J Comb Optim

(iii) Otherwise, there must be exactly one tree Tt (1 ≤ t < k) such that there is a
couple in each tree among T1, . . . , Tt weaker than (ai , bi) and there is no couple
in Tt+1, . . . , Tk weaker than (ai , bi). In this case, (ai , bi) is the smallest ending
couple of a pair of t + 1-length CPIS and (ai , bi) should be inserted into Tt+1.

$%

In order to find the tree Tt+1 that (ai , bi) is inserted into, by Lemma 3, we can apply
binary search on T1, . . . , Tk . Firstly, we determine if there is a couple in tree T[k/2]
weaker than (ai , bi). Since T[k/2] is a vEB tree and the smallest ending couples in it is
sorted with their first numbers, we can use operation predecessor (ai) on these couples
to find the couple with the largest first number which is not greater than ai , and we
assume this couple to be (ax , bx). And by Lemma 2, bx is the smallest second number
among those couples that have the first numbers less than ai . Thus, we compare bx
with bi . If bx ≤ bi , then T[k/2] contains (ax , bx) weaker than (ai , bi) and we continue
this search on T[k/2]+1, . . . , Tk . Otherwise, there is no couple in T[k/2] weaker than
(ai , bi) and we continue this search on T1, . . . , T[k/2]−1.

Example 2 In the loop i , for a tree Tp, we have to determine if there is a couple in
Tp weaker than (ai , bi). Assume that Tp consists of {(ap1 , bp1), . . . , (apm , bpm)} such
that ap1 < · · · < apm and bp1 > · · · > bpm . First, find the largest first number which
is not greater than ai (assumed to be apx), which means ap1 < · · · < apx ≤ ai <

apx+1 < · · · < apm . Then, compare bpx with bi : if bpx is not greater than bi , then at
least (apx , bpx) weaker than (ai , bi); otherwise, there is no couple in Tp weaker than
(ai , bi) for bp1 > · · · > bpx . $%

Remark Example 2 gives a detailed illustration to determine whether there is a couple
in any tree weaker than (ai , bi) in the loop i .

After completing this search and getting Tt , we assign Link[i] the index of the
couple that is weaker than (ai , bi) in Tt , and use the operation insert (ai) to insert
(ai , bi) into tree Tt+1. Then, by Lemma 2, we use operation predecessor (x) (x = ai
initially) to find the next couplewith a greater first number one by one and use operation
delete(x) to remove them if they have a second number greater than bi until the first
couple that has a second number less than bi .

Example 3 In the loop i , assume that Tt+1 consists of {(at1, bt1), . . . , (atq , btq)} before
inserting (ai , bi) such that at1 < · · · < atq and bt1 > · · · > btq . Also assume that at1 <
· · · < aty ≤ ai < aty+1 < · · · < atq and bt1 > · · · > btz > bi ≥ btz+1 > · · · > btq
such that y ≤ z. Thus, after inserting (ai , bi) into Tt+1, {(aty+1 , bty+1), . . . , (atz , btq)}
are not smallest ending couples anymore for they are weaker than (ai , bi). So we
should remove them from Tt+1. $%

Remark Example 3 illustrates why we may remove some couples from the tree after
we insert (ai , bi) into it in the loop i .

After all the couples from A and B are processed, L (i.e., the length of a pair of
LCPIS) turns out to be the number of non-empty trees. Also,We can arbitrarily choose

123

Aaron
Tt (1 ≤ t < k)

Aaron
binary search

Aaron
the largest first number which is not greater than ai , and we assume this couple to be (ax , bx)

Aaron
the largest first number which is not greater than ai (assumed to be apx)

Aaron
(ai , bi) into tree Tt+1

Aaron
predecessor (x)

Aaron
a second number greater than bi

Aaron
remove (>ai, >bi)

Aaron
aty ≤ai

Aaron
bi ≥btz+1

Aaron
the number of non-empty trees

J Comb Optim

a couple from the last non-empty tree and find the couple ranking right in front of it
in a pair of LCPIS by Link[i] (1 ≤ i ≤ n), and then repeat this process L − 1 times
to form a pair of LCPIS.

See Algorithm 1, the brief process of the algorithm.

Algorithm 1 the longest pair of CPIS of two sequences A, B
Input: two positive integral sequences: A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉
Output: the length of a pair of LCPIS L; a pair of LCPIS: Asub and Bsub
1: compute max1≤i≤nai and max1≤i≤nbi , and get M
2: construct n vEB trees T1, T2, . . . , Tn to store the smallest ending couples of increasing subsequences

of length 1, 2, . . . , n respectively
3: store (a1, b1) in T1 and it is indexed by ai
4: for i = 2 to n do
5: find the largest index t such that Tt has a couple weaker than (ai , bi) by using binary search on

non-empty trees;
6: assign the index of the couple in Tt that is weaker than (ai , bi) to Link[i];
7: insert (ai , bi) to Tt+1 and then remove those couples that are no longer smallest ending couples in

Tt+1
8: end for
9: L := the number of non-empty trees
10: choose a couple from the last non-empty tree arbitrarily and form a pair of LCPIS, Asub and Bsub, by

Link[i]

4 The correctness and time complexity of the algorithm

By Lemma 3, we can get a pair of CPIS by choosing one couple from each non-
empty tree. Now we prove that there cannot be a pair of CPIS with a length longer
than L (i.e., the number of non-empty trees) by contradiction. If there exists such a
longer pair of CPIS, by the pigeon hole principle, two couples of this pair must be
members (including those are removed later) of a same tree, since every couple is
or has been inserted into a tree though some of them are removed later. In any tree,
only those ‘removed’ couples can be stronger than the ‘later-inserted’ couples, but the
first number (resp. second number) of every ‘later-inserted’ couple ranks after that of
‘removed couples’ in the input sequence A (resp. B). So there cannot be more than
one couple in a tree appear in a pair of CPIS, which contradicts that a pair of CPIS
can be longer than L .

Theorem 1 The LCPIS of two sequences of n positive integers can be computed in
O(n log n log logM) time, where M is the less one of the maximum of A and the
maximum of B.

Proof The whole implementation can be divided into four parts as follows:

! At the beginning of the algorithm, we find the maximum of A and the maximum
of B in O(n) time.

" Next, we spend O(log n) time applying binary search on n trees to determine
which tree (ai , bi) should be inserted to, and for each tree we spend O(log logM)

123

Aaron
a pair of LCPIS by Link[i] (1 ≤ i ≤ n)

Aaron

Aaron
get M

Aaron
(a1, b1) in T1

Aaron
insert (ai , bi) to Tt +1

Aaron
remove those couples

Aaron
largest index t

Aaron
Link[i]

Aaron
pigeon hole principle

Aaron
O(n log n log log M)

Aaron
O(n

Aaron
O(logn) time applying binary search

Aaron
O (log log M)

J Comb Optim

time finding the proper couple to be compared with (ai , bi). In the loop that i
proceeds from 2 to n, this process takes O(n log n log logM) time.

Then, after finding the tree that (ai , bi) should be inserted to, we insert (ai , bi) in
this tree and remove those couples that are not a smallest ending couple anymore.
Even though we do not know how many couples we should remove in one step,
there are at most n couples being removed in all steps since every couple can
be inserted and removed at most one time. Since inserting one couple, finding a
couple needed to be removed, and removing a couple each needs O(log logM)

time, it takes O(n log logM) time to complete this process in the loop.
$ At last, it takes O(n) time to find the length of a pair of longest subsequences and

output a pair of LCPIS.

All in all, the algorithm takes O(n log n log logM) time. $%

5 The dual relationship between the LCPIS and LCIS

Notice that LCPIS is to find a pair of subsequences, while LCIS is to find a common
subsequence. Nevertheless, these two problems are closely related to each other. In
this section, we establish a certain dual relationship between the common increasing
subsequence (CIS) and the commonly positioned increasing subsequence (CPIS) by
the indexes. To describe concisely, the definitions of index sequence and dual sequence
are used.

Index sequence For any sequence S = 〈s1, . . . , sn〉 and any S’s subsequence
Ssub =

〈
si1, si2 , . . . , sil

〉
, we name 〈i1, i2, . . . , il〉 the index sequence of Ssub. Simi-

larly, after sorting S to be in ascending order to be S∗ =
〈
s j1, s j2 , . . . , s jn

〉
, we name

〈 j1, j2, . . . , jn〉 the index sequence of S∗.

Remark When we sort S, if there is two equal elements, then it is necessary to make
sure that the order of these two elements does not change in S∗. Formally speaking, if
there exists sp = sq , p < q in S, then in S∗, sp = s jk , sq = s jk+1 for some k.

Dual sequence Using the notation in the last definition, we say that the index
sequence of S∗, i.e., 〈 j1, j2, . . . , jn〉, is the dual sequence of S. This dual sequence is
denoted as DS .

Let A = 〈a1, a2, . . . , an〉 and B = 〈b1, b2, . . . , bn〉 be two given input sequences
and Asub =

〈
ax1 , ax2 , . . . , axl

〉
and Bsub =

〈
by1 , by2 , . . . , byl

〉
be an increasing

subsequence of them, respectively. The index sequences of Asub and Bsub are
IAsub = 〈x1, x2, . . . , xl〉 and IBsub = 〈y1, y2, . . . , yl〉, respectively.

Sort A and B in ascending order, respectively, to be A∗ =
〈
ai1 , ai2 , . . . , ain

〉

and B∗ =
〈
b j1 , b j2 , . . . , b jn

〉
. And thus, the dual sequences of A and B are DA =

〈i1, i2, . . . , in〉 and DB = 〈 j1, j2, . . . , jn〉, respectively.
Firstly, we describe the relationship between the CIS of A and B with the CPIS of

their dual sequences.

Lemma 4 IAsub (resp. IBsub) is an increasing subsequence of DA (resp. DB).

Proof Asub is a subsequence of A∗, since Asub is an increasing subsequence of A
and A∗ is the ascending order of A. Hence, IAsub is a subsequence of DA. In addition,

123

Aaron
at most n couples being removed

Aaron
O (n log log M)

Aaron
LCPIS is to find a pair of subsequences

Aaron
Index sequence

Aaron
the order of these two elements does not change in S∗

Aaron
two equal elements

Aaron
Dual sequence

Aaron
DS

Aaron
index sequences of Asub and Bsub

Aaron
IAsub (resp. IBsub) is an increasing subsequence of DA (resp. DB).

J Comb Optim

IAsub is naturally in ascending order. Therefore, IAsub is an increasing subsequence of
DA. Similarly, we can get the corresponding consequence on IBsub. $%
Lemma 5 If (i) A and B are two permutations of {1, 2, . . . , n}, and (ii) Asub = Bsub
is a CIS of A and B, then IAsub and IBsub make up a pair of CPIS of the dual sequences
DA and DB.

Proof The position that axk ranks in A∗ is the same with that byk ranks in B∗, because
Asub = Bsub, i.e., axk = byk , k = 1, . . . , l, and A∗ = B∗ = 〈1, 2, . . . , n〉. Hence, xk
and yk , k = 1, . . . , l rank the identical position in DA and DB , respectively. And with
Lemma 4, we prove this lemma. $%

Secondly, we describe the relationship between the CPIS of A and B with the CIS
of their dual sequences.

Lemma 6 If Asub and Bsub make up a pair of CPIS of A and B, then IAsub and IBsub
is a CIS of the dual sequences DA and DB.

Proof According the condition, xk = yk, k = 1, . . . , l, i.e., IAsub = IBsub. And with
Lemma 4, we prove this lemma. $%

On the basis of Lemmas 5 and 6, it is not hard to get the following conclusion.

Theorem 2 For two given sequences A and B, we have:

(i) The LCPIS of A and B have the same length with the LCIS of their dual sequences;
(ii) If A and B are two permutations of {1, 2, . . . , n}, the LCIS of A and B have the

same length with the LCPIS of their dual sequences.

Through Theorem 2, we know that any LCPIS problem can be converted to a LCIS
problem which has been solved by some algorithms (see Sect. 1), and vise versa.
Thus, any improvement on the complexity of the algorithm solving one of these two
problems can improve the efficiency or space usage of solving the other problem.

Acknowledgements This research was supported by the National Natural Science Foundation of China
under Grant 71371129.

References

Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms. In: String
processing and information retrieval, SPIRE 2000. Proceedings. Seventh international symposium on,
IEEE. pp 39–48

Chan WT, Zhang Y, Fung SP, Ye D, Zhu H (2007) Efficient algorithms for finding a longest common
increasing subsequence. J Comb Optim 13(3):277–288

Crochemore M, Porat E (2010) Fast computation of a longest increasing subsequence and application. Inf
Comput 208(9):1054–1059

FredmanML (1975) On computing the length of longest increasing subsequences. Discrete Math 11(1):29–
35

KutzM,BrodalGS,KaligosiK,Katriel I (2011) Faster algorithms for computing longest common increasing
subsequences. J Discrete Algorithms 9(4):314–325

Masek WJ, Paterson MS (1980) A faster algorithm computing string edit distances. J Comput Syst Sci
20(1):18–31

123

Aaron
IAsub and IBsub is a CIS of the dual sequences DA and DB

Aaron
TheLCPISofAandBhavethesamelengthwiththeLCISoftheirdualsequences

Aaron
the LCIS of A and B have the same length with the LCPIS of their dual sequences

Aaron
any LCPIS problem can be converted to a LCIS problem

J Comb Optim

van Emde Boas P (1977) Preserving order in a forest in less than logarithmic time and linear space. Inf
Process Lett 6(3):80–82

Yang IH, Huang CP, Chao KM (2005) A fast algorithm for computing a longest common increasing
subsequence. Inf Process Lett 93(5):249–253

123

	The longest commonly positioned increasing subsequences problem
	Abstract
	1 Introduction
	2 Definitions
	3 Algorithm
	4 The correctness and time complexity of the algorithm
	5 The dual relationship between the LCPIS and LCIS
	Acknowledgements
	References

