
Information and Computation 209 (2011) 705–716

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

LCS approximation via embedding into locally non-repetitive strings<,<<

G.M. Landaua,b,1,2, A. Levyb,c,∗, I. Newmana,2

a Department of Computer Science, University of Haifa, Haifa 31905, Israel
b Department of Software Engineering, Shenkar College, 12 Anna Frank, Ramat-Gan, Israel
c CRI, University of Haifa, Mount Carmel, Haifa 31905, Israel
d Department of Computer Science and Engineering, NYU-Poly, Six MetroTech Center, Brooklyn, NY 11201-3840, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received 13 October 2009

Revised 16 November 2010

Available online 23 December 2010

Keywords:

String algorithms

LCS approximation

Embedding

A classical measure of similarity between strings is the length of the longest common subse-
quence (LCS) between the two given strings. The search for efficient algorithms for finding
the LCS has been going on for more than three decades. To date, all known algorithms may
take quadratic time (shaved by logarithmic factors) to find large LCS. In this paper, the prob-
lem of approximating LCS is studied, while focusing on the hard inputs for this problem,
namely, approximating LCS of near-linear size in strings over a relatively large alphabet
(of size at least nε for some constant ε > 0, where n is the length of the string). We show
that, any given string over a relatively large alphabet can be embedded into a locally non-
repetitive string. This embedding has a negligible additive distortion for strings that are not
too dissimilar in terms of the edit distance.We also show that LCS can be efficiently approxi-
mated in locally-non-repetitive strings. Our newmethod (the embedding together with the
approximation algorithm) gives a strictly sub-quadratic time algorithm (i.e., of complexity
O(n2−ε) for some constant ε) which can find common subsequences of linear (and near
linear) size that cannot be detected efficiently by the existing tools.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Measuring similarity plays an important role in data analysis. As strings are a common data representation, similarity
measures defined on strings are widely used. A classical measure of similarity between strings is the length of the longest
common subsequence (LCS) between the two given strings. The search for efficient algorithms for finding the LCS has been
going on for more than three decades. The classical dynamic programming algorithm takes quadratic time [22,23] and
this complexity matches the lower bound in comparison model [1]. Many other algorithms have been suggested over the
years [6,7,11,13,14,17,19,20] (see also [12]). However, the state of the art is still not satisfying. To date, all known algorithms
may take near-quadratic time (i.e., quadratic shaved by logarithmic factors) to find large LCS. While sub-quadratic time
algorithms are known for sub-linear size LCS (e.g. [13]), none of the known algorithms can find LCS of linear size in
time polynomially smaller than quadratic, in the worst case (see discussion below). Analysis of very long strings and large
databases cannot settle with such methods.

< A preliminary version appeared in the proceedings of CPM 2009.
<< This work was partially supported by the Israel Science Foundation (Grant No. 1011/06).

∗ Corresponding author at: Department of Software Engineering, Shenkar College, 12 Anna Frank, Ramat-Gan, Israel.

E-mail addresses: landau@cs.haifa.ac.il (G.M. Landau), avivitlevy@shenkar.ac.il, avivitlevy@gmail.com (A. Levy), ilan@cs.haifa.ac.il (I. Newman).
1 Partially supported by the National Science Foundation Award 0904246, Israel Science Foundation Grant 347/09, Yahoo, Grant No. 2008217 from the United

States–Israel Binational Science Foundation (BSF) and DFG.
2 Fax: +972 4 824 9331.

0890-5401/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.12.006

http://dx.doi.org/10.1016/j.ic.2010.12.006
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2010.12.006
Aaron
embedded into a locally non- repetitive string

Aaron
We also show that LCS can be efficiently approxi- mated in locally-non-repetitive strings.

Aaron
quadratic time

706 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

A possible approach is to trade accuracy for speed and employ faster algorithms that approximate the LCS. In fact, for
measuring similarity a sufficiently long common subsequence as an evidence of similarity might be as good as the LCS itself.
Thus, a good approximation of the LCS that can be found fast is of great importance.

1.1. Approximating LCS in strings over small alphabet

The LCS can be trivially approximated to a factor of 1/|"|, where " is the alphabet, by just picking the symbol that has
the highest joint frequency, i.e., the symbol that has the majority of appearances in both strings. This means that we take
the subsequence of both input strings consisting of themost frequent symbol. If the alphabet size is o(nε) for every constant
ε > 0, which we call in this paper small alphabet, this trivial algorithm achieves sub-polynomial approximation ratio, which
was until very recently roughly the best known approximation ratio for the closely related edit distance [5,21]. 3 However,
when the alphabet of the strings gets larger this approximation becomes useless. Therefore, our goal is to design efficient
algorithms approximating LCS over strings with relatively large alphabet, i.e., alphabet of size at least nε .

1.2. Sparse vs. large LCS

There are known algorithms that take advantage of some given bounds or assumptions on the size of the LCS in order to
give better algorithms to find the LCS. Such algorithms typically introduce a tradeoff between the given bound on the LCS
and the time to find the LCS. We refer to such methods as Sparse LCS techniques. A relatively large alphabet may reduce the
number of matching symbols between the two given strings. In such cases the technique of Hunt–Szymanski can be used to
give efficient exact solutions that depend on the matchings set size [7,14]. However, the input strings may have a quadratic
size of matching pairs of symbols even if the alphabet is relatively large. In these cases, the Hunt–Szymanski algorithm
takes quadratic time. Other algorithms that assume some given bound on the LCS are known. Specifically, LCS of size O(nα),
where n is the string size and 0 < α < 1 is a constant, can be found in time O(n1+ α) [13]. Also, if the input strings are
LZ78-compressible then the LCS can be found in time quadratic in the number of codewords in the LZ78 compression [17,19].
However, these algorithms may still take quadratic time for finding LCS. Specifically, LCS of linear size and near-linear size
in non-compressible strings cannot be found in polynomially sub-quadratic time by these algorithms. Thus, the focus of
this paper is on efficiently approximating large LCS in strings over a relatively large alphabet. In fact, we will also present a
tradeoff, but our algorithm would perform better (in terms of the approximation ratio) as the LCS gets larger.

Note that, increasing the alphabet size artificially typically does not enable better results. Introducing new symbols to
both strings, increases the LCS and, therefore, may cause a loss of the information on the original LCS. On the other hand,
introducing different new symbols to each of the strings increases their edit distance. The increase of the ED badly affects the
possibility of using the advantage of a large alphabet, as we show in this paper. 4 In this aspect, this paper clarifies another
connection between the LCS and ED measures.

1.3. Related work

LCS is closely related to the edit distance (ED). The edit distance is the number of insertions, deletions, and substitutions
needed to transform one string into the other. The ED can also be computed by a quadratic time dynamic programming
procedure. In fact, using themethodsof LandauandVishkin [18], EDcanbecomputed in timemax{k2, n},wherek is thebound
on ED and n the length of the strings. Thus, a fast algorithm can find if the ED is small or not. Approximating ED efficiently
has proved to be quite challenging [3]. Batu et al. [9] gave a quasi-linear time algorithm that achieves approximation factor

n1/3+ o(1), where n is the length of the strings. The approximation ratio was improved by Andoni and Onak [5] to 2Õ(
√

log n)

by building on the seminal work of Ostrovsky and Rabani [21]. Only recently a poly-logarithmic approximation algorithm
for ED was introduced [4].

1.4. Results

In this paper, it is shown that large LCS can be efficiently approximated in strings with a relatively large alphabet if the ED
is not too large. Our algorithm has an additional parameter that depends on the periodicity of the input strings. Intuitively,
a periodic string is a string where there is a prefix that repeats itself throughout the string, possibly cut in the end of the
string. If such a phenomenon does not exist, the string is called aperiodic (see formal definitions in Section 2). We show

that, in particular, LCS of linear size can be approximated to a constant factor, if the edit distance is o
(
n|"|
t ln t

)
, where |"| is

the alphabet size and t in the worst case is the smaller period size in the given input strings (t = n in aperiodic strings).
It is important to note, that our algorithm does not need to verify that the requirement on the ED is indeed fulfilled. If
the requirement is not fulfilled the algorithm might fail to detect an existing large common subsequence, however, a large

3 Ostrovsky and Rabani [21] show an embedding into $1, which is stronger than an approximation algorithm. However, the time complexity of the embedding

is high. It can, therefore, be used for various tasks such as sketching and nearest neighbor search, but not as an edit-distance approximation algorithm.
4 It increases the distortion of the embedding into locally-non-repetitive strings.

Aaron
If the alphabet size is o(nε) for every constant ε > 0, which we call in this paper small alphabet

Aaron
size of the LCS

Aaron
A relatively large alphabet may reduce the number of matching symbols between the two given strings

Aaron
matchings set size

Aaron
can be found in time O(n1+α)

Aaron
approximating large LCS in strings over a relatively large alphabet

Aaron
a loss of the information on the original LCS

Aaron
increases their edit distance

Aaron
edit distance (ED)

Aaron
a fast algorithm can find if the ED is small or not

Aaron
Approximating ED efficiently has proved to be quite challenging

Aaron
In this paper, it is shown that large LCS can be efficiently approximated in strings with a relatively large alphabet if the ED is not too large

Aaron
週期性 periodicity

Aaron
repeats itself

Aaron
the edit distance is o n||

Aaron
not need to verify that the requirement on the ED

G.M. Landau et al. / Information and Computation 209 (2011) 705–716 707

Table 1

Worst case performance of our algorithm compared to sparse LCS techniques.

LCS size Alphabet size Period size ED limit Approximation ratio Complexity Sparse LCS Techniques

%(n) %(n) %(n) o
(

n
ln n

)
%(1) O(n log n) %(n2)

%(n) %(nε) %(n) o
(

nε

ln n

)
%(1) O

(
n2−ε log log n

)
%(n2)

%(n) %(nε) %(nε) o
(

n
ln n

)
%(1) O

(
n2−ε log log n

)
%(n2)

%
(

n
logc n

)
%(n) %(n) o

(
n

logc +1 n

)
%

(
1

logc n

)
O(n log n) %

(
n2

logc n

)

%
(

n
logc n

)
%(nε) %(n) o

(
nε

logc +1 n

)
%

(
1

logc n

)
O

(
n2−ε log log n

)
%

(
n2

logc n

)

%
(

n
logc n

)
%(nε) %(nε) o

(
n

logc +1 n

)
%

(
1

logc n

)
O

(
n2−ε log log n

)
%

(
n2

logc n

)

%
(
n

3
4

)
%(n) %(n) o

(
n

3
4

ln n

)

%

(
1

n
1
4

)
O(n log n) %

(
n

7
4

)

%
(
n

3
4

)
%(nε) %(n) o

(
n
ε− 1

4

ln n

)

%

(
1

n
1
4

)
O

(
n2−ε log log n

)
%

(
n

7
4

)

%
(
n

3
4

)
%(nε) %(nε) o

(
n

3
4

ln n

)

%

(
1

n
1
4

)
O

(
n2−ε log log n

)
%

(
n

7
4

)

common subsequence detected by the algorithm is indeed an evidence of similarity. For an alphabet of size at least nε ,
our algorithm complexity is always O(n2−ε log log n), but can be much better depending on the actual alphabet size and
the periodicity parameter of the input strings. For example, if the alphabet size is %(n) and the strings are aperiodic, the
time complexity of our algorithm is O(n log log n). Our contribution to the computation of large common subsequences is,
therefore, a strictly sub-quadratic time algorithm (i.e., of complexity O(n2−ε) for some constant ε) which can find common
subsequences of linear (and near linear) size that cannot be detected efficiently by the existing tools. A comparison of our
method to the existing tools is discussed in detail in the next paragraph.

The approximation ratio of our algorithm depends on the size of the LCS. It is better as the LCS is longer. Table 1 demon-
strates the worst case performance of our algorithm compared to sparse LCS techniques (specifically, Hirshberg’s Algo-
rithm [13]) for various LCS size, alphabet size and periodicity parameters. The complexity guarantees presented in the table
are a result of combining the theorems proved in this paper (Theorem 1 and Corollary 3 combined with Theorems 2 and 3
and Theorem 5). We stress that these are worst case performances also in the sense that they demonstrate the worst case
parameters for given LCS size,the alphabet size and the period length, but the true parameters for a given pair of strings can
be much better. The complexity of our method is superior compared to sparse LCS techniques when LCS of near-linear size
is concerned, as the first 6 lines of the table indicate. Moreover, even for strictly sub-quadratic size LCS, our method gives a

faster approximation algorithm if the alphabet is large enough. As lines 7 and 9 of the table indicate, for LCS of size %
(
n3/4

)

we get a faster algorithm for every ε > 1/2. Line 8 of the table represents a case where our technique should not be used
due to the requirement on the edit distance. In such a case, sparse LCS techniques should be preferred.

Our method works well for strings A and B where the ED is o
(
LCS(A, B) · |"|

t ln t

)
, where |"| is the alphabet size and t

depends on the periodicity of the input strings (can be of size n in aperiodic strings). In the worst case, the parameter t
is the size of the smaller period in the input strings. The effect of these parameters is also demonstrated in Table 1. Note
that, if the edit distance is %(nε), the exact LCS can be found in time max{n2ε, n}, by finding the edit positions and taking
the complement positions. However, for edit distance that is &(n/ logc n), for some c > 1, our algorithm is strictly sub-
polynomial, while computing the ED yields a near-quadratic time algorithm. Moreover, even for edit distance that is %(nε),
our algorithm complexity is always superior when ε > 2/3 and can be superior also for smaller ε, depending on the
parameters of the strings.

1.5. Techniques

Weexploit lowdistortionembeddingof stringsovera relatively largealphabet into locallynon-repetitive strings. Intuitively,
a locally non-repetitive string is a string where there exists a w > 0 for which in every w-size window in the string all
the symbols are distinct (see formal definition in Section 2). Local non-repetitiveness has been used for approximating
ED [8] and for embedding ED [10]. In [8] and [10], efficient algorithms for input strings that are non-repetitive or locally-
non-repetitive with good parameters are designed. Here, we show that any string over a relatively large alphabet can
be embedded into a locally non-repetitive string. We prove that this embedding has an additive negligible (contraction)

distortion, if ED = o
(
LCS(A, B) · |"|

t ln t

)
. We then show that local non-repetitiveness can be used to significantly speed-up

LCS approximation. The speed-up in the efficiency of our algorithm depends on the local non-repetitiveness parameters of
the given strings. We show that local non-repetitiveness can be efficiently sketched so that the best parameters for any two
strings can be found by looking at a poly-logarithmic size sketch.

Aaron
detected by the algorithm is indeed an evidence of similarity

Aaron
n2−ε log log n

Aaron
a strictly sub-quadratic time algorithm (i.e., of complexity O(n2−ε) for some constant ε)

Aaron
The approximation ratio of our algorithm depends on the size of the LCS

Aaron
Worst case

Aaron
when LCS of near-linear size

Aaron
even for strictly sub-quadratic size LCS, our method gives a fasterapproximationalgorithm

Aaron
ε > 1/2

Aaron
onε−14 lnn

Aaron
ED is o LCS(A, B) · ||

Aaron
low distortion embedding of strings

Aaron
locally non-repetitive strings

Aaron
w > 0

Aaron
the symbols are distinct

Aaron
local non-repetitiveness can be used to significantly speed-up t ln t LCS approximation

708 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

The contribution of this paper is threefold:

1. Suggesting a new method to deal with the computation of large common subsequences, that is capable of handling
in sub-quadratic time hard inputs that were not handled efficiently by all existing tools.

2. Understandingbetter the complexityof theproblem,by revealingnewaspects andassumptions thatmake theproblem
computationally easier.

3. Introducing the use of embedding techniques to the computation of common subsequences. While these techniques
were used for speeding-up the computation of ED in [5,9], we are not aware of any use of such methods in the
computation of LCS. We stress that, the use of [5,9] is mainly theoretical because their approximation ratio is super
poly-logarithmic. Ourmethod ismore suited for practical purpose becausewe givemuch better approximation ratios.

The paper is organized as follows. Section 2 presents basic definitions and properties. Section 3 presents the embedding
of strings over a relatively large alphabet into locally-non-repetitive strings, namely, (1,n/c)-non-repetitive strings, for some
c. In Section 4 we present approximation algorithms for this special case of (1,n/c)-non-repetitive strings, where c is a
parameter. Finally, in Section 5 we show that the best parameters for a given pair of strings can be quickly found by looking
at local non-repetitiveness sketches (LNR-sketches) of the strings. It is shown that our LNR-sketch size matches the lower
bound, and a lower bound on the space needed by a LNR-sketching algorithm in the streaming model is also given.

2. Preliminaries

In this section, we give the basic definitions and properties used in this paper.
Problem definition: Let A and B be two strings of length n over an alphabet ". The longest common subsequence problem is to
find the longest subsequence, denoted by LCS(A, B), appearing in both A and B.

We will abuse notation throughout the paper by letting LCS(A, B) denote both the longest common subsequence and its
length. It will be clear from the context which is referred to. The well-known Property 1 specifies the relation between the
LCS and ED.

Property 1. Let A, B be two n-long strings, then

n − LCS(A, B) ≤ ED(A, B) ≤ 2 · (n − LCS(A, B)).

Definition 1 (LCS preserving embedding). LetX andY be two classes of strings of lengthn. A LCS preserving embedding ofX into
Y with distortion ρ , is an injective mapping f : X $→ Y, such that for every pair A, B ∈ X, ρ · LCS(A, B) ≤ LCS(f (A), f (B)) ≤
LCS(A, B), where ρ ≤ 1.

Note that we require the embedding to be non-expanding. It is only allowed to have a bounded contraction factor.

2.1. Periodicity and non-repetitiveness

Periodicity and non-repetitiveness are two basic properties of a given string that are closely related, as we formally state
below.

Definition 2. Let S be a string of length n. S is called periodic if S = PiP′, for some 2 ≤ i ≤ n, where P is a prefix of S such that
|P| ≤ n/2, and P′ is a prefix of P. The smallest such prefix P is called the period of S. If S is not periodic it is called aperiodic.

Definition 3 (A t-substring). Let S be a string of length n. The t-substring of S starting at position i, i ≤ n− t + 1, is the string
S[i]S[i + 1] . . . S[i + t − 1].

Definition 4 (Locally non-repetitive strings). A string S is called (t,w)-non-repetitive if every w successive t-substrings in S
are distinct, i.e., for each interval {i, . . . , i + w − 1}, the w substrings of length t that start in this interval are distinct. If
t = 1 then S is simply called locally-non-repetitive.

In the next definition of non-repetitiveness it is required that t-substrings in the range are not only distinct, but also
different enough with respect to an additional parameter d.

Definition5 (Locally strongnon-repetitiveness). Astring S is called (t,w, d)-non-repetitive if for each interval {i, . . . , i + w−1}
everypairof t-substrings si, sj inS starting in this intervalhaveH(si, sj) ≥ d,whereH(si, sj) is theHammingdistancebetween
si and sj (i.e., the number of indices in which si differ from sj).

Remark. Throughout the paper we refer to a wrap-around of the given string S, i.e., indices are taken modulo n, the length
of the string. Thus, all t-substrings arewell-defined for every t. If S is periodic then thewrap-around is defined as to continue
the period from the point it is cut in the string S.

Aaron
sub-quadratic time

Aaron
embedding techniques to the computation of common subsequences

Aaron
better approximation ratios

Aaron
local non-repetitiveness sketches (LNR-sketches)

Aaron
longest common subsequence problem

Aaron
LCSpreservingembedding

Aaron
distortion ρ

Aaron
non-expanding

Aaron
PisaprefixofS

Aaron
P′ is a prefix of P

Aaron
(t,w)-non-repetitive

Aaron
連續 successive

Aaron
S 中的每 w 個連續 t 子串是不同的

Aaron
strong

Aaron
(t,w,d)-non-repetitive

Aaron
H(si,sj) ≥ d

Aaron
wrap-around

Aaron
則迴繞被定義為從它在字符串 S 中被切割的點開始繼續該週期。

Aaron
ge are not only

G.M. Landau et al. / Information and Computation 209 (2011) 705–716 709

Property 2. Let S be a (t,w)-non-repetitive string, then:

1. S is a (t′,w)-non-repetitive string, for every t′ > t.
2. S is a (t,w′)-non-repetitive string, for every w′ < w.

Property 3. Let S be a string of length n, then:

1. If S is a periodic string with period length p then S is a (p, p)-non-repetitive string.
2. If S is aperiodic then S is a (n,w)-non-repetitive string, where n/2 ≤ w ≤ n.

Lemma 1. Let S be an n-long string over an alphabet" with period length p, then S is a (p, |"|/2, |"|/2)-non-repetitive string.
If S is aperiodic then S is an (n, |"|/2, |"|/2)-non-repetitive string.

Proof. We prove the lemma for a periodic string with period length p. The proof for aperiodic string is similar by Property 3.
First, note5 that p ≥ |"|. Let si be any p-substring in S, and let si + j be any p-substring in S such that 0 < j < |"|/2. It is
sufficient to show thatH(si, si + j) ≥ |"|/2. Let " = {σ1, . . . , σ|"| } and for r = 1, . . . , |"|, let xr be the first appearance of
σr in si. Consider the sorted list of the xr ’s, Lx . We claim thatH(si, si + j) ≥ |"| − j, because each of the last |"| − j xr ’s in Lx
adds at least one mismatch toH(si, si + j). The lemma follows. !

Note that, Lemma 1 gives a guarantee for worst case parameters of locally strong non-repetitiveness. For a given pair of
strings, the best parameters, i.e., the larger parameters w and d for which the t-substrings are strongly non-repetitive, can
be much better. For example, consider an n-long string over an alphabet of size nε , with period size p > nε . The lemma
only assures that the string is (p, nε/2, nε/2)-non-repetitive, however, the string can actually be (p, p, d)-non-repetitive,
for d ≥ nε/2.

3. Embedding strings over a relatively large alphabet into local non-repetitive strings

By Lemma 1, a relatively large alphabet assures the existence of a large enough parameterw and a parameter t such that
the t-substrings are locally strong non-repetitive, for a large enoughparameter d.Wewill exploit this to define an embedding
into (1,n/c)-non-repetitive strings, for which the solutions of Section 4 are applicable. This embedding has only an additive
negligible distortion, if the ED is asymptotically negligible compared to the LCS size and the ratio between the alphabet
size and the periodicity parameter of the string. Thus, it facilitates the approximation of large LCS in general strings over a
relatively large alphabet with effectively the same approximation ratio as the algorithms for (1,n/c)-non-repetitive strings,
provided that the ED is not large. For clarity of exposition, a simple idea of an embedding that may have an unbounded
distortion is described first. We then define and analyze the embedding used in this paper.

3.1. A naive embedding

The idea of the embedding is to exploit Property 3, fromwhichwe know that every n long string S over an alphabet" is a
(t,w)-non-repetitive string for some |"| ≤ t ≤ n, |"| ≤ w ≤ n. Therefore,we can define a new symbol for each t-substring
(overall, a linear number of new symbols) and replace the original string by the sequence of new symbols according to the
sequence of the t-substrings in S. This embedding yields a (1,n/c)-non-repetitive string where c ≤ 2n

|"| .
6

We now analyze the distortion of this embedding. Given the original n-long strings A and B, denote by A′, B′ the strings
after employing the embedding. Clearly, LCS(A′, B′) ≤ LCS(A, B) because positions with different symbols remain different.
Also, each of the n − LCS(A, B) symbols that do not participate in LCS(A, B) affects only t substrings, thus,

LCS(A′, B′) ≥ n − t(n − LCS(A, B)) = LCS(A, B) − (t − 1)(n − LCS(A, B)).

By Property 1 we get

LCS(A′, B′) ≥ LCS(A, B) − t − 1

2
· ED(A, B).

Thus, this embedding has an additive distortion affected both by t and ED(A, B), which can both be &(n).

5 In this paper, we consider the alphabet set to include only symbols that actually appear in the string.
6 Note that since |"| is relatively large the algorithms of Section 4 are efficient.

Aaron
S 中的每 w 個連續 t 子串是不同的

Aaron
t′ > t

Aaron
w′ < w

Aaron
(p, p)-non-repetitive string

Aaron
(n, w)-non-repetitive string

Aaron
n-longstring

Aaron
(p,||/2,||/2)-non-repetitivestring.

Aaron
(n, ||/2, ||/2)-non-repetitive string

Aaron
H(si,si+j)≥||/2

Aaron
H(si,si+j)≥||−j

Aaron
t-substrings are strongly non-repetitive, can be much better

Aaron
By Lemma 1, a relatively large alphabet assures the existence

Aaron
w

Aaron
t

Aaron
d

Aaron
into (1,n/c)-non-repetitive strings

Aaron
失真 distortion

Aaron
ED is asymptotically negligible

Aaron
ED is not large

Aaron
Property 3

Aaron
(t, w)-non-repetitive string

Aaron
n long string S

Aaron
a linear number of new symbols

Aaron
t-substrings

Aaron
(1,n/c)-non-repetitive string

Aaron
LCS(A′, B′) ≤ LCS(A, B)

Aaron
affects only t substrings

Aaron

Aaron

Aaron

Aaron

Aaron

Aaron
ED(A, B 2

Aaron
this embedding has an additive distortion affected both by t and ED(A, B)

Aaron
|| is relatively large

Aaron
Property 1.

710 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

3.2. The low distortion embedding

We, therefore, use the following variation of the naive embedding. We use a randomized algorithm to find a final deter-
ministic embedding function f . Fix a random binary vector v of length t − 1, where each coordinate is 1 with probability
2d ln t

|"| for an arbitrarily chosen constant d > 2, and 0 otherwise. Note that v is well defined for a relatively large alphabet

(i.e., of size at least nε), since for |"| ≥ nε and t ≤ n, 2d ln t
|"| = o(1).

Given an n-long string S over an alphabet " define f (S) as follows. Each location i contains a symbol σ (i) which is the
new symbol assigned to the string Si, Si + i1 , . . . , Si + ik , where i1, . . . , ik are the locations in the (t − 1)-substring starting
at position i + 1 in S for which the content of the corresponding coordinates i1, . . . , ik in v are 1. Note, that there is no
assumption whatsoever on any property of the original string S. Lemma 2 and Corollary 1 give the local non-repetitiveness
guarantee on the string produced by the embedding f . Lemma 3 bounds the distortion of the embedding f .

Lemma 2. Let S be a n-long string over an alphabet" then, there exists a parameter t, |"| ≤ t ≤ n such that f (S) is (1, |"|/2)-
non-repetitive string with probability at least 1 − 1/td−2.

Proof. By Lemma 1, there exists a t, |"| ≤ t ≤ n, such that S is a (t, |"|/2, |"|/2)-non-repetitive string. Let i, j be
any indices in S such that |i − j| < |"|/2, and let si be the t-substring starting at position i in S. By Lemma 1 we have
H(si, sj) ≥ |"|/2. We first claim that

Prob[H(f (si), f (sj)) = 0] ≤ 1/td.

This is because Prob[H(f (si), f (sj)) = 0] =
(
1 − 2d ln t

|"|

)|"|/2
, if none of the |"|/2 coordinates in which si and sj differ are

chosen. Thus, by the union bound

Prob[∃i, j : H(f (si), f (sj)) = 0] ≤ 1/td−2.

The lemma follows. !

Note that, we can check if the resulting string f (S) is indeed a locally non-repetitive string in linear time. If it is not, the
choice of v can be repeated until the result is a locally non-repetitive string. The expected number of vectors v that should
be chosen is less than 2. Corollary 1 follows.

Corollary 1. Let S be a string over an alphabet " then, there exists a deterministic embedding f such that f (S) is a (1, |"|/2)-
non-repetitive string.

Lemma 3. Let A, B be n-long strings over an alphabet ", then

LCS(A, B) ≥ LCS(f (A), f (B)) ≥ LCS(A, B) − d(t − 1) ln t

|"|
· ED(A, B)

Proof. First note that LCS(A, B) ≥ LCS(f (A), f (B)), because positions with different symbols in A and B remain different in
f (A) and f (B). We now bound the contraction factor of f . Since by the definition of the randomized embedding f the first
symbol of the ith t-substring is always taken and the rest i + 1, . . . , i + t − 1 locations of the ith t-substring are taken with

probability 2d ln t
|"| for a constant d > 2, we have:

LCS(f (A), f (B)) ≥ n −
(

1 +
2(t − 1)d ln t

|"|

)

(n − LCS(A, B))

= LCS(A, B) − 2(t − 1)d ln t

|"|
· (n − LCS(A, B))

≥ LCS(A, B) − d(t − 1) ln t

|"|
· ED(A, B),

where the last inequality is due to Property 1. !

Let RL(n, ") be the class of n-long strings over an alphabet ", |"| ≥ nε , for some ε > 0. Let LNR(n) be the class of
locally-non-repetitive n-long strings. Theorem 1 follows.

Aaron
We use a randomized algorithm to find a final deter- ministic embedding function f

Aaron
d > 2

Aaron
||≥n andt ≤n

Aaron
new symbol assigned to the string

Aaron
no assumption

Aaron
random binary vector v

Aaron
|| ≤ t ≤ n

Aaron
f (S) is (1, ||/2)-

Aaron
non-repetitive string with probability at least 1 − 1/td−2

Aaron
a deterministic embedding f

Aaron
|i − j| < ||/2

Aaron
si be the t-substring starting at position i

Aaron
we can check if the resulting string f (S) is indeed a locally non-repetitive string in linear time

Aaron
less than 2

Aaron
LCS(A, B) ≥ LCS(f (A), f (B))

Aaron
first symbol of the ith t-substring is always taken

Aaron
總是取第 i 個 t 子串的第一個符號，其餘的依照對應的機率取

Aaron

Aaron
(t-1)*機率

Aaron

Aaron
Property 1.

Aaron
RL(n,)

Aaron
LNR(n)

Aaron
locally-non-repetitive n-long strings

Aaron
n-long

Aaron
|| ≥ nε

G.M. Landau et al. / Information and Computation 209 (2011) 705–716 711

Fig. 1. %(1/c)-approximation algorithm for LCS in (1,n/c)-non-repetitive strings.

Theorem 1. For every A, B ∈ RL(n, "), there exists a parameter t, |"| ≤ t ≤ n, and an embedding f : RL(n, ") $→ LNR(n)

such that f (A), f (B) ∈ LNR(n) and if ED(A, B) = o
(
LCS(A, B) · |"|

t ln t

)
then f has distortion 1 − o(1).

4. Approximating LCS in (1,n/c)-non-repetitive strings

In this section, we present efficient algorithms to approximate the LCS if both strings are (1,n/c)-non-repetitive strings.
The algorithms framework is based on the observation that a (1,n/c)-non-repetitive string for small values of parameter c is
sufficiently close to being a permutation string (i.e., a string with distinct characters). Finding the LCS in n-long permutation
strings is actually finding the Longest Increasing Subsequence (LIS) of a string over the alphabet {1, . . . , n}, which can be
done fast.

4.1. %(1/c)-approximation algorithm

The algorithm first divides both input strings A and B into c blocks of size O(n/c). Since A and B are (1,n/c)-non-repetitive,
each of their blocks is a permutation string. Therefore, the LCS between any block of A and any block of B can be found fast
using the LIS algorithm. Our algorithm exploits this fact by finding the LIS between all c2 pairs of block of A and block of
B, and chooses the pair with the best score. Note that, the LIS algorithm commonly gets only a single input, however, we
refer to the algorithm as having two input strings A′ and B′, because the input string B′ is used to impose an ordering of the
alphabet according to which LIS(A′) is computed. A detailed description of the algorithm is given in Fig. 1. Lemma 5 and
Corollary 2 assure the approximation ratio of this algorithm. Lemma 4 gives its complexity guarantee. Theorem 2 follows.

Lemma 4. Algorithm Approx1LCS runs in O(cn log log(n/c) + c2) steps.

Proof. It is a well-known fact that LIS can be computed in (n log log n) time for n-length strings. Algorithm Approx1LCS
computes c2 times LIS on strings of size n/c. Therefore, the total time for steps 2–4 isO(cn log log(n/c)). Step 5 takes another
c2 steps. The lemma then follows. !

In the proof of Lemma 5 (and Lemma 7 below), we use the term a match defined as follows. Let A and B two strings and
let LCS(A, B) be the longest common subsequence of A and B. Assume that LCS(A, B) > 0 and let ik (respectively, jk), 0 <
k ≤ LCS(A, B), be the locations in which LCS(A, B) appears in A (respectively, in B). Then, the pair 〈ik, jk〉, 0 < k ≤ LCS(A, B),
is called a match.

Lemma 5. Let A and B be two strings of length n, then there exists a pair of blocks Ai, Bj such that li,j ≥ %(1/c) · LCS(A, B).

Proof. Denote LCS(A, B) = Opt. For every i, j denote by LCS(Ai, Bj) the number of matches Opt has between blocks Ai and

Bj . Clearly, $i,j ≥ LCS(Ai, Bj). We now claim that there exists a pair i, j such that LCS(Ai, Bj) ≥ Opt
2e·c .

Let αi denote the number of matches Opt = Opt0 has in block Ai. Let i = 1, j = 1, A(0) = A, B(0) = B and α
(0)
i = αi,

β
(0)
i = βi. Consider the following two steps starting from k = 0:

1. Consider the block Ai. If α
(k)
i < Optk

2c
throw the block Ai and let i be i + 1. Throw from each of the blocks in B(k) the

matches Optk has with Ai to form B(k +1). Since only α
(k)
i matches were thrown,

Optk +1 = LCS(A(k), B(k +1)) ≥
(
1 − 1

2c

)
Optk.

Aaron
RL(n,) → LNR(n)

Aaron
close to being a permutation string

Aaron
(LIS) of a string over the alphabet

Aaron
into c blocks of size O(n/c)

Aaron
a permutation string

Aaron
LIS algorithm

Aaron
c2 pairs

Aaron
pair with the best score

Aaron
because the input string B′ is used to impose an ordering of the alphabet according to which LIS(A′) is computed

Aaron
分割成c塊

Aaron
因為輸入字符串 B' 用於強加字母表的順序，根據該順序計算 LIS(A')

Aaron
LIS can be computed in (n log log n) time for n-length strings

Aaron
O(cnloglog(n/c)+c2)steps.

Aaron
ik 是 LCS(A, B) 在 A 中出現的位置

Aaron
be the locations in which LCS(A, B) appears in A

Aaron
match

Aaron
li,j ≥ (1/c) · LCS(A, B)

Aaron
the number of matches

Aaron
LCS(Ai, Bj) ≥ Opt

Aaron
αi denotethenumberofmatches

Aaron

Aaron

Aaron
如果 α(k) < Optk，則拋出塊 Ai，讓 i 成為 i + 1。
從 B(k) 中的每個塊中拋出 Optk 與 Ai 的匹配以形成 B(k+1)。

Aaron
α(k) < Optk i 2c

Aaron
(1/c)-approximation algorithm

712 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

Fig. 2. %(k/c)-approximation algorithm for LCS ≥ kn/c in (1,n/c)-non-repetitive strings.

Denote the matches of Optk +1 within block Bj by β
(k +1)
j . Let k be k + 1.

2. Consider the block Bj . If β
(k)
j < Optk

2c
throw the block Bj and let j be j + 1. Now throw from each of the blocks in A(k)

the matches Optk has with Bj to form A(k +1). Since only β
(k)
j matches were thrown,

Optk +1 = LCS(A(k +1), B(k)) ≥
(
1 − 1

2c

)
Optk.

Denote the matches of Optk +1 within block Ai by α
(k +1)
i . Let k be k + 1.

Repeatedly, loop on the steps 1–2 above, where each time a block is thrown k is increased by one, until the first pair of blocks

Ai, Bj such that each has at least Optk
2c

matches is encountered or there are no more blocks to throw. In the first case we get:

LCS(Ai, Bj) ≥ Optk

2c
≥ Opt

2c
·
(
1 − 1

2c

)k

≥ Opt

2e · c

In the second case, since the total number of blocks is 2c, the process stops with Opt2c ≥ Opt ·
(
1 − 1

2c

)2c ≥ Opt · e−1,

which cannot happen. Therefore, we must have stopped in the first case. The lemma then follows. !

Corollary 2. The approximation ratio of algorithm Approx1LCS is %(1/c).

Theorem 2. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A, B) can be approximated to a factor of %(1/c) in
O(c · n log log(n/c) + c2) steps.

4.2. %(k/c)-approximation algorithm

The %(1/c) approximation ratio of algorithm ApproxLCS1 is quite well if c is constant. However, as c grows it gets worse.
In fact, for c =

√
n it gives nothing but a trivial approximation. We thus give another algorithm with the same framework

as algorithm Approx1LCS, in which additional work is done (but asymptotically takes the same time) in order to improve
the approximation ratio. This new algorithm does not choose only one pair of blocks with best score, but rather gather a
legal sequence of pairs of blocks with total best score. A legal sequence does not contain crossing pairs. Clearly, any legal
sequence defines a common subsequence of A and B. Fortunately, such a legal sequence of pairs can be found by a dynamic
programming procedure in O(c2) time. We refer to this procedure byMaximumWeightLegalSequence. A detailed description
of the algorithm is given in Fig. 2. Lemma 7 assures the approximation ratio of this algorithm. Lemma 6 gives its complexity
guarantee. Theorem 3 follows.

Lemma 6. Algorithm Approx2LCS runs in O(cn log log(n/c) + c2) steps.

Aaron
用 β(k+1) 表示塊 Bj 內 Optk+1 的匹配

Aaron
β(k) < Optk j 2c

Aaron

Aaron

Aaron
loop on the steps 1–2 above

Aaron
Ai, Bj such that each has at least Optk matches

Aaron
no more blocks to throw

Aaron

Aaron
(k/c)-approximation algorithm

Aaron
if c is constant

Aaron
takes the same time

Aaron
gather a legal sequence of pairs of blocks with total best score.

Aaron
O(c2) time

Aaron
MaximumWeightLegalSequence

Aaron
cnloglog(n/c)+c2

Aaron
分割成c塊

G.M. Landau et al. / Information and Computation 209 (2011) 705–716 713

Proof. Lines 1–4 of the algorithm are identical to algorithm Approx1LCS and therefore cost O(cn log log(n/c)) steps as
computed in the proof of Lemma 4. The graph construction in Line 5 can be done in time linear in its size. Since the graph has
2c vertices and c2 edges, line 5 can be computed in O(c2) steps. The computation of the maximumweighted legal sequence
in line 6 can be done in O(c2) steps (linear in the size of the graph) by using a simple dynamic programming procedure
(MaximumWeightLegalSequence) based on the following dynamic programming formulation:

OPT(i, j) = min{W(i, j) + OPT(i − 1, j − 1),OPT(i, j − 1),OPT(i − 1, j)},

where OPT(i, j) is the maximumweighted legal sequence defined on the subgraph containing only vertices {i′ ∈ V1 |ı′ ≤ i}
and {j′ ∈ V2 | j′ ≤ j}. We compute the dynamic programming table by alternating between the computation of a row and
the computation of a column. Since, by the dynamic programming formulation each cell can be computed in O(1) time, the
overall computation takes O(c2). The lemma follows. !

Lemma 7. Algorithm Approx2LCS approximates LCS(A, B) ≥ kn/c to a factor of %(k/c).

Proof. Let A1, . . . , Ar be the blocks in A that participate in LCS(A, B) and let α1, . . . , αr be the fraction (of n) that each of
them contributes to LCS(A, B), respectively. Since each block is of size n/c, ∀i, αi ≤ 1/c. Also, Opt =

∑
αi ≥ k/c. For each

block Ai let ki be the number of blocks in B that participate in the matches of LCS(A, B). Since there are c blocks in B and
the matches do not cross,

∑
ki ≤ 2c. Note that Lalg ≥ ∑

αi/ki, because the algorithm chooses the maximum weight legal
sequence, therefore, for each block Ai at least the average contribution αi/ki is taken by the algorithm.

Split the set of blocks in A into two sets, the set X of blocks for which ki > 4c/k, and the rest of the blocks.

Claim 1.
∑

Ai∈X αi ≤ Opt
2
.

Since |X | ≤ ∑
ki/

4c
k

≤ k
2
, and therefore,

∑
Ai∈X αi ≤ k

2
· 1
c

≤ Opt
2
.

Claim 2. Lalg ≥ k
8c

· Opt.
Since Lalg ≥ ∑

αi/ki ≥ ∑
Ai /∈X αi/ki ≥ k

4c

∑
Ai /∈X αi, and by Claim 1 this is at least k

4c
· Opt

2
.

The lemma then follows. !

Theorem 3. Let A, B be two (1,n/c)-non-repetitive strings then LCS(A, B) ≥ kn/c can be approximated to a factor of %(k/c) in
O(c · n log log(n/c) + c2) steps.

5. Sketching local non-repetitiveness

The performance of our method for approximating LCS relies on the extent of local non-repetitiveness parameters of the
given strings. It is natural to ask, how quickly these parameters can be found. The almost linear time algorithms presented
in this section do not require any pre-computed information on the strings (e.g. the periodicity), and approximate the best
parameters to a factor of 2. For our method of approximating the LCS of two given strings this is sufficient. However, the
strength of these algorithms lies in the fact that they are sketching algorithms, i.e., they are only used once for a given
string and produce a small (poly-logarithmic) size information from which the best parameters can be deduced. This use is
valuable for databases applications, in which a query string is typically compared with many stored strings to find a similar
(or the most similar) stored string. Short one-time pre-computed sketches of the stored strings save many repeated linear
time scans, and thus speed-up computations.

In this section, we show that the best parameters t and w for a given pair of strings can be found by looking at O(log2 n)
size independently pre-computed local non-repetitiveness sketches (LNR-sketch) of the strings. The LNR-sketch gives the exact
parameter w for which the best t parameter is approximated to a factor of 2. The implementation of the embedding f from
Section 3 using the construction of strong local non-repetitiveness sketches (SLNR-sketch) is then described. We also show
that our LNR-sketch size matches a lower bound we give on the LNR-sketch size. Finally, a lower bound on the space needed
by a LNR-sketching algorithm in the streaming model is also given.

5.1. The LNR-sketching algorithms

If both t and w are given in advance, a trivial sketch of one bit can be built. Simply, keep the one bit answer of the check
if S is a (t,w)-non-repetitive string. This check can obviously be done in time O(tn), and therefore the sketching algorithm
is efficient (i.e., has a polynomial time complexity). In what follows, we assume that the t and w parameters are unknown
when the sketching is done, which is the interesting case. We explain the algorithms for a given t parameter, and then use
them for the case that t is not given.

Aaron
The graph construction in Line 5 can be done in time linear in its size

Aaron
2c vertices and c2 edges

Aaron
line 6 can be done in O(c2) steps

Aaron
dynamic programming

Aaron
LCS(A,B)≥kn/c

Aaron
LCS(A,B)≥kn/c

Aaron
how quickly these parameters can be found

Aaron
a factor of 2

Aaron
sketching algorithms

Aaron
Short one-time pre-computed sketches

Aaron
SLNR-sketch

Aaron
O(log2 n) size independently pre-computed local non-repetitiveness sketches (LNR-sketch

Aaron
embedding f

Aaron
if S is a (t, w)-non-repetitive string

Aaron
time O(tn)

714 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

5.1.1. Sketching with a given t
The sketching algorithms are based on finding the minimum distance between any repeating t-substrings. This distance

is returned as the w parameter. The correctness of this returned value is ensured by Property 2. The number of bits needed
to store this value is O(log n). Finding the minimum distance between any repeating t-substrings can be found either by
an O(n log2 t) time deterministic algorithm or by an O(n) time randomized algorithm. The deterministic algorithm uses a
renaming process as in the stringmatching algorithm of Karp–Miller–Rosenberg [15]. It is usually assumed, for convenience,
that t is a power of 2. This assumption can be removed by using standard splitting techniques, while adding only a O(log t)
factor to theO(n log t) complexity. The randomized algorithmuses theRabin–Karp stringmatching algorithm [16] toproduce
a distinct polynomial representing each t-substring with high probability. In both the deterministic and the randomized
algorithmafter the “names” representing the n t-substrings are determined all is needed is a linear scan to find theminimum
distance between repeating “names”.

5.1.2. Sketching with unknown t
In order to have the w for every t, we find the exact parameter w for every t = 2i, 0 ≤ i ≤ log n. For each such t we use

the algorithms described above for a given t. Since we only do that for O(log n) values of t, and for each the sketch size is
O(log n) we get a total O(log2 n) sketch size. For each value t, thew parameter is the one stored for the closest power of two
that is less than or equal to t. The correctness of this value is ensured by Property 2.

Theorem 4. Let A, B be n long strings, then, there exist (almost) linear algorithms giving LNR-sketch of size O(log2 n) enabling
finding the maximum w and approximating to a factor of 2 the minimum t for which A and B are both (t,w)-non-repetitive.

5.2. Sketching strong local non-repetitiveness

The embedding from strings over a relatively large alphabet into (1,n/c)-non-repetitive strings described in Section 3
requires local non-repetitiveness under the random choices of the vectors v. The algorithms described in Section 5.1 cannot
detect such localnon-repetitiveness.Nevertheless,weshowthat the ideasof the sketchingalgorithmsdescribed inSection5.1
canbeusedalso for this case.Wecall it strong localnon-repetitiveness sketch (SLNR-sketch). 7 ByCorollary1, a constantnumber
of vectors v are enough so that two given strings can be compared using the same vector v. Therefore, below we ignore the
fact that the algorithm is repeated for each choice of v and keep each of the resulting sketches. 8

To this end, the substrings as defined by the binary vector v (defined in Section 3), are considered. Observe that both the
deterministic and randomized sketching algorithms described in Section 5.1 work as well for non-contiguous strings. Such
non-standard use of the KMR algorithm also appears in [2]. Note that the binary vector v depends only on " and t and is
independent of S. Thus, the definition of the vector can be done in the sketching time. Also, note that in order to be able
to compare any two strings (with possibly different sizes of joint alphabets and different t parameter) we must define a v
vector for each possible pair. To cover all possible values of ", for each t a power of two, O(log2 n) vectors v (for each " a
power of two and t a power of two) are computed. Once a specific vector v is defined, the sketch for non-repetitiveness can
be done as explained in Section 5.1. This would take O(n log t) time because here t is a power of 2. Since O(log2 n) sketches
of size O(log n) are used, Theorem 5 follows.

Theorem 5 (The embedding implementation). There exist (almost) linear algorithms that for every n long strings A and B, give
SLNR-sketch of size O(log3 n) which enables finding the maximumw and approximating to a factor of 2 the minimum t for which
f (A) and f (B) are both (1,w)-non-repetitive.

Denote by γ (n), the time for computing the embedding f fromSection 3. Theorem5 shows that γ (n) = Õ(n). Corollary 3,
which is the algorithmic application of Theorem 1, follows.

Corollary 3. Let A,B be two n-long strings over an alphabet ". Then, there exists a parameter t, |"| ≤ t ≤ n, such that if

ED(A, B) = o
(
LCS(A, B) · |"|

t ln t

)
, any algorithm approximating LCS(f (A), f (B)) to a factor of α in O(β(n)) steps, can be used to

approximate LCS(A, B) to a factor of α − o(1) in O(β(n)) + Õ(n) steps.

5.3. Lower bound on LNR-sketch size

Note that thewparameter as a functionof t is anon-decreasingmonotone function that takevalues in the range {1, . . . , n}.
We show a feasible set of monotone sequences, i.e., monotone sequences that representw as a function of t for some string.
The size of this set gives a lower bound on the number of bits needed to represent a LNR-sketch.

7 Should not be confused with the local strong non-repetitiveness.
8 A database application requires another logarithmic factor in the size of the database to assure that every pair of strings can be compared using the same

vector v.

Aaron
given t

Aaron
unknown t

Aaron
the minimum distance

Aaron
O(log n)

Aaron
O(n log2 t) time deterministic algorithm

Aaron
O(n) time randomized algorithm

Aaron
Karp–Miller–Rosenberg

Aaron
Rabin–Karp string matching algorithm

Aaron
O(log n) values of t

Aaron
t is a power of 2

Aaron
O(log2 n) sketch size

Aaron
LNR-sketchofsizeO(log2n)

Aaron
ByCorollary1,aconstantnumber of vectors v are enough so that two given strings can be compared using the same vector v

Aaron
binary vector v depends only on and t and is independent of S

Aaron
define a v vector for each possible pair

Aaron
O(log2 n) vectors v

Aaron
O(n log t)

Aaron
SLNR-sketch of size O(log3 n)

Aaron
γ (n) = O ̃ (n)

Aaron
ED(A, B) = o LCS(A, B) · ||

Aaron
non-decreasing monotone function

G.M. Landau et al. / Information and Computation 209 (2011) 705–716 715

Lemma 8. The size of the feasible set is at least
(

n
log n

)log n
.

Proof. First, observe that the following is a feasible set of sequences. Divide the range {1, . . . , n} into n/ log n blocks. In
each block choose one point to be the value ofw for all t values in the block range. The number of different sequences in this
set is (n/ log n)log n. !

The next theorem is an immediate corollary of Lemma 8.

Theorem 6. Any LNR-sketch of n-length string requires &(log2 n) bits.

5.4. A &(n/ log n) Space Lower Bound of LNR-Sketching Algorithms in Streaming Model

We now show that LNR-sketch cannot be done in streaming model. Consider the following one-round two-party com-
munication setting for the problem. Alice has a string S1 of length n and Bob has a string S2 of length n. Alice and Bob should
decidewhether there exists a t-substring in S1 repeating in S2while Alicemay pass at most k bits to Bob.We call this setting
the repeating t-substring problem. Lemma 9 shows that k = &(n). Theorem 7 follows.

Lemma 9. The repeating t-substring problem requires passing &(n) bits.

Proof. We show that there exists an instance of the repeating t-substring problem for which k = &(n). We define the
following instance of the repeating t-substring problem: S1 isπ1 ∈ Sn and S2 is π2 ∈ Sn. Consider the booleanmatrix for all
possible pairs 〈π1, π2〉 ∈ Sn × Sn, representing whether or not a t-substring in π1 appears in π2. The k bits that are passed

fromAlice to Bob divide thismatrix into 2k parts that can be separated using the k passed bits. However, within each part the
passed bits give no separating information. Thus, the matrix entry within each part must depend solely on π2. Therefore, in
each part the matrix rows within each column must be all zeroes or all ones. The number of permutations for which there
exists a repeating t-substring, i.e., the number of columns forwhich all rows are 1, is: n ·n · (n− t)!. Since thematrix is divided

into 2k parts there exists a partwith 1/2k-fraction of the total number of permutations. Thus, 2k ≥ n!
n·n·(n−t)! ≈ (n/e)n

((n−t)/e)(n−t) .

Therefore, k ≥ n log n− (n− t) log(n− t) + t log e = &(n) (because if t ≤ n/2 then the n log n term is dominant, otherwise
the O(t) term is &(n)). !

Theorem 7. Any LNR-sketching deterministic algorithm in streaming model requires &(n/ log n) space.

6. Conclusions

We show how embedding strings over a relatively large alphabet into locally non-repetitive strings can be exploited for
approximating LCS in strictly sub-quadratic time. An important contribution of the paper is also conceptual in suggesting a
differentpointof viewthatmake theproblemalgorithmically easier.Our techniqueworkswell provided that thedissimilarity
in terms of the edit distance of the given strings is not too large. It is still an open question whether LCS can be well-
approximated in strings over a relatively large alphabet with large dissimilarity.

References

[1] A.V. Aho, D.S. Hischberg, J.D. Ulman, Bounds on the complexity on the longest common subsequence problem, Journal of the ACM 23 (1) (1976) 1–12.
[2] A. Amir, Y. Aumann, O. Kapah, A. Levy, E. Porat, Approximate string matching with address bit errors, in: P. Ferragina, G.M. Landau (Eds.), CPM, LNCS, vol.

5029, Springer, 2008, pp. 118–129.
[3] A. Andoni, R. Krauthgamer, The computational hardness of estimating edit distance, in: in: Proceedings of the 48th Annual IEEE Symposium on Foundations

of Computer Science (2007) 724–734.
[4] A. Andoni, R. Krauthgamer, K. Onak, Polylogarithmic approximation for edit distance and the asymmetric query complexity, FOCS, 2010, pp. 377–386.
[5] A. Andoni, K. Onak, Approximating edit distance in near-linear time, in: in: Proceeding of the 41st ACMSymposiumon Theory of Computing (2009) 199–204.
[6] A. Apostolico, C. Guerra, The longest common subsequence problem revisited, Algorithmica 2 (1987) 315–336.
[7] B.S. Baker, R. Giancarlo, Longest common subsequence from fragments via sparse dynamic programming, in: G. Bilardi, G.F. Italiano, A. Pietracaprina, G.

Pucci (Eds.), Proceedings of the 6th European Symposium on Algorithm, LNCS, vol. 1461, Springer-Verlag, August 1998, pp. 79–90.
[8] Z. Bar-Yossef, T.S. Jayram, R. Krauthgamer, R. Kumar, Approximating edit distance efficiently, in: in: Proceedings of the 45th Annual IEEE Symposium on

Foundations of Computer Science, 2004, pp. 550–559.
[9] T. Batu, F. Ergün, C. Sahinalp, Oblivious string embeddings and edit distance approximation, in: in: Proceedings of the 17th Annual ACM-SIAM Symposium

on Discrete Algorithms, 2006, pp. 792–801.
[10] M. Charikar, R. Krauthgamer, Embedding the Ulam metric into $1, Theory of Computing 2 (2006) 207–224.
[11] M. Crochemore, G.M. Landau, M. Ziv-Ukelson, A sub-quadratic sequence alignment algorithm for unrestricted cost matrices, SIAM Journal on Computing 32

(5) (2003) 1654–1673.
[12] D. Gusfield, Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.
[13] D.S. Hirshberg, Algorithms for the longest common subsequence problem, Journal of the ACM 24 (4) (1977) 664–675.
[14] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM 20 (1977) 350–353.
[15] R. Karp, R. Miller, A. Rosenberg, Rapid identification of repeated patterns in strings, arrays and trees, in: Proceeding of the 4th Annual ACM Symposium on

the Theory of Computing vol. 4 (1972) 125–136.
[16] R.M. Karp, M.O. Rabin, Efficient randomized pattern-matching algorithms, IBM Journal of Research and Development 31 (2) (1987) 249–260.

Aaron
point of view that make the problem algorithmically easier

Aaron
Polylogarithmic approximation for edit distance and the asymmetric query complexity

Aaron
The longest common subsequence problem revisited

Aaron
n logn

Aaron
(log2n)bits

Aaron
passing(n)bits

Aaron
(n/logn)space

716 G.M. Landau et al. / Information and Computation 209 (2011) 705–716

[17] G.M. Landau, B. Scheiber, M. Ziv-Ukelson, Sparse LCS common substring alignment, Information Processing Letters 88 (6) (2003) 259–270.
[18] G.M. Landau, U. Vishkin, Fast string matching with k differences, Journal of Computer and System Sciences 37 (1) (1988) 63–78.
[19] G.M. Landau, M. Ziv-Ukelson, On the common substring alignment problem, Journal of Algorithms 41 (2) (2001) 338–359.
[20] W.J. Masek, M.S. Paterson, A faster algorithm for computing string edit distances, Journal of Computer and System Sciences 20 (1980) 18–31.
[21] R. Ostrovsky, Y. Rabani, Low distortion embeddings for edit distance, in: in: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005)

218–224.
[22] D. Sankoff,Matching sequences under deletion/insertion constraints, in: Proceedings of the National Academy of Sciences United States of America 69 (1972)

4–6.
[23] R.A. Wagner, M.J. Fischer, The string to string correction problem, Journal of the ACM 21 (1) (1974) 168–173.

	LCS approximation via embedding into locally non-repetitive strings
	Introduction
	Approximating LCS in strings over small alphabet
	Sparse vs. large LCS
	Related work
	Results
	Techniques

	Preliminaries
	Periodicity and non-repetitiveness

	Embedding strings over a relatively large alphabet into local non-repetitive strings
	A naive embedding
	The low distortion embedding

	Approximating LCS in (1,n/c)-non-repetitive strings
	(1/c)-approximation algorithm
	(k/c)-approximation algorithm

	Sketching local non-repetitiveness
	The LNR-sketching algorithms
	Sketching strong local non-repetitiveness
	Lower bound on LNR-sketch size
	A (n/logn) Space Lower Bound of LNR-Sketching Algorithms in Streaming Model

	Conclusions

