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Abstract—Task scheduling is critical for obtaining a high 

performance schedule in heterogeneous computing systems 
(HCS) and searching an optimal scheduling solution has been 
shown to be NP-complete. In this paper, a hybrid heuristic-
genetic algorithm with adaptive parameter (HGAAP) is 
proposed by combining a heuristic scheduling algorithm and a 
genetic algorithm. An existing common heuristic scheduling 
algorithm is utilized for generating the initial generation to 
speed up the convergence rate of HGAAP. The parameters of 
crossover probability and mutation probability are adaptive 
according to the current evolution status to promote the 
evolution and find better solution. Moreover, the redundant 
individuals in each generation are removed to keep the diversity 
of population during the iteration. The experimental results on 
randomly generated task sets validated that our algorithm can 
obtain better scheduling results than existing algorithms. 

Keywords— adaptive parameters; directed acyclic graph; 
genetic algorithms; heterogeneous computing systems; task 
scheduling 

 

I. INTRODUCTION 
A heterogeneous computing system (HCS) is composed 

of diverse sets of processors interconnected via a high speed 
network. Such systems can execute computationally 
intensive parallel and distributed applications. Generally, an 
application can be decomposed into a set of tasks with 
precedence constraints and it is usually modeled as a directed 
acyclic graph (DAG). In a DAG, the nodes represent tasks 
and the edges represent precedence constraints between tasks. 
By assigning the tasks to appropriate processors and 
executing them as the required order, the total execution time 
of the application, usually called the makespan, can be 
reduced. Hence, searching an efficient scheduling of an 
application on HCS is critical to achieve high performance.  

The objective of a task scheduling algorithm is to search 
an efficient scheduling for an application so that the 
makespan of the application can be minimized and all 
precedence constraints between tasks can be met. This 
problem has been well-studied for many years and it has been 
proved to be a NP-complete problem[1]. In general, task 
scheduling algorithms can be divided into two categories: 
static task scheduling and dynamic task scheduling[2]. In this 

paper we focus on the static scheduling on HCS. For static 
scheduling algorithms, all needed information about the 
application must be known in advance. Although various 
algorithms have been proposed, they can only produce near-
optimal solutions[3]. Hence, there is still room for the 
development of better task scheduling algorithms. 

This paper proposes a hybrid heuristic-genetic algorithm 
with adaptive parameter (HGAAP) to further improve the 
performance of existing algorithms. HGAAP uses the 
existing well-studied heterogeneous earliest finish time 
(HEFT) heuristic algorithm[3] to generate the initial 
scheduling solution, which is inserted into the initial 
population of HGAAP to enhance the convergence rate. For 
applications with various DAG characteristics, fixed 
crossover probability and mutation probability cannot always 
lead to the optimal solutions. Therefore, in HGAAP, the 
values of both crossover probability and mutation probability 
are adaptive according to the current evolution status. 
Moreover, the redundant individuals of the population are 
removed during the iteration, which can enhance the diversity 
of the population. 

The rest of the paper is organized as follows: Section II 
reviews the related work. Section III gives an overview of the 
problem. Section IV presents the proposed algorithm. Section 
V compares the performance of the proposed algorithm with 
existing algorithms. We conclude the paper in Section VI. 

 

II. RELATED WORK 
The related work on task scheduling algorithms can be 

classified into three main groups: heuristic scheduling 
algorithms, meta-heuristic scheduling algorithms, and hybrid 
scheduling algorithms[3]. 

Heuristic algorithms usually can search a near optimal 
solution in polynomial time. These algorithms follow a 
particular rule, searching one path in the solution space and 
ignoring others[2]. There are mainly three kinds of heuristic 
algorithms: list scheduling, cluster scheduling and 
duplication-based scheduling[2, 3]. List scheduling is the most 
popular heuristic algorithms. The HEFT algorithm[3] and 
LDCP algorithm[6] are list scheduling algorithms. These 
algorithms usually have two phases: task prioritizing and 
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processor selection. In task prioritizing phase, each task is 
assigned a priority and a task list is generated by sorting tasks 
in descending order of their priorities. In processor selection 
phase, the task with the highest priority is removed from the 
list and assigned to a fittest processor. Parallelization 
methods are used in clustering algorithms to balance 
communication costs of tasks. Tasks with heavily 
communicating cost are assigned to the same cluster, and the 
number of clusters is assumed to be unlimited. Then clusters 
are mapped to the processors. If the number of clusters is 
bigger than that of processors, clusters are merged so that its 
number is equal to or less than that of processors. The 
execution order of tasks in each processor is decided 
according to particular criteria. An example of clustering 
algorithms is introduced in [7]. The duplication-based 
scheduling algorithms execute the key tasks on more than one 
processor so that communication costs between tasks can be 
reduced. These algorithms have two steps. Firstly, a 
clustering or list scheduling algorithm is used to generate an 
initial schedule. Then the tasks that have a large number of 
dependent tasks are selected and assigned to processors in 
which their dependent tasks have been assigned. An example 
of duplication-based algorithm is introduced in [8]. 

Meta-heuristic scheduling algorithms are guided-random-
search-based algorithms that incorporate a combinatorial 
process for searching schedule solutions. There are many 
kinds of meta-heuristic algorithms. GA[5] is the most popular. 
In GA, the possible schedule solutions are encoded into 
chromosomes. It mimics the principles of evolution and 
natural genetics to operate the population to evolve a new 
population. After sufficient number of generations, the best 
individual is selected from the population as the schedule 
solution. 

Heuristic algorithms search one path in the search space and 
ignore others. In multimodal problems, it always obtains a 
near-optimal solution. Meta-heuristic scheduling algorithms 
overcome this problem by incorporating a combinatoric 
process in the search for schedule solutions. However, meta-
heuristic algorithms usually need more time to obtain the 
results. Therefore, to speed up the convergence time and 
obtain more efficient solutions, hybrid scheduling algorithms 
that combine heuristic and meta-heuristic algorithms have 
been introduced recently. For example, H2GS[4] is a hybrid 
algorithm. It combines the Longest Dynamic Critical Path 
(LDCP)[6] algorithm and the Genetic Algorithm for 
Scheduling (GAS)[5]. LDCP is used to generate a quality 
initial schedule solution for GAS to speed up the convergence. 
GAS operates genetic operators to the population to generate 
a better schedule solution. 

 

III .PROBLEM DESCRIPTION 
The task scheduling problem for an application on HCS 

is to minimize the makespan by effectively allocating tasks 
to processors and meeting all precedence constraints.  

Generally, an application can be represented by a DAG. 
A DAG is defined by a tuple (T, E), where T is a set of n 
tasks and E is a set of e edges. The i task in the set of tasks is 

represented by ti. When ti is allocated to a processor, it must 
be executed sequentially in this processor without 
interruption. The edge started by ti and ended up with tj is 
represented by ei,j that represents the precedence constraint 
between ti and tj. Each edge ei,j has a value that represents the 
communication time when transmitting data from ti to tj. It 
also indicates that tj should not be executed until ti completes 
its execution. A task may have zero or more input tasks and 
output tasks. Only if all its input tasks complete, can the task 
be executed. A task with no input task is an entry task and a 
task with no output task is an exit task. The communication 
time between tasks allocated in the same processor is 
assumed to be zero. 

 
Fig. 1. Example of a DAG application and computation cost table 

The HCS is represented by P, a set of m processors with 
different performances. The computation cost of tasks on 
different processors is stored in an n×m matrix C. Each 
element ci,j in C represents the computation cost of ti on 
processor pj. This paper assumes that the computation cost of 
tasks in different processors is monotonic. In other words, if 
the computation cost of ti on pj is higher than that on pk, then 
the computation cost of any tasks on pj is equal to or higher 
than that on pk. Fig.1 gives an example of an application 
consisting of six tasks and a HCS with two processors. 

 

IV. THE PROPOSED ALGORITHM 
The proposed HGAAP algorithm is a hybrid genetic 

scheduling algorithm that combines heuristic algorithm and 
genetic algorithm. It uses the schedule solution generated by 
HEFT as an individual of the initial population. Because the 
solution generated by HEFT is located at an approximate area 
around the optimal solution, the objective of HGAAP is to 
improve the performance by searching around the 
approximate area. The operation of the HGAAP algorithm is 
described in Fig.2. 

A  Schedule Encoding and Chromosome Decoding 
In HGAAP, a two-dimensional array is employed to 

represent chromosomes. The number of rows indicates the 
number of processors and the number of columns indicates 
the number of tasks. Each row is a substring that represents a 
processor in the HCS. If a task is assigned to a processor, the 
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task will be put into the substring that represents the 
processor. To make sure that any chromosome can be 
decoded into a valid schedule solution, the many-to-one 
method is used in the decoding. It means that different 
chromosomes can be decoded into the same schedule solution 
and it can also improve the genetic diversity. For example, 

Fig. 2. The HGAAP algorithm 

for the application shown in Fig.1, one of the schedule 
solutions is shown in Fig.3a. The same scheduling result can 
be encoded into different chromosomes as shown in Fig.3b 
and Fig.3c. 

To evaluate the fitness of chromosomes, we need to 
decode the chromosome into schedule solutions. For one 
chromosome, decoding starts from the first task of the first 
row and ends up with the last task of the last row. During the 
decoding, tasks are checked sequentially. If a task of a 
substring is an unscheduled and ready task, then the task is 
assigned to the processor the substring represents using the 
insertion-based scheduling policy. If the task does not satisfy 
the rules, check the next task. If all the tasks in the 
chromosome are checked, but there are still tasks left, check 
the first task of the first row to the last task of the last row 
again. Until all the tasks are assigned to processors, the 
decoding is over. 

B. Initialization of the Population 
The initial population of HGAAP is composed of two 

parts: random-generated schedules and the HEFT-generated 
schedule. Random-generated schedules can keep the 
diversity of population and the HEFT-generated schedule can 

reduce the evolution time. The initial population is created by 
encoding both kinds of schedules into chromosomes.  

The random-generated schedules are generated as follows.  
Tasks are sorted first, and then are randomly permutated. 
Finally, tasks are randomly allocated to one of the substring 
of a chromosome. To maintain the diversity, substrings are 
selected randomly, and the number of chromosomes or the 
population size should be equal to or bigger than the number 
of processors plus one. 

 
Fig. 3. Examples of task scheduling and chromosome encoding 

C. Fitness Evaluation 
The fitness evaluation of chromosomes is straightforward. 

For each chromosome, decode it into a schedule solution first 
and then execute it. The fitness of a chromosome can be 
calculated by 1/l where l is the makespan of the schedule. As 
can be seen, the shorter the makespan, the better the 
chromosome’s fitness is. 

D. Selection 
After evaluating and sorting the fitness of chromosomes, 

top 10% chromosomes with the highest fitness values are 
selected as the elitism set. The elitism set guarantees that the 
best chromosomes are never destroyed. The remaining 90% 
chromosomes are selected as the mating set by using a linear 
rank-based selection mechanism [9], see Eq.(1). Plinear_rank(i) 
is the possibility of the i chromosome selected to the mating 
set;  is the size of the population; rank(i) is the calculated 
ranking of the i chromosome and its value is -i; rank and 

rank are the parameters that follows rank=2- rank and 1
rank 2. In this paper, rank is set to 1.7. By using this 
mechanism, all the chromosomes have the probability to be 
selected to the mating set. It not only maintains the diversity 
of the population but also reduces the premature convergence 
of the population. 

 (1) 

  After the selection, the elitism set is reserved without any 
operation while the mating set is conducted with crossover, 
mutation, and redundancy deletion operations, which are 
described in the following sections, respectively. 

Algorithm: HGAAP 
Input: DAGs and related information of applications 
Output: the fittest schedule solution 
 
1. Generate the initial population using randomly generated and 

HEFT generated schedule solutions; 
2. Initialize the crossover rate pc and the mutation rate pm; 
3. while (termination criteria is not met) 
 { 

4.  Evaluate the fitness of the chromosomes in the population; 
5.  Sort chromosomes in the population in descent order of fitness; 
6.  if (the fittest individual cannot evolve in the last n iterations) 

{ 
7.   pm is increased by 10%; 
8.   if (pm is equal to or larger than 100%) 
      { 
9.      pm is set to 10% and pc is increased by 5%; 

} 
} 

10.  Copy the best 10% of chromosomes to the elitism set; 
11.  Select 90% chromosomes to the mating set randomly; 
12.  Apply the swap crossover operator on the chromosomes 
     in the mating set; 
13.  Apply the swap mutation operator on the chromosomes 

in the mating set; 
14.  Remove redundant chromosomes from the mating set; 
15.  Sort chromosomes in the mating set in descent order  

of fitness; 
16.  Combine the elitism set and the fittest chromosomes  

in the mating set to generate the new population that  
has the same size with the initial population; 

  } 
17. Output the fittest schedule solution from the last generation; 
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E. Swap Crossover 
Before the crossover operation, two chromosomes are 

selected from the mating set. For example, if the selected 
probability pc is 0.5, then the selected probability of each 
chromosome is 50%. After the swap crossover operation, 
they produce two offspring. The chromosomes chosen to 
produce offspring are parent chromosomes and the offspring 
are child chromosomes. 

In a swap crossover operation, one substring is chosen 
randomly for each parent chromosome, and two crossover 
points with the same length are selected randomly for each 
substring. Then they exchange the selected parts between the 
two crossover points with each other. After exchange, two 
mask chromosomes can be obtained. For a mask chromosome, 
if a task in the other part is duplicated with a task in the 
exchanged part, the reduplicate task is changed to a mark x. 
Consider the parent chromosomes shown in Fig.4a and 
Fig.4b. Cp11, cp12, cp21 and cp22 are the crossover points. 
Tasks between cp11 and cp12, and tasks between cp21 and 
cp22 are tasks for exchanging. The mask chromosomes are 
shown in Fig.4c and Fig.4d. Then child chromosomes can be 
produced by comparing each substring of the parent 
chromosome with the same substring of the mask 
chromosome. If the substring of parent chromosome is not 
the exchange substring and there is no mark x in the same 
substring of the mask chromosome, copy the substring from 
the parent chromosome to the same substring of the child 
chromosome. Otherwise, if the substring of the parent 
chromosome is not the exchange substring and there is mark 
x in the substring of the mask chromosome, delete the mark 
x and then copy the substring from the mask chromosome to 
the same substring of the child chromosome.  

In case that the substring of the parent chromosome is the 
exchange substring, tasks in the substring of both mask 
chromosome and parent chromosome should be traversed 
one after another. In every traversing step, the rules are as 
follows. Firstly, if the current task of the mask chromosome 
is mark x, check the next task for both mask chromosome and 
parent chromosome. Secondly, if the current task of the mask 
chromosome is identical to the task in the same location of 
parent chromosome, delete the task from the mask 
chromosome and copy the task from the parent chromosome 
to the same substring of the child chromosome. Thirdly, if the 
current task of the mask chromosome is different with the 
task in the same location of parent chromosome, copy the task 
from the parent chromosome to the same substring of the 
child chromosome. Finally, copy the left tasks in the 
substring of mask chromosome to the end of the same 
substring of the child chromosome with the same order as the 
left tasks in the substring of mask chromosome.  

The child chromosome produced by the parent 
chromosome in Fig.4a and its mask chromosome in Fig.4c is 
shown in Fig.4e. Similarly, the child chromosome produced 
by the parent chromosome in Fig.4b and its mask 
chromosome in Fig.4d is shown in Fig. 4f. 

 
Fig. 4. The swap crossover operator 

F. Swap Mutation 
After the swap crossover operation, the swap mutation is 

applied to enhance the diversity of the population further. 
Two tasks in the chromosome are randomly chosen and 
swapped. The swap mutation operation is executed to the 
chromosomes in a probability of pm. If pm is 0.5, then 50% of 
the chromosomes are chosen to execute the swap mutation 
operation on average. 

G. Deleting the Redundant Chromosomes 
After the swap crossover and swap mutation operations 

are finished, a redundancy checking is applied to the mating 
set where all the schedules decoded by chromosomes are 
checked. If there are n decoded schedules having the same 
scheduling results, only one of them is preserved and the 
other are removed from the mating set to enhance the 
diversity of the population. In some cases, removing 
redundant chromosomes may lead to the number of the 
mating set is smaller than 90% of the population. To solve 
this problem, we insert some new chromosomes into the 
mating set to keep the population size unchanged. These 
chromosomes are generated by implementing the swap 
mutation to the fittest chromosome in the mating set. Finally, 
the chromosomes in the mating set are combined with the 
chromosomes in the elitism set to create the next generation. 

H. Parameters Adaptation and Termination Criterion 
Because the characteristics of DAGs are various, using 

fixed pm and pc cannot always lead to the optimal solution. 
Hence, the pc and pm of HGAAP are not fixed. The algorithm 
starts with an initial status where pc and pm are set to 5% and 
10%, respectively. During the iteration of the generation, if 
the evolution occurs, the current parameters will be used in 
the next n iterations. Otherwise, if the fittest individual 
cannot evolve in the last n iterations, pm will be increased by 
10%. In case that pm is over 100%, it returns to 10% and pc 
will be increased by 5%. The parameter adaptation works in 
such a way to promote the possible evolutions and to result 
in more efficient solutions at the cost of more computation 
time 

When pm and pc are both 100% and there is no evolution 
occurs, the algorithm is over. The solution of the algorithm is 
the schedule decoded by the fittest chromosome of the 
population. 
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V.   EXPERIMENTAL RESULT AND ANALYSIS 
To evaluate the proposed algorithm, we compared it with 

existing HEFT and H2GS by using a large number of 
randomly generated DAGs in the experiments. 

A. Performance Metrics 
The Normalized Schedule Length (NSL)[9] and the 

speedup[3] are used to compare the performance of the 
algorithms. The NSL is defined as the normalized makespan 
to the lower bound of the makespan, as shown in Eq.(2). The 
CPlower is the Critical Path of the DAG executed on the fastest 
processor p . A critical path is the path from an entry task to 
an exit task that has the greatest sum of computation costs of 
tasks and communication costs of edges. The denominator is 
the sum of computation costs of tasks located on the CPlower. 

    (2) 

The speedup of a task schedule is defined as the ratio of 
the minimal sequential execution time to the makespan, see 
Eq.(3). The minimal sequential execution time is calculated 
by assigning all the tasks to the processor where the 
cumulative computation cost is minimum. 

    (3) 

B. Randomly Generated DAGs 
The DAGs are generated by a random DAG generator that 

has a set of input parameters and can generate DAGs with 
various characteristics. The input parameters are described as 
below: 

 Number of tasks, n; number of processors, p. 

 Communication to computation ratio, CCR: the ratio 
that the average communication cost divided by the 
average computation cost of all the tasks in the DAG. 

 Shape of the DAG, : the height and width of a DAG 
are randomly generated, using uniform distribution with 
values of  and × , respectively. If the value is not 
an integer, the smallest integer not less than the value is 
selected.  

 Average computation cost, ACC: the average 
computation cost of all the tasks in the DAG.  

 Computation cost heterogeneity factor, h: this value 
indicates the variance of the computation costs of a task 
in different processors. If the value is high, the variance 
of the computation cost of a task in different processors 
is high and vice versa. If the value is zero, the 
computation cost of a task in different processors are 
assumed to be the same. The average computation cost 
of a task wi is randomly generated, using a uniform 
distribution with a mean value of ACC. The 
computation cost of a task for each processor can be set 
by randomly generating from the range [wi×(1-h/2), 
wi ×(1+h/2)]. During the generating of the computation 
costs, the monotonic of the computation costs in 

different processors must be maintained.  

In our experiments, the generated 1500 DAGs consist of 
three different shape values: 0.5, 1.0 and 2.0. For each kind of 
shape, we use four kinds of HCS varying from 2 to 8 
processors with an increment of 2; five kinds of task numbers 
varying from 20 to 100 tasks with an increment of 20; five 
kinds of CCR: 0.1, 0.5, 1.0, 2.0 and 5.0; and five kinds of 
heterogeneity: 0.1, 0.2, 0.4, 0.6 and 0.8. For all the DAGs, the 
value of ACC is 100.  

C. Tuning the HGAAP algorithm 
For HGAAP, the parameters need to be set are the size of 

population and the evolution iteration time n. 100 DAGs are 
randomly selected from the generated DAG set and are used 
to tune HGAAP and find out the best parameters. The size of 
population is varied from 9 to 45 with an increment of 4 and 
the evolution iteration time n is varied from 1 to 11 with an 
increment of 2. Our preliminary experiments indicated that 
when the size of population is 17 and the evolution iteration 
number n is 7, the HGAAP algorithm can achieve its best 
performance. Therefore, the above parameters are utilized in 
the following experiments for performance evaluations 

D. Performance Results 
The DAGs are scheduled by HEFT, H2GS and HGAAP 

algorithms, respectively. For all generated scheduling 
solutions, the NSL and speedup values are calculated and 
compared with respect to different number of tasks and CCR 
values. 

All the above experiments were conducted on a windows7 
desktop running on a 3.70GHz Intel Core i3 Dual-Core CPU 
processor with 4GB main memory. The total running time of 
HGAAP for scheduling 1500 DAGs is 65 hours. Thus, one 
DAG needs about 156s to get its scheduling solution by the 
HGAAP. 

We divided the 1500 DAGs into 5 categories with 
different CCR or number of tasks, and each category has 300 
DAGs, and then we calculate the average scheduling results 
of the 300 DAGs as follows. 

The average NSL values generated by HEFT, H2GS and 
HGAAP with respect to CCR are shown in Fig.5a. The 
average NSL values of HGAAP are shorter than those of 
HEFT and H2GS by: (1.47%, 0.75%), (2.43%, 0.87%), 
(3.52%, 1.18%), (6.11%, 1.61%) and (6.67%, 1.63%), for 
CCR of 0.1, 0.5, 1.0, 2.0, and 5.0, respectively. The speedup 
values generated by HEFT, H2GS and HGAAP with respect 
to CCR are shown in Fig.5b. The average speedup values of 
HGAAP are higher than those of HEFT and H2GS by: 
(1.47%, 0.99%), (2.39%, 1.02%), (3.57%, 1.26%), (6.11%, 
1.58%) and (6.57%, 1.41%), for CCR of 0.1, 0.5, 1.0, 2.0, and 
5.0, respectively;  

The average NSL values generated by HEFT, H2GS and 
HGAAP algorithms with respect to the number of tasks are 
shown in Fig.5c.The average NSL values of HGAAP 
algorithm are shorter than those of HEFT and H2GS by: 
(5.96%, 1.51%), (5.69%, 1.36%), (4.81%, 1.35%), (4.39%, 
1.45%) and (4.10%, 1.43%), for the number of tasks of 20, 
40, 60, 80, and 100, respectively. The speedup values 
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generated by HEFT, H2GS and HGAAP with respect to the 
number of tasks are shown in Fig.5d. The average speedup 
values of HGAAP are higher than those of HEFT and H2GS 
by: (4.42%, 0.94%), (4.22%, 1.18%), (3.52%, 1.40%), 
(2.82%, 1.50%) and (2.71%, 1.42%), for DAG size of 20, 40, 
60, 80, and 100, respectively. 

 
Fig. 5. Average NSL and speedup on randomly generated DAGs 

In all the experiments with varied CCR and varied 
number of tasks, the HGAAP algorithm outperforms the 
HEFT and H2GS algorithms in terms of both NSL and 
speedup. 

 
Fig. 6. The convergence trace of the average NSL 

The convergence curve is usually used to compare the 
performance of genetic algorithms. Because characteristics of 
DAGs are various, we choose one kind of DAGs for 
comparing the convergence rate of H2GS and HGAAP. In the 
experiment, the inputs of the DAGs are as follows: the number 
of tasks is 50; the number of processors is 4; the CCR is 1.0; 
the shape value  is 1; the ACC is 100, and the heterogeneity 
is 0.5. 50 randomly generated DAGs are used to compare the 
convergence performance of the two algorithms. The average 
result of 50 DAGs is shown in Fig.6. The HGAAP algorithm 
searches all the possible pc and pm and if the current pc and pm 
can lead to the evolution, the HGAAP algorithm uses them to 
generate the next generation. Because the H2GS algorithm 

uses the fixed pc and pm that are calculated before the iteration, 
it has a faster convergence rate. However, the final result 
obtained by the HGAAP algorithm is better than that of the 
H2GS algorithm. 

 

VI. CONCLUSION 
 In this paper, we proposed a hybrid heuristic genetic 

algorithm HGAAP for static task scheduling on HCS to 
further improve the performance of existing algorithms. The 
crossover probability and mutation probability of the 
HGAAP are adaptive according to the current evolution 
status, and redundant individuals are removed during the 
iteration of generations. Experimental results on a large 
number of randomly generated DAGs validated that the 
proposed HGAAP algorithm can achieve better scheduling 
results than existing HEFT and H2GS algorithms. 

In future work, we are planning to extend the HGAAP 
algorithm to partially-connected networks of HCS. This will 
make the proposed algorithm be suitable for more cases. 
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