
A Hybrid Heuristic-Genetic Algorithm with Adaptive
Parameters for Static Task Scheduling in

Heterogeneous Computing System

Shan DING1, Jinhui WU1
1College of Computer Science and Engineering

Northeastern University
Shenyang, China

dingshan@cse.neu.edu.cn

Guoqi XIE2 and Gang ZENG3
 2College of Computer Science and Electronic Engineering,
Hunan University, Changsha, China, xgqman@hnu.edu.cn

3Graduate School of Engineering
Nagoya University, Nagoya, Japan, sogo@ertl.jp

Abstract—Task scheduling is critical for obtaining a high

performance schedule in heterogeneous computing systems
(HCS) and searching an optimal scheduling solution has been
shown to be NP-complete. In this paper, a hybrid heuristic-
genetic algorithm with adaptive parameter (HGAAP) is
proposed by combining a heuristic scheduling algorithm and a
genetic algorithm. An existing common heuristic scheduling
algorithm is utilized for generating the initial generation to
speed up the convergence rate of HGAAP. The parameters of
crossover probability and mutation probability are adaptive
according to the current evolution status to promote the
evolution and find better solution. Moreover, the redundant
individuals in each generation are removed to keep the diversity
of population during the iteration. The experimental results on
randomly generated task sets validated that our algorithm can
obtain better scheduling results than existing algorithms.

Keywords— adaptive parameters; directed acyclic graph;
genetic algorithms; heterogeneous computing systems; task
scheduling

I. INTRODUCTION
A heterogeneous computing system (HCS) is composed

of diverse sets of processors interconnected via a high speed
network. Such systems can execute computationally
intensive parallel and distributed applications. Generally, an
application can be decomposed into a set of tasks with
precedence constraints and it is usually modeled as a directed
acyclic graph (DAG). In a DAG, the nodes represent tasks
and the edges represent precedence constraints between tasks.
By assigning the tasks to appropriate processors and
executing them as the required order, the total execution time
of the application, usually called the makespan, can be
reduced. Hence, searching an efficient scheduling of an
application on HCS is critical to achieve high performance.

The objective of a task scheduling algorithm is to search
an efficient scheduling for an application so that the
makespan of the application can be minimized and all
precedence constraints between tasks can be met. This
problem has been well-studied for many years and it has been
proved to be a NP-complete problem[1]. In general, task
scheduling algorithms can be divided into two categories:
static task scheduling and dynamic task scheduling[2]. In this

paper we focus on the static scheduling on HCS. For static
scheduling algorithms, all needed information about the
application must be known in advance. Although various
algorithms have been proposed, they can only produce near-
optimal solutions[3]. Hence, there is still room for the
development of better task scheduling algorithms.

This paper proposes a hybrid heuristic-genetic algorithm
with adaptive parameter (HGAAP) to further improve the
performance of existing algorithms. HGAAP uses the
existing well-studied heterogeneous earliest finish time
(HEFT) heuristic algorithm[3] to generate the initial
scheduling solution, which is inserted into the initial
population of HGAAP to enhance the convergence rate. For
applications with various DAG characteristics, fixed
crossover probability and mutation probability cannot always
lead to the optimal solutions. Therefore, in HGAAP, the
values of both crossover probability and mutation probability
are adaptive according to the current evolution status.
Moreover, the redundant individuals of the population are
removed during the iteration, which can enhance the diversity
of the population.

The rest of the paper is organized as follows: Section II
reviews the related work. Section III gives an overview of the
problem. Section IV presents the proposed algorithm. Section
V compares the performance of the proposed algorithm with
existing algorithms. We conclude the paper in Section VI.

II. RELATED WORK
The related work on task scheduling algorithms can be

classified into three main groups: heuristic scheduling
algorithms, meta-heuristic scheduling algorithms, and hybrid
scheduling algorithms[3].

Heuristic algorithms usually can search a near optimal
solution in polynomial time. These algorithms follow a
particular rule, searching one path in the solution space and
ignoring others[2]. There are mainly three kinds of heuristic
algorithms: list scheduling, cluster scheduling and
duplication-based scheduling[2, 3]. List scheduling is the most
popular heuristic algorithms. The HEFT algorithm[3] and
LDCP algorithm[6] are list scheduling algorithms. These
algorithms usually have two phases: task prioritizing and

2017 IEEE Trustcom/BigDataSE/ICESS

2324-9013/17 $31.00 © 2017 IEEE

DOI 10.1109/Trustcom/BigDataSE/ICESS.2017.310

761

processor selection. In task prioritizing phase, each task is
assigned a priority and a task list is generated by sorting tasks
in descending order of their priorities. In processor selection
phase, the task with the highest priority is removed from the
list and assigned to a fittest processor. Parallelization
methods are used in clustering algorithms to balance
communication costs of tasks. Tasks with heavily
communicating cost are assigned to the same cluster, and the
number of clusters is assumed to be unlimited. Then clusters
are mapped to the processors. If the number of clusters is
bigger than that of processors, clusters are merged so that its
number is equal to or less than that of processors. The
execution order of tasks in each processor is decided
according to particular criteria. An example of clustering
algorithms is introduced in [7]. The duplication-based
scheduling algorithms execute the key tasks on more than one
processor so that communication costs between tasks can be
reduced. These algorithms have two steps. Firstly, a
clustering or list scheduling algorithm is used to generate an
initial schedule. Then the tasks that have a large number of
dependent tasks are selected and assigned to processors in
which their dependent tasks have been assigned. An example
of duplication-based algorithm is introduced in [8].

Meta-heuristic scheduling algorithms are guided-random-
search-based algorithms that incorporate a combinatorial
process for searching schedule solutions. There are many
kinds of meta-heuristic algorithms. GA[5] is the most popular.
In GA, the possible schedule solutions are encoded into
chromosomes. It mimics the principles of evolution and
natural genetics to operate the population to evolve a new
population. After sufficient number of generations, the best
individual is selected from the population as the schedule
solution.

Heuristic algorithms search one path in the search space and
ignore others. In multimodal problems, it always obtains a
near-optimal solution. Meta-heuristic scheduling algorithms
overcome this problem by incorporating a combinatoric
process in the search for schedule solutions. However, meta-
heuristic algorithms usually need more time to obtain the
results. Therefore, to speed up the convergence time and
obtain more efficient solutions, hybrid scheduling algorithms
that combine heuristic and meta-heuristic algorithms have
been introduced recently. For example, H2GS[4] is a hybrid
algorithm. It combines the Longest Dynamic Critical Path
(LDCP)[6] algorithm and the Genetic Algorithm for
Scheduling (GAS)[5]. LDCP is used to generate a quality
initial schedule solution for GAS to speed up the convergence.
GAS operates genetic operators to the population to generate
a better schedule solution.

III .PROBLEM DESCRIPTION
The task scheduling problem for an application on HCS

is to minimize the makespan by effectively allocating tasks
to processors and meeting all precedence constraints.

Generally, an application can be represented by a DAG.
A DAG is defined by a tuple (T, E), where T is a set of n
tasks and E is a set of e edges. The i task in the set of tasks is

represented by ti. When ti is allocated to a processor, it must
be executed sequentially in this processor without
interruption. The edge started by ti and ended up with tj is
represented by ei,j that represents the precedence constraint
between ti and tj. Each edge ei,j has a value that represents the
communication time when transmitting data from ti to tj. It
also indicates that tj should not be executed until ti completes
its execution. A task may have zero or more input tasks and
output tasks. Only if all its input tasks complete, can the task
be executed. A task with no input task is an entry task and a
task with no output task is an exit task. The communication
time between tasks allocated in the same processor is
assumed to be zero.

Fig. 1. Example of a DAG application and computation cost table

The HCS is represented by P, a set of m processors with
different performances. The computation cost of tasks on
different processors is stored in an n×m matrix C. Each
element ci,j in C represents the computation cost of ti on
processor pj. This paper assumes that the computation cost of
tasks in different processors is monotonic. In other words, if
the computation cost of ti on pj is higher than that on pk, then
the computation cost of any tasks on pj is equal to or higher
than that on pk. Fig.1 gives an example of an application
consisting of six tasks and a HCS with two processors.

IV. THE PROPOSED ALGORITHM
The proposed HGAAP algorithm is a hybrid genetic

scheduling algorithm that combines heuristic algorithm and
genetic algorithm. It uses the schedule solution generated by
HEFT as an individual of the initial population. Because the
solution generated by HEFT is located at an approximate area
around the optimal solution, the objective of HGAAP is to
improve the performance by searching around the
approximate area. The operation of the HGAAP algorithm is
described in Fig.2.

A Schedule Encoding and Chromosome Decoding
In HGAAP, a two-dimensional array is employed to

represent chromosomes. The number of rows indicates the
number of processors and the number of columns indicates
the number of tasks. Each row is a substring that represents a
processor in the HCS. If a task is assigned to a processor, the

762

task will be put into the substring that represents the
processor. To make sure that any chromosome can be
decoded into a valid schedule solution, the many-to-one
method is used in the decoding. It means that different
chromosomes can be decoded into the same schedule solution
and it can also improve the genetic diversity. For example,

Fig. 2. The HGAAP algorithm

for the application shown in Fig.1, one of the schedule
solutions is shown in Fig.3a. The same scheduling result can
be encoded into different chromosomes as shown in Fig.3b
and Fig.3c.

To evaluate the fitness of chromosomes, we need to
decode the chromosome into schedule solutions. For one
chromosome, decoding starts from the first task of the first
row and ends up with the last task of the last row. During the
decoding, tasks are checked sequentially. If a task of a
substring is an unscheduled and ready task, then the task is
assigned to the processor the substring represents using the
insertion-based scheduling policy. If the task does not satisfy
the rules, check the next task. If all the tasks in the
chromosome are checked, but there are still tasks left, check
the first task of the first row to the last task of the last row
again. Until all the tasks are assigned to processors, the
decoding is over.

B. Initialization of the Population
The initial population of HGAAP is composed of two

parts: random-generated schedules and the HEFT-generated
schedule. Random-generated schedules can keep the
diversity of population and the HEFT-generated schedule can

reduce the evolution time. The initial population is created by
encoding both kinds of schedules into chromosomes.

The random-generated schedules are generated as follows.
Tasks are sorted first, and then are randomly permutated.
Finally, tasks are randomly allocated to one of the substring
of a chromosome. To maintain the diversity, substrings are
selected randomly, and the number of chromosomes or the
population size should be equal to or bigger than the number
of processors plus one.

Fig. 3. Examples of task scheduling and chromosome encoding

C. Fitness Evaluation
The fitness evaluation of chromosomes is straightforward.

For each chromosome, decode it into a schedule solution first
and then execute it. The fitness of a chromosome can be
calculated by 1/l where l is the makespan of the schedule. As
can be seen, the shorter the makespan, the better the
chromosome’s fitness is.

D. Selection
After evaluating and sorting the fitness of chromosomes,

top 10% chromosomes with the highest fitness values are
selected as the elitism set. The elitism set guarantees that the
best chromosomes are never destroyed. The remaining 90%
chromosomes are selected as the mating set by using a linear
rank-based selection mechanism [9], see Eq.(1). Plinear_rank(i)
is the possibility of the i chromosome selected to the mating
set; is the size of the population; rank(i) is the calculated
ranking of the i chromosome and its value is -i; rank and

rank are the parameters that follows rank=2- rank and 1
rank 2. In this paper, rank is set to 1.7. By using this
mechanism, all the chromosomes have the probability to be
selected to the mating set. It not only maintains the diversity
of the population but also reduces the premature convergence
of the population.

 (1)

 After the selection, the elitism set is reserved without any
operation while the mating set is conducted with crossover,
mutation, and redundancy deletion operations, which are
described in the following sections, respectively.

Algorithm: HGAAP
Input: DAGs and related information of applications
Output: the fittest schedule solution

1. Generate the initial population using randomly generated and

HEFT generated schedule solutions;
2. Initialize the crossover rate pc and the mutation rate pm;
3. while (termination criteria is not met)
 {

4. Evaluate the fitness of the chromosomes in the population;
5. Sort chromosomes in the population in descent order of fitness;
6. if (the fittest individual cannot evolve in the last n iterations)

{
7. pm is increased by 10%;
8. if (pm is equal to or larger than 100%)
 {
9. pm is set to 10% and pc is increased by 5%;

}
}

10. Copy the best 10% of chromosomes to the elitism set;
11. Select 90% chromosomes to the mating set randomly;
12. Apply the swap crossover operator on the chromosomes
 in the mating set;
13. Apply the swap mutation operator on the chromosomes

in the mating set;
14. Remove redundant chromosomes from the mating set;
15. Sort chromosomes in the mating set in descent order

of fitness;
16. Combine the elitism set and the fittest chromosomes

in the mating set to generate the new population that
has the same size with the initial population;

 }
17. Output the fittest schedule solution from the last generation;

763

E. Swap Crossover
Before the crossover operation, two chromosomes are

selected from the mating set. For example, if the selected
probability pc is 0.5, then the selected probability of each
chromosome is 50%. After the swap crossover operation,
they produce two offspring. The chromosomes chosen to
produce offspring are parent chromosomes and the offspring
are child chromosomes.

In a swap crossover operation, one substring is chosen
randomly for each parent chromosome, and two crossover
points with the same length are selected randomly for each
substring. Then they exchange the selected parts between the
two crossover points with each other. After exchange, two
mask chromosomes can be obtained. For a mask chromosome,
if a task in the other part is duplicated with a task in the
exchanged part, the reduplicate task is changed to a mark x.
Consider the parent chromosomes shown in Fig.4a and
Fig.4b. Cp11, cp12, cp21 and cp22 are the crossover points.
Tasks between cp11 and cp12, and tasks between cp21 and
cp22 are tasks for exchanging. The mask chromosomes are
shown in Fig.4c and Fig.4d. Then child chromosomes can be
produced by comparing each substring of the parent
chromosome with the same substring of the mask
chromosome. If the substring of parent chromosome is not
the exchange substring and there is no mark x in the same
substring of the mask chromosome, copy the substring from
the parent chromosome to the same substring of the child
chromosome. Otherwise, if the substring of the parent
chromosome is not the exchange substring and there is mark
x in the substring of the mask chromosome, delete the mark
x and then copy the substring from the mask chromosome to
the same substring of the child chromosome.

In case that the substring of the parent chromosome is the
exchange substring, tasks in the substring of both mask
chromosome and parent chromosome should be traversed
one after another. In every traversing step, the rules are as
follows. Firstly, if the current task of the mask chromosome
is mark x, check the next task for both mask chromosome and
parent chromosome. Secondly, if the current task of the mask
chromosome is identical to the task in the same location of
parent chromosome, delete the task from the mask
chromosome and copy the task from the parent chromosome
to the same substring of the child chromosome. Thirdly, if the
current task of the mask chromosome is different with the
task in the same location of parent chromosome, copy the task
from the parent chromosome to the same substring of the
child chromosome. Finally, copy the left tasks in the
substring of mask chromosome to the end of the same
substring of the child chromosome with the same order as the
left tasks in the substring of mask chromosome.

The child chromosome produced by the parent
chromosome in Fig.4a and its mask chromosome in Fig.4c is
shown in Fig.4e. Similarly, the child chromosome produced
by the parent chromosome in Fig.4b and its mask
chromosome in Fig.4d is shown in Fig. 4f.

Fig. 4. The swap crossover operator

F. Swap Mutation
After the swap crossover operation, the swap mutation is

applied to enhance the diversity of the population further.
Two tasks in the chromosome are randomly chosen and
swapped. The swap mutation operation is executed to the
chromosomes in a probability of pm. If pm is 0.5, then 50% of
the chromosomes are chosen to execute the swap mutation
operation on average.

G. Deleting the Redundant Chromosomes
After the swap crossover and swap mutation operations

are finished, a redundancy checking is applied to the mating
set where all the schedules decoded by chromosomes are
checked. If there are n decoded schedules having the same
scheduling results, only one of them is preserved and the
other are removed from the mating set to enhance the
diversity of the population. In some cases, removing
redundant chromosomes may lead to the number of the
mating set is smaller than 90% of the population. To solve
this problem, we insert some new chromosomes into the
mating set to keep the population size unchanged. These
chromosomes are generated by implementing the swap
mutation to the fittest chromosome in the mating set. Finally,
the chromosomes in the mating set are combined with the
chromosomes in the elitism set to create the next generation.

H. Parameters Adaptation and Termination Criterion
Because the characteristics of DAGs are various, using

fixed pm and pc cannot always lead to the optimal solution.
Hence, the pc and pm of HGAAP are not fixed. The algorithm
starts with an initial status where pc and pm are set to 5% and
10%, respectively. During the iteration of the generation, if
the evolution occurs, the current parameters will be used in
the next n iterations. Otherwise, if the fittest individual
cannot evolve in the last n iterations, pm will be increased by
10%. In case that pm is over 100%, it returns to 10% and pc
will be increased by 5%. The parameter adaptation works in
such a way to promote the possible evolutions and to result
in more efficient solutions at the cost of more computation
time

When pm and pc are both 100% and there is no evolution
occurs, the algorithm is over. The solution of the algorithm is
the schedule decoded by the fittest chromosome of the
population.

764

V. EXPERIMENTAL RESULT AND ANALYSIS
To evaluate the proposed algorithm, we compared it with

existing HEFT and H2GS by using a large number of
randomly generated DAGs in the experiments.

A. Performance Metrics
The Normalized Schedule Length (NSL)[9] and the

speedup[3] are used to compare the performance of the
algorithms. The NSL is defined as the normalized makespan
to the lower bound of the makespan, as shown in Eq.(2). The
CPlower is the Critical Path of the DAG executed on the fastest
processor p . A critical path is the path from an entry task to
an exit task that has the greatest sum of computation costs of
tasks and communication costs of edges. The denominator is
the sum of computation costs of tasks located on the CPlower.

 (2)

The speedup of a task schedule is defined as the ratio of
the minimal sequential execution time to the makespan, see
Eq.(3). The minimal sequential execution time is calculated
by assigning all the tasks to the processor where the
cumulative computation cost is minimum.

 (3)

B. Randomly Generated DAGs
The DAGs are generated by a random DAG generator that

has a set of input parameters and can generate DAGs with
various characteristics. The input parameters are described as
below:

 Number of tasks, n; number of processors, p.

 Communication to computation ratio, CCR: the ratio
that the average communication cost divided by the
average computation cost of all the tasks in the DAG.

 Shape of the DAG, : the height and width of a DAG
are randomly generated, using uniform distribution with
values of and × , respectively. If the value is not
an integer, the smallest integer not less than the value is
selected.

 Average computation cost, ACC: the average
computation cost of all the tasks in the DAG.

 Computation cost heterogeneity factor, h: this value
indicates the variance of the computation costs of a task
in different processors. If the value is high, the variance
of the computation cost of a task in different processors
is high and vice versa. If the value is zero, the
computation cost of a task in different processors are
assumed to be the same. The average computation cost
of a task wi is randomly generated, using a uniform
distribution with a mean value of ACC. The
computation cost of a task for each processor can be set
by randomly generating from the range [wi×(1-h/2),
wi ×(1+h/2)]. During the generating of the computation
costs, the monotonic of the computation costs in

different processors must be maintained.

In our experiments, the generated 1500 DAGs consist of
three different shape values: 0.5, 1.0 and 2.0. For each kind of
shape, we use four kinds of HCS varying from 2 to 8
processors with an increment of 2; five kinds of task numbers
varying from 20 to 100 tasks with an increment of 20; five
kinds of CCR: 0.1, 0.5, 1.0, 2.0 and 5.0; and five kinds of
heterogeneity: 0.1, 0.2, 0.4, 0.6 and 0.8. For all the DAGs, the
value of ACC is 100.

C. Tuning the HGAAP algorithm
For HGAAP, the parameters need to be set are the size of

population and the evolution iteration time n. 100 DAGs are
randomly selected from the generated DAG set and are used
to tune HGAAP and find out the best parameters. The size of
population is varied from 9 to 45 with an increment of 4 and
the evolution iteration time n is varied from 1 to 11 with an
increment of 2. Our preliminary experiments indicated that
when the size of population is 17 and the evolution iteration
number n is 7, the HGAAP algorithm can achieve its best
performance. Therefore, the above parameters are utilized in
the following experiments for performance evaluations

D. Performance Results
The DAGs are scheduled by HEFT, H2GS and HGAAP

algorithms, respectively. For all generated scheduling
solutions, the NSL and speedup values are calculated and
compared with respect to different number of tasks and CCR
values.

All the above experiments were conducted on a windows7
desktop running on a 3.70GHz Intel Core i3 Dual-Core CPU
processor with 4GB main memory. The total running time of
HGAAP for scheduling 1500 DAGs is 65 hours. Thus, one
DAG needs about 156s to get its scheduling solution by the
HGAAP.

We divided the 1500 DAGs into 5 categories with
different CCR or number of tasks, and each category has 300
DAGs, and then we calculate the average scheduling results
of the 300 DAGs as follows.

The average NSL values generated by HEFT, H2GS and
HGAAP with respect to CCR are shown in Fig.5a. The
average NSL values of HGAAP are shorter than those of
HEFT and H2GS by: (1.47%, 0.75%), (2.43%, 0.87%),
(3.52%, 1.18%), (6.11%, 1.61%) and (6.67%, 1.63%), for
CCR of 0.1, 0.5, 1.0, 2.0, and 5.0, respectively. The speedup
values generated by HEFT, H2GS and HGAAP with respect
to CCR are shown in Fig.5b. The average speedup values of
HGAAP are higher than those of HEFT and H2GS by:
(1.47%, 0.99%), (2.39%, 1.02%), (3.57%, 1.26%), (6.11%,
1.58%) and (6.57%, 1.41%), for CCR of 0.1, 0.5, 1.0, 2.0, and
5.0, respectively;

The average NSL values generated by HEFT, H2GS and
HGAAP algorithms with respect to the number of tasks are
shown in Fig.5c.The average NSL values of HGAAP
algorithm are shorter than those of HEFT and H2GS by:
(5.96%, 1.51%), (5.69%, 1.36%), (4.81%, 1.35%), (4.39%,
1.45%) and (4.10%, 1.43%), for the number of tasks of 20,
40, 60, 80, and 100, respectively. The speedup values

765

generated by HEFT, H2GS and HGAAP with respect to the
number of tasks are shown in Fig.5d. The average speedup
values of HGAAP are higher than those of HEFT and H2GS
by: (4.42%, 0.94%), (4.22%, 1.18%), (3.52%, 1.40%),
(2.82%, 1.50%) and (2.71%, 1.42%), for DAG size of 20, 40,
60, 80, and 100, respectively.

Fig. 5. Average NSL and speedup on randomly generated DAGs

In all the experiments with varied CCR and varied
number of tasks, the HGAAP algorithm outperforms the
HEFT and H2GS algorithms in terms of both NSL and
speedup.

Fig. 6. The convergence trace of the average NSL

The convergence curve is usually used to compare the
performance of genetic algorithms. Because characteristics of
DAGs are various, we choose one kind of DAGs for
comparing the convergence rate of H2GS and HGAAP. In the
experiment, the inputs of the DAGs are as follows: the number
of tasks is 50; the number of processors is 4; the CCR is 1.0;
the shape value is 1; the ACC is 100, and the heterogeneity
is 0.5. 50 randomly generated DAGs are used to compare the
convergence performance of the two algorithms. The average
result of 50 DAGs is shown in Fig.6. The HGAAP algorithm
searches all the possible pc and pm and if the current pc and pm
can lead to the evolution, the HGAAP algorithm uses them to
generate the next generation. Because the H2GS algorithm

uses the fixed pc and pm that are calculated before the iteration,
it has a faster convergence rate. However, the final result
obtained by the HGAAP algorithm is better than that of the
H2GS algorithm.

VI. CONCLUSION
 In this paper, we proposed a hybrid heuristic genetic

algorithm HGAAP for static task scheduling on HCS to
further improve the performance of existing algorithms. The
crossover probability and mutation probability of the
HGAAP are adaptive according to the current evolution
status, and redundant individuals are removed during the
iteration of generations. Experimental results on a large
number of randomly generated DAGs validated that the
proposed HGAAP algorithm can achieve better scheduling
results than existing HEFT and H2GS algorithms.

In future work, we are planning to extend the HGAAP
algorithm to partially-connected networks of HCS. This will
make the proposed algorithm be suitable for more cases.

VII REFERENCES
[1] Sih, Gilbert C., and Edward A. Lee. "A compile-time scheduling

heuristic for interconnection-constrained heterogeneous processor
architectures." IEEE transactions on Parallel and Distributed
systems 4.2 (1993): 175-187.

[2] Zomaya, Albert Y., Chris Ward, and Ben Macey. "Genetic scheduling
for parallel processor systems: comparative studies and performance
issues."IEEE Transactions on Parallel and Distributed systems 10.8
(1999): 795-812.

[3] Topcuoglu, Haluk, Salim Hariri, and Min-you Wu. "Performance-
effective and low-complexity task scheduling for heterogeneous
computing." IEEE transactions on parallel and distributed
systems 13.3 (2002): 260-274.

[4] Daoud, Mohammad I., and Nawwaf Kharma. "A hybrid heuristic–
genetic algorithm for task scheduling in heterogeneous processor
networks." Journal of Parallel and Distributed Computing 71.11
(2011): 1518-1531.

[5] Daoud, Mohammad I., and Nawwaf Kharma. "An efficient genetic
algorithm for task scheduling in heterogeneous distributed computing
systems."Evolutionary Computation, 2006. CEC 2006. IEEE Congress
on. IEEE, 2006.

[6] Daoud, Mohammad I., and Nawwaf Kharma. "A high performance
algorithm for static task scheduling in heterogeneous distributed
computing systems."Journal of Parallel and distributed
computing 68.4 (2008): 399-409.

[7] Cheng, Hui. "A high efficient task scheduling algorithm based on
heterogeneous multi-core processor." Database Technology and
Applications (DBTA), 2010 2nd International Workshop on. IEEE,
2010.

[8] Bajaj, Rashmi, and Dharma P. Agrawal. "Improving scheduling of
tasks in a heterogeneous environment." IEEE Transactions on Parallel
and Distributed Systems 15.2 (2004): 107-118.

[9] Bansal, Savina, Padam Kumar, and Kuldip Singh. "An improved
duplication strategy for scheduling precedence constrained graphs in
multiprocessor systems." IEEE Transactions on Parallel and
Distributed Systems 14.6 (2003): 533-544.

766

