
Theoretical Computer Science 922 (2022) 475–485
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An efficient algorithm for the longest common palindromic

subsequence problem ✩,✩✩

Ting-Wei Liang a, Chang-Biau Yang b,∗, Kuo-Si Huang b

a Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
b Department of Business Computing, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2021
Received in revised form 25 February 2022
Accepted 25 April 2022
Available online 29 April 2022
Communicated by R. Giancarlo

Keywords:
Longest common subsequence
Longest common palindromic subsequence
Diagonal method
3-D domination

The longest common palindromic subsequence (LCPS) problem is a variant of the longest
common subsequence (LCS) problem. Given two input sequences A and B , the LCPS
problem is to find the common subsequence of A and B such that the answer is a
palindrome with the maximal length. The LCPS problem was first proposed by Chowdhury
et al. (2014) [9], who proposed a dynamic programming algorithm with O(m2n2) time,
where m and n denote the lengths of A and B , respectively. This paper proposes a diagonal-
based algorithm for solving the LCPS problem with O(L(m − L)R logn) time and O(RL)

space, where R denotes the number of match pairs between A and B , and L denotes the
LCPS length. In our algorithm, the 3-dimensional minima finding algorithm is invoked to
overcome the domination problem. As experimental results show, our algorithm is efficient
practically compared with some previously published algorithms.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem has been studied extensively for the past decades. It can be used to
calculate the similarity between two strings. The LCS problem has been widely applied to bioinformatics, string comparison,
speech recognition, and many other fields [3,5,6].

Given two sequences A = a1a2 · · ·am and B = b1b2 · · ·bn , where m = |A| and n = |B|, the LCS problem aims to find
the common subsequence with the maximal length between A and B by deleting zero or more symbols from the two
sequences. Lots of LCS algorithms have been developed, and several variants of the LCS problem have also been proposed,
such as longest common increasing subsequence (LCIS) [19,27], constrained longest common subsequence (CLCS) [2,16,25], longest
common square subsequence (LCSqS) [18] and longest common palindromic subsequence (LCPS) [4,9,17]. The definitions and
NP-hardness proofs of the 2-dimensional LCS problems, another variant of the LCS problem, were proposed by Chan et al.
[8].

Nakatsu et al. [22] proposed a diagonal-based algorithm to solve the LCS problem in O(n(m − L′)) time, where m and
n denote the lengths of input sequences A and B , respectively, m ≤ n, and L′ denotes the LCS length. Its time complexity
implies that its performance is extremely efficient when the two input sequences are similar, that is, L′ is large. The diag-

✩ This research work was partially supported by the Ministry of Science and Technology of Taiwan under contract MOST 108-2221-E-110-031.
✩✩ A preliminary version of this paper was presented at the 37th Workshop on Combinatorial Mathematics and Computation Theory, July 29-30, 2020,
Kaohsiung, Taiwan [20].

* Corresponding author.
E-mail address: cbyang@cse.nsysu.edu.tw (C.-B. Yang).
https://doi.org/10.1016/j.tcs.2022.04.046
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.04.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.04.046&domain=pdf
mailto:cbyang@cse.nsysu.edu.tw
https://doi.org/10.1016/j.tcs.2022.04.046

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Table 1
The time complexities and space complexities of the LCPS algorithms. A and B are the two input
sequences; |A| = m ≤ n = |B|; �: alphabet set; R: number of match pairs between A and B; R1:
number of match pairs in A itself; R2: number of match pairs in B itself; L: length of LCPS(A, B).

Authors Year Time complexity Space complexity Note

Chowdhury 2014 O(m2n2) or O(m2n2) or DP or
et al. [9] O(R2 log2 n log logn) O(R2) Match pair

Hasan 2017 O(R1 R2|�|) O(R1 R2) Match pair,
et al. [13] Automata

Inenaga and 2018 O(n + R2|�|) O(R2) Match pair,
Hyyrö [17] Rectangle

Bae and
Lee [4]

2018 O(n + R2) O(R2) Incorrect,
Match pair,
Dominant contour

This paper 2022 O(L(m − L)R logn) O(RL) Diagonal,
Match pair,
Domination

onal concept has been successfully used to solve some variants of the LCS problem, such as the merged longest common
subsequence problem [26] and the longest common increasing subsequence problem [21].

A palindrome is a sequence whose readings from its forward and backward directions are the same. That is, A =
a1a2 · · ·am = amam−1 · · ·a1. For example, abfba and abffba are palindromes. In bioinformatics, palindromic sequences
appear extensively in genomes. Palindromic sequences can be found in the DNA of plasmid, virus and bacteria, and they are
also present in cancer cells. In addition, many DNA binding sites of proteins, transcription factors and terminators are also
palindromic sequences [11,14,23]. Thus, some researchers paid attention to palindromes, such as counting distinct palin-
dromic strings in a sequence [12] and the palindromic length problem (factorizing a sequence into palindromes) [1,7,10,15].

Given two sequences A = a1a2 · · ·am and B = b1b2 · · ·bn , the longest common palindromic subsequence (LCPS) problem is
to find a common palindromic subsequence of A and B with the maximum length. In other words, the answer should
be a palindrome. For example, suppose A = cbccbaabb and B = bbccabbca. Then we have LCS(A, B) = bccabb and
LCPS(A, B) = bbabb.

The LCPS problem was first proposed by Chowdhury et al. [9] in 2014. They presented a dynamic programming (DP)
algorithm with O(m2n2) time and space, and an algorithm with O(R2 log2 n log log n) time and O(R2) space by mapping
the problem into computational geometry, where R is the total number of match pairs between A and B . In 2018, Inenaga
and Hyyrö [17] presented a DP algorithm with O(n + R2|�|) time and O(R2) space, and proved that the LCS with four strings
(FLCS) problem can be reduced to the LCPS problem. In the same year, Bae and Lee [4] claimed that they presented a DP
algorithm with O(n + R2) time and O(R2) space. However, we find that the algorithm of Bae and Lee [4] is not correct. We
shall present some counterexamples for their algorithm in Section 2.3. The time complexities and the space complexities of
the previous LCPS algorithms are summarized in Table 1.

In this paper, we propose a diagonal-based algorithm for solving the LCPS problem with O(L(m − L)R log n) time and
O(RL) space, where R denotes the number of match pairs between input sequences A and B , and L denotes the LCPS
length. As experimental results show, our algorithm is efficient practically on some pseudorandom datasets, compared with
some previously published algorithms.

The organization of this paper is as follows. Section 2 presents some preliminaries for this paper. In Section 3, we present
our diagonal-based algorithm for solving the LCPS problem. In Section 4, we implement our algorithm and some previous
algorithms. Then, some experimental results on pseudorandom datasets are illustrated. Finally, the conclusion is given in
Section 5.

2. Preliminaries

A sequence (string) A = a1a2 · · ·am is composed of characters over a finite alphabet �, where |A| = m denotes its length.
Ai.. j represents the substring of A from index i to index j. Ai.. j = ∅ if j < i. A denotes the reverse sequence of A, that is
A = amam−1 · · ·a1. Note that A1..i = aiai−1 · · ·a1 and A1..i = amam−1 · · ·am−i+1 = Am−i+1..m .

2.1. The LCPS Algorithm by Chowdhury et al. [9]

In 2014, Chowdhury et al. [9] first proposed the longest common palindromic subsequence (LCPS) problem. Given two
sequences A and B , let V (p, q, r, s) denote the length of LCPS(Ap..q , Br..s), where 1 ≤ p ≤ q ≤ m = |A| and 1 ≤ r ≤ s ≤ n = |B|.
Their DP algorithm, with O(m2n2) time, is shown in Eq. (1).
476

7414
Highlight

7414
Highlight

7414
Highlight

7414
Highlight

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Fig. 1. An example for the algorithm of Inenaga and Hyyrö [17] with A = cbccbaabb and B = bbccabbca. (a) |�| = 3 largest rectangles inside rectangle
(〈0, 0〉, 〈10, 10〉) for each character. Green: a; Red: b; Blue: c. (b) The 3 rectangles that represent the LCPS bbabb with length 2 + 2 + 1 = 5. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

V (p,q, r, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if p > q or r > s;
1 if ((p = q and r ≤ s)

or (p ≤ q and r = s)),

and ap = aq = br = bs;
2 + V (p + 1,q − 1, r + 1, s − 1) if p < q, r < s,

and ap = aq = br = bs;

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V (p + 1,q, r, s)

V (p,q, r + 1, s)

V (p,q − 1, r, s)

V (p,q, r, s − 1)

otherwise.

(1)

2.2. Maximum depth nesting rectangle structures by Inenaga and Hyyrö [17]

Inenaga and Hyyrö [17] gave the solution of the LCPS problem by solving the maximum depth nesting rectangle structures
(MDNRS) problem. Their algorithm first puts the match pairs between A and B on the 2D plane as points. Thus, every two
points with the same matched character form a rectangle. The algorithm calculates the MDNRS size of these rectangles with
O(n + R2|�|) time, where R denotes the number of match pairs.

Each rectangle may contain at most |�| largest rectangles, where each rectangle is for one character. For example, given
two sequences A = cbccbaabb and B = bbccabbca, Fig. 1(a) shows the |�| = |{a, b, c}| = 3 largest rectangles inside
rectangle (〈0, 0〉, 〈m + 1, n + 1〉). Here, the maximum MDNRS is shown in Fig. 1(b). The rectangle (〈0, 0〉, 〈10, 10〉) has three
rectangles (〈2, 1〉, 〈9, 7〉), (〈5, 2〉, 〈8, 6〉) and (〈6, 5〉, 〈6, 5〉) inside. And (〈6, 5〉, 〈6, 5〉) matches the same position in A and B ,
so this rectangle represents 1 match length in the LCPS answer. Therefore, we get the LCPS length is 2 + 2 + 1 = 5.

2.3. The LCPS algorithm by Bae and Lee [4]

In 2018, Bae and Lee [4] claimed that they proposed an O(n + R2)-time algorithm to solve the LCPS problem. However,
we will show that their algorithm is not correct in some cases.

The algorithm forms the match pairs between A and B into minima set F and maxima set T . For example, suppose
A = cbccbaabb and B = bbccabbca. F and T are shown in Fig. 2(a) and Fig. 2(b), respectively. F is partitioned into
layers, labeled as F1, F2, · · · , starting from the minima. And T is partitioned into layers, labeled as T1, T2, · · · , starting from
the maxima. Let (x, y) denote the 2D index of ax in A and by in B . Fi[l] denotes the 2D index of the lth match point
in Fi with the right to left order, and T j[r] is defined symmetrically with the left to right order. For example, in Fig. 2,
F1[1] = (1, 8), F1[2] = (1, 4), F1[5] = (2, 1), T3[1] = (7, 5), and T3[4] = (2, 7). In addition, (x, y) ≺ (x′, y′) denotes x < x′
and y < y′; (x, y) = (x′, y′) denotes x = x′ and y = y′ . Let Di, j

l,r denote the number of match characters within Fi [l] and
T j[r]. The algorithm calculates Di, j

l,r , instead of the LCPS length, as shown in Eq. (2), where C(Fi[l]) and C(T j[r]) denote the
characters of Fi[l] and T j[r], respectively.
477

7414
Rectangle

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Fig. 2. A counterexample of Bae and Lee’s algorithm [4] with A = cbccbaabb and B = bbccabbca. The correct |D(A, B)| = |bba| = 3 with LCPS answer
bbabb. But the result calculated by Bae and Lee is |D(A, B)| = |bb| = 2 with LCPS answer bbbb, which is incorrect. (a) The minima set F , partitioned by
red lines. (b) The maxima set T , partitioned by blue lines.

Di, j
l,r =

⎧⎪⎪⎨
⎪⎪⎩

1 + FTMax(i, l, j, r) if (Fi[l] ≺ T j[r]) or (Fi[l] = T j[r]),
and C(Fi[l]) = C(T j[r]);

max

{
FMax(i, l, j, r)
TMax(i, l, j, r)

otherwise;
(2)

where

FTMax(i, l, j, r) = max{Di+1, j+1
l′,r′ |Fi[l] ≺ Fi+1[l′], T j+1[r′] ≺ T j[r]},

FMax(i, l, j, r) = max{Di, j+1
l,r′ |T j+1[r′] ≺ T j[r]},

TMax(i, l, j, r) = max{Di+1, j
l′,r |Fi[l] ≺ Fi+1[l′]}.

Eq. (2) calculates the values with the scheme of layer by layer. The values on layer Fi and layer T j are obtained from
layers Fi+1 and T j+1 with the DP method. In other words, the values on outer layers depend on only the next inner layers.
Therefore, Bae and Lee [4] claimed that each Di, j

l,r can be calculated in O(1) amortized time, and the total complexity is
O(R2) time.

However, the algorithm proposed by Bae and Lee is not correct for all cases. Fig. 2 shows a counterexample. Let D(A, B)

denote the LCPS of A and B by Eq. (2). Their algorithm calculates |D(A, B)| = |bb| = 2, with LCPS length 4. But the correct
value is |D(A, B)| = |bba| = 3, with LCPS length 5 since the third match a is overlapped. In the correct situation, the green
(or gray) match pairs in Fig. 2(a) and 2(b) represent bba. But, while calculating D2,2

6,3 with Eq. (2), we have F2[6] ≺ T2[3]
and C(F2[6]) = C(T2[3]) = b, thus D2,2

6,3 = 1 + FTMax(2, 6, 2, 3). For the match F2[6] = (5, 2), we cannot find any match
in F3. We have (5, 2) ≺ ∅, since no element in F3 satisfies the condition. Then, D4,3

4,1 would never be considered, and thus
FTMax(2,6,2,3) would return 0. The algorithm gets D2,2

6,3 = 1 + 0 = 1 and D1,1
5,4 = 1 + D2,2

6,3 = 2. But the correct value of D1,1
5,4

is 3 with bba.
The second counterexample is shown in Fig. 3, and more counterexamples are shown in Table 2. According to these

counterexamples, we show that the algorithm proposed by Bae and Lee is not correct. The D values cannot be calculated
correctly in some cases. For matches in Fi and T j , we should consider the next match pairs not only in Fi+1 and T j+1, but
also in more inner layers. To correct the algorithm, we have to consider O(|�|) next match pairs, similar to the algorithm
proposed by Inenaga and Hyyrö [17]. Then, each of D values cannot be computed in O(1) amortized time. Therefore, the
algorithm proposed by Bae and Lee [4] with O(n + R2) time cannot solve the LCPS problem correctly.

2.4. Multi-dimensional maxima finding

Our algorithm needs to determine the dominants in a set of 3-dimensional points (explained later). In the multi-
dimensional space, a point p in a set S of n points is said to be maximal or dominant if there is no other point q ∈ S
whose coordinate values are all greater than or equal to the corresponding coordinate values of p. The set of all the maxi-
mal points in S is called the maxima set of S .

In 1975, Kung et al. [24] proposed an algorithm for finding d-dimensional maxima, where d = 2 or 3, and d ≥ 4. The
time complexity of their algorithm is O(n log n) when d = 2 or 3, or O(n(log n)d−2) when d ≥ 4. Here, we introduce their
algorithm for d = 3. Suppose that the input set S consists of n points s1, s2, · · · , sn with their 3-dimensional coordinates
478

7414
Highlight

7414
Highlight

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Fig. 3. The second counterexample of Bae and Lee’s algorithm [4] with A = cbdaccadca and B = abdbcdbcab. The correct |D(A, B)| = |acd| = 3 with
LCPS answer acdca. But the result calculated by Bae and Lee is |D(A, B)| = |ac| = |ad| = 2 with LCPS answer aca or ada, which is incorrect. (a) The
minima set F , partitioned by red lines. (b) The maxima set T , partitioned by blue lines.

Table 2
Some counterexamples of the algorithm proposed by Bae and Lee [4].

Input sequences LCPS length Correct LCPS Bae and Lee’s answer

A = cbccbaabb 5 bbabb bbbb
B = bbccabbca

A = cbdaccadca 5 acdca aca or ada
B = abdbcdbcab

A = aabbba 3 aaa or bbb aa or bb
B = baaabb

A = bababcaddd 4 abba aba or bab
B = bacbbbddad

A = acbcaddaba 4 bddb bb or dd
B = cdcadbdbdb

A = dbaccccbbd 4 cccc ccc
B = cddacccbaa

A = aaaacdcbbb 4 aaaa aaa or bbb
B = baaabccbad

A = baacdbcbab 5 babab baab
B = dcdbcdabab

A = aacbcabacbcaaad 9 cbcabacbc cbaabc
B = cbcabdacaadabdc

(values of x, y and z). Let si
∗ denote the projection point of si onto the yz plane. M stores the 2-dimensional maxima set

of these projection points si
∗ . The maxima set of 3-dimensional points can be found as follows.

Step 1: Sort si in S by the x-coordinate, so that x(s1) ≥ x(s2) ≥ · · · ≥ x(sn).
Step 2: Set i ← 1 and M ← ∅.
Step 3: If si

∗ is maximal in M , then M ← Maxima(M ∪ {si
∗}), and output si as one of the maximal points.

Step 4: If i
= n, then i ← i + 1 and go to Step 3.

Kung et al. [24] maintain the set M by an AVL tree for insertion, deletion, successor and predecessor operations. The
time complexity of their algorithm is O(n log n) for d = 3.

3. Our diagonal-based algorithm

Our LCPS algorithm is based on the diagonal concept, inspired by the LCS algorithm proposed by Nakatsu et al. [22].
The time and space complexities of our LCPS algorithm are O(L(m − L)R log n) and O(RL), respectively, where m, n, and L
denote the lengths of input sequences A, B , and LCPS(A, B), respectively. Clearly, our LCPS algorithm is more efficient when
L is close to m, or L is very small.
479

7414
Underline

7414
Underline

7414
Highlight

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Table 3
The construction of Di,s in our LCPS algorithm with A = cbccbaabb and B = bbc-
cabbca.

Round r
s

0 1 2 3

1 D0,0 D1,1 D2,2

〈0,0,0〉 〈6,3,2〉 〈8,6,3〉
2 D1,0 D2,1 D3,2

〈0,0,0〉 〈6,3,2〉 〈8,6,3〉
〈1,1,3〉 〈7,4,6〉

〈6,3,6〉
3 D2,0 D3,1 D4,2

〈0,0,0〉 〈6,3,2〉 〈8,6,3〉
〈1,1,3〉 〈6,3,6〉
〈6,3,2〉 〈6,3,6〉

4 D3,0 D4,1 D5,2 D6,3

〈0,0,0〉 〈6,3,2〉 〈8,6,3〉 〈3,5,5〉
〈1,1,3〉 〈6,3,6〉
〈6,3,2〉 〈2,2,4〉

The LCPS problem can be solved by the straightforward DP method for solving the FLCS (LCS with four strings) problem.
Let A, A, B and B be the four input strings of the FLCS problem. And let U (i, x, y, z) denote the FLCS length of A1..i , A1..x ,
B1..y and B1..z . After all lattice cells of U are calculated by DP, the length L of LCPS(A, B) can be obtained as follows.

L = max

{
U (i, x, y, z) × 2 if i + x = m and y + z = n;
U (i, x, y, z) × 2 − 1 if i + x = m + 1 and y + z = n + 1.

(3)

In Eq. (3), the first term means that the LCPS length is even, and the second term represents that the LCPS length is odd,
where one match character overlaps at the same position of A or B . Both time and space complexities of this FLCS method
for solving LCPS are O(m2n2).

Now, we realize the above method with the diagonal concept. We first define a dominant set Di,s consisting of FLCS
solutions, which are 3-tuple elements with minima.

Definition 1. (Domination) For a pair of 3-tuples k = 〈x, y, z〉 and k′ = 〈x′, y′, z′〉, we say that k dominates k′ if x ≤ x′ , y ≤ y′
and z ≤ z′ . In a set of 3-tuples, an element is called a dominant if it is not dominated by any other elements in the set. In a
dominant set, each element is a dominant.

Definition 2. (FLCS solution Di,s) A 3-tuple 〈x, y, z〉 ∈ Di,s means that |FLCS(A1..i, A1..x, B1..y , B1..z)| = U (i, x, y, z) = s and
〈x, y, z〉 is a dominant in Di,s , where i + x ≤ m + 1 and y + z ≤ n + 1.

Note that A1..x = Am−x+1..m = amam−1 · · ·am−x+1 and B1..z = Bn−z+1..n = bnbn−1 · · ·bn−z+1. For 〈x, y, z〉 ∈ Di,s , there exists
a common palindromic subsequence (CPS) of length l = 2s or l = 2s − 1 (not necessarily the longest) in A′ = A1..i + Am−x+1..m

and B ′ = B1..y + Bn−z+1..n , which is established by these s match characters, and am−x+1 = by = bn−z+1. That is, in the
CPS solution, the numbers of characters which have been used in sequences A , B , and B are x, y and z, respectively. Note
that it is possible for either ai = am−x+1 or ai
= am−x+1. For example, A = cbccbaabb and B = bbccabbca, in Table 3,
〈2, 2, 4〉 ∈ D5,2 means that |FLCS(A1..5, A1..2, B1..2, B1..4)| = |FLCS(A1..5, A8..9, B1..2, B6..9)| = 2, with 2 match characters bb.
Then, |CPS(a1 · · ·a5a8a9, b1b2b6 · · ·b9)| = 4 is obtained from these 2 match characters. Furthermore, a dominant 3-tuple has
better potential to develop a longer CPS solution. For example, in D5,2 of Table 3, 〈6, 3, 6〉 is dominated by 〈2, 2, 4〉. Thus,
〈6, 3, 6〉 is removed since all 3-tuples in D5,2 are dominants.

To construct Di,s , we need two main operations, extension and domination (minima-finding), defined as follows.

Definition 3. (Extend(·)) The extension of all 3-tuples from Di−1,s−1 is denoted as Extend(Di−1,s−1, i). For 〈x, y, z〉 ∈
Di−1,s−1, Extend(〈x, y, z〉, i) is to obtain 〈x′, y′, z′〉 such that ai = am−x′+1 = by′ = bn−z′+1 and x′, y′, z′ are the smallest,
where x + 1 ≤ x′ ≤ m, y + 1 ≤ y′ ≤ n, z + 1 ≤ z′ ≤ n, i + x′ ≤ m + 1 and y′ + z′ ≤ n + 1.

Definition 4. (Dominate(·)) The removal of dominated 3-tuples in Di,s is denoted as Dominate(Di,s).

Di,s is obtained by Dominate(Di−1,s ∪ Extend(Di−1,s−1, i)). And Di,s can be recognized as a 3-dimensional minima set,
mentioned in Section 2.4. So, the 3-dimensional minima finding algorithm [24] can be applied to performing Dominate(·).

For initialization, Di,0 = {〈0, 0, 0〉} for 0 ≤ i ≤ m; Di,s = ∅ for 0 ≤ i ≤ m and s = i + 1. The construction of Di,s is done
by the diagonal method with the scheme of round by round. In round r, we compute Dr,1, Dr+1,2, Dr+2,3, · · · sequentially.
480

7414
Underline

7414
Highlight

7414
Highlight

7414
Highlight

7414
Underline

7414
Highlight

7414
Highlight

7414
Highlight

7414
Underline

7414
Highlight

7414
Highlight

7414
Highlight

7414
Underline

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Algorithm 1 Computing the length of LCPS.
Input: Sequences A = a1a2a3 . . .am , B = b1b2b3 . . .bn , where m ≤ n.
Output: Length of LCPS(A, B)

1: Di,0 ← {〈0, 0, 0〉} for 0 ≤ i ≤ m; Di,s ← ∅ for 0 ≤ i ≤ m and s = i + 1
2: L ← 0 � L = |LCPS(A, B)|
3: for r = 1 → m do � round r
4: s ← 0
5: for i = r → m do
6: s ← s + 1
7: D ′ ← Extend(Di−1,s−1, i) � extend 3-tuples from Di−1,s−1
8: Perform Di−1,s ∪ D ′ . When two same 3-tuples are with different even/odd flags, preserve the one with an even flag. Put the union result

into D ′′ .
9: Di,s ← Dominate(D ′′) � minima set of Di−1,s ∪ D ′

10: if Di,s is empty then
11: i ← i − 1, s ← s − 1
12: break
13: if ∃〈x, y, z〉 ∈ Di,s � 〈x, y, z〉 is marked with an even flag then
14: L ← 2 × s � L is even
15: else
16: L ← 2 × s − 1 � the last match overlaps

17: if m − r ≤ L then
18: break
19: return L

Function 1 Extension of the set D with ai .
1: function Extend(set D , index i)
2: � Build the arrays of NextA[α][], NextB[α][] and NextB[α][] for each α ∈ � in the preprocessing stage
3: D ′ ← ∅
4: for each 〈x, y, z〉 ∈ D do
5: x′ ← NextA[ai][x] � next match ai after position x in A
6: y′ ← NextB[ai][y] � next match ai after position y in B
7: z′ ← NextB[ai][z] � next match ai after position z in B
8: if i + x′ ≤ m + 1 and y′ + z′ ≤ n + 1 then
9: if i + x′ = m + 1 or y′ + z′ = n + 1 then � overlapped match

10: Mark 〈x′, y′, z′〉 with an odd flag
11: else
12: Mark 〈x′, y′, z′〉 with an even flag

13: Insert 〈x′, y′, z′〉 into D ′

14: return D ′

For example, in round r = 1 (first round), D1,1, D2,2, D3,3, · · · are calculated. Next, in round r = 2, we calculate D2,1, D3,2,
D4,3, · · · .

Now, we illustrate the construction process of Di,s with an example, as shown in Table 3, for A = cbccbaabb and B
= bbccabbca. In round r = 1, we start from the character at position i = 1 of A (a1 = c). The first matches of c in A, B
and B are a4, b3 and b8, where 6, 3 and 2 characters are used in A, B and B , respectively. Thus, we get D1,1 = {〈6, 3, 2〉},
extended from 〈0, 0, 0〉 in D0,0. Next, we extend a2 = b in A from 〈6, 3, 2〉, and find that the next matches of b in A, B and
B are a2, b6, and b7, with 8, 6 and 3 used characters, respectively. So we have D2,2 = {〈8, 6, 3〉}. We cannot extend 〈8, 6, 3〉
anymore since no next match of a3 = c can be found in the remaining substrings of A and B . So the first round stops, and
we have CPS length 3 (cbc) with 2 match characters cb. The length is odd because A and A have the same match position
at a2 = b in A and A.

In round r = 2, we start from the second character a2 = b of A, and find the next matches in A, B and B . We get a9, b1
and b7, respectively, where 1, 1 and 3 characters are used in A, B and B , respectively. So we have D2,1 = D1,1 ∪ {〈1, 1, 3〉} =
{〈6, 3, 2〉, 〈1, 1, 3〉}. Next, by the extension of D2,1 with a3 = c of A, we get D ′ = Extend(D2,1, 3) = {〈7, 4, 6〉, 〈6, 3, 6〉}. Then,
with the domination operation, we obtain D3,2 = Dominate(D2,2 ∪ D ′) = {〈8, 6, 3〉, 〈6, 3, 6〉} since 〈7, 4, 6〉 is dominated by
〈6, 3, 6〉, and it is removed.

Finally, we get D6,3 = {〈3, 5, 5〉} in round r = 4. Accordingly, the LCPS length is 5 (bbabb), which is odd because 〈3, 5, 5〉
matches the same position at b5 in B and B . The LCPS content can be obtained by tracing back from 〈3, 5, 5〉 through
〈2, 2, 4〉 to 〈1, 1, 3〉. The whole algorithm ends since we cannot find any CPS longer than 5 in the next round. That is, only
5 characters of A are remained to extend in round 5.

In addition, each 3-tuple is marked by an odd flag if the match overlaps at the same position of A or B; otherwise, it is
marked with an even flag. For example, 〈6, 3, 2〉 in D1,1 is marked with an even flag and 〈8, 6, 3〉 in D2,2 is marked with
an odd flag. In round r = 4, 〈6, 3, 2〉 is extended from 〈0, 0, 0〉 again and it is marked with an odd flag. When uniting D3,1
and the new extension, the even flag for 〈6, 3, 2〉 is preserved for getting a longer solution.

The pseudo code of our algorithm is presented in Algorithm 1.

Theorem 1. Di,s can be obtained by Dominate(Di−1,s ∪ Extend(Di−1,s−1, i)).
481

Function 2 Finding the dominant (minima) set of set D .
1: function Dominate(set D)
2: Sort D by the x-coordinate in ascending order � x1 ≤ x2 ≤ · · · ≤ x|D|
3: D ′ ← ∅ � minima set of D
4: M ← {〈y1, z1〉}, where d1 = 〈x1, y1, z1〉 � M is the 2-D minima set
5: for i = 2 → |D| do
6: if 〈yi , zi〉 is a dominant in M then � di = 〈xi , yi , zi〉
7: M ← Minima(M ∪ {〈yi , zi〉}) � update the minima set M
8: Insert di = 〈xi , yi , zi〉 into D ′

9: return D ′

Proof. It is proved by induction on i and s. For 1 ≤ i = s ≤ m, it can be easily seen that Di,s is obtained from
Extend(Di−1,s−1, i) since Di−1,s is empty.

Assume that the induction hypotheses Di−1,s and Di−1,s−1 are true for i ≥ s. Now, we want to build Di,s . Since
Extend(Di−1,s−1, i) is to examine one more character ai , we can increase the solution length if the extension is successful.
So Di−1,s ∪ Extend(Di−1,s−1, i) contains all possible solutions corresponding to s. After Dominate(·), we get the dominant
elements in Di,s . Thus, the theorem holds. �

To analyze the time complexity of our algorithm, we first observe that the number of distinct 3-tuples of one column in
Table 3 is bounded, as described in the following theorem.

Theorem 2. |Ds,s ∪ Ds+1,s ∪ Ds+2,s ∪ · · · | = O(Rn
|�|) in the average case, for some fixed value of s, where R denotes the number of

match pairs between the two input sequences.

Proof. For each 3-tuple 〈x, y, z〉 ∈ Di,s , we have am−x+1 = by = bn−z+1. 〈x, y〉 represents a match pair of A and B . So, the
number of possible distinct 〈x, y〉 is R . For each distinct 〈x, y〉, the number of possible z is the number of positions with
by = bn−z+1. It is equal to n

|�| in average, where |B| = n. Thus, the theorem holds. �
Theorem 3. Algorithm 1 solves the LCPS problem with O(L(m − L)R log n) time and O(RL) space in the worst case, and O(L(m −
L)mn log n/|�|) time in the average case.

Proof. For any two 3-tuples in each Di,s , their x and y values cannot be equal at the same time. Otherwise, there should
be a domination between the two 3-tuples. So, |Di,s| ≤ R . The extension of Di,s requires O(|Di,s|) = O(R) time, where R
is O(mn) = O(n2) in the worst case. The operation Dominate can be implemented by the 3-dimensional minima finding
algorithm with O(|Di,s| log |Di,s|) time. Thus, the time required for Dominate(Di,s) is O(R log R) =O(R log n).

The algorithm terminates when round r ≥ m − L. Each round performs the extension and domination at most � L
2 � times.

Hence, the LCPS problem can be solved in O(L(m − L)R log n) time in the worst case, and O(L(m − L)mn logn/|�|) time in
the average case, since R = O(mn

|�|) in average.
The space of Di,s in each round can be reused in the next round, so the algorithm only requires the space of one round.

The number of Di,s in a round is O(L), and thus the space complexity of the algorithm is O(RL). �
4. Experimental results

In the experiments, we compare the execution time of our algorithm, the algorithm proposed by Chowdhury et al.
[9], and the algorithm proposed by Inenaga and Hyyrö [17]. Each experiment is performed 100 times to get the average
execution time. These algorithms are implemented in Java by Eclipse 4.6.3, and they are tested on a computer with 64-bit
Windows 10 OS, CPU clock rate of 3.00 GHz (Intel i5-7400 CPU) and RAM with 16 GB.

The following are the algorithms for comparison in the experiments.

• Chowdhury: The DP algorithm proposed by Chowdhury et al. [9] with O(m2n2) time.
• Inenaga: The algorithm for the maximum depth nesting rectangle structure proposed by Inenaga and Hyyrö [17] with
O(n + R2|�|) time, where R is O(mn/|�|) in the average case.

• Ours: Our diagonal-based algorithm with O(L(m − L)R log n) time in the worst case, and O(L(m − L)mn log n/|�|) time
in the average case.

We use a 4-tuple (|A|, |B|, |�|, algo) to represent the parameters in each performance chart. For example, (200, 200, 2, ∗)

means that |A| = |B| = 200, |�| = 2, and “∗” is a wildcard representing all of the three algorithms.
The first experiment is to test the algorithms for various values of |�| ∈ {2, 4, 20}, with the input lengths n ranging from

10 to 200 if n ≥ |�|. The input sequences A and B are generated with a fully random manner and they are picked up if the
input sequences involve all characters σ ∈ �. The results of the first experiment are shown in Fig. 4.
T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
482

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485

Fig. 4. The execution time (in seconds) of the three algorithms for various |�| with input lengths ranging from 10 to 200, where m = n. (a) |�| = 2. (b)
|�| = 4. (c) |�| = 20.
483

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Fig. 5. The comparisons of the three algorithms for the real data with |�| = 4 and input lengths ranging from 50 to 1000, where m = n. (a) The execution
time (in seconds). (b) The amount of calculations.

The algorithm of Chowdhury et al. solves the LCPS problem with the DP method. Their computational amount is larger
than the number R of match pairs. As Fig. 4 shows, the algorithm of Chowdhury et al. takes more time than the others.
The algorithm of Inenaga and Hyyrö and our algorithm are both related to the number of match pairs. When |�| is getting
larger, the number of match pairs becomes smaller. Thus, the two algorithms are much more efficient than the algorithm
of Chowdhury et al. when |�| is large. The algorithm of Inenaga and Hyyrö extends all possible rectangles that may form
a palindrome, whose size is O(R2). Our algorithm extends only the currently optimal 3-tuples. The calculation of our
algorithm is practically less than the algorithm of Inenaga and Hyyrö. Thus, our algorithm has better performance than the
others in almost all cases.

In the second experiment, we test the execution time and the computational amount of the three algorithms with
real bio-sequences of lengths ranging from 50 to 1000. We take the RefSeq transcripts of the ACIN-1 as our input data
(https://www.ncbi .nlm .nih .gov /gene /22985). ACIN-1 stands for apoptotic chromatin condensation inducer 1, and we choose
the mRNA, transcript variants 1 through 5 of ACIN-1 to be our sample dataset. The lengths of the transcript variants 1
through 5 are 4951, 4909, 4828, 2456, and 2518, respectively, and � = {A, T, C, G}, where |�| = 4.

The results of the second experiment are shown in Fig. 5. The algorithm of Chowdhury et al. and the algorithm of Inenaga
and Hyyrö are tested for input lengths ranging from 50 to 200. Because the space complexities of the two algorithms are
O(n4) and O(R2), respectively, the algorithms need arrays with sizes n4 and R2, respectively. Thus, we cannot perform the
experiments for the two algorithms with input lengths more than 200 in the experimental environment. These results are
similar to the first experimental result with |�| = 4.

Our algorithm has better performance than the others in either random or real data. In our algorithm, each Di,s only
keeps the dominant 3-tuples. And the number of 3-tuples in most Di,s is much smaller than R in the simulations. Thus,
the amount of calculations in our algorithm is much smaller than the theoretical complexity of our algorithm, which is
O(L(m − L)R log n), where R is O(mn

|�|) in the average case.

5. Conclusion

This paper proposes a diagonal-based algorithm for solving the longest common palindromic subsequence (LCPS) problem
with O(L(m − L)R log n) time and O(RL) space in the worst case, where m, n, and L denote the lengths of A, B , and
LCPS(A, B), respectively, and R denotes the number of match pairs between A and B . In the future, the theoretical time
complexity may be improved by reducing the domination and the upper bound of |Di,s|.

The LCPS problem can help to solve the longest common square subsequence (LCSqS) problem [18]. An input sequence
can be partitioned into a prefix and a suffix, next we reverse the suffix sequence, and then we concatenate the prefix and
reversed suffix to form a new sequence. Thus, we can obtain the LCSqS length of the input sequences by finding the even
LCPS length of the two new sequences. Inoue et al. [18] proposed an LCSqS algorithm with O(n + R3|�|) time. As a result,
we can solve the LCSqS problem in O(mnL(m − L)R log n) time by solving all of the partitioned subproblems with our LCPS
algorithm.

Furthermore, the cyclic longest common palindromic subsequence problem is a variant of the LCPS problem. The cyclic
version of the LCPS problem can separate the problem into subproblems by cutting the two cyclic sequences with O(mn)

different ways. And each subproblem can be solved by the LCPS algorithm. In the cyclic problem, shifting a cutting position
is similar to appending a new character to the sequence. Therefore, the online version of the LCPS problem deserves the
further study.
484

https://www.ncbi.nlm.nih.gov/gene/22985

T.-W. Liang, C.-B. Yang and K.-S. Huang Theoretical Computer Science 922 (2022) 475–485
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] A. Alatabbi, C.S. Iliopoulos, M.S. Rahman, Maximal palindromic factorization, in: Proceedings of the Prague Stringology Conference (PSC 2013), Prague,
Czech, Jan. 2013, pp. 70–77.

[2] H.Y. Ann, C.B. Yang, C.T. Tseng, C.Y. Hor, Fast algorithms for computing the constrained LCS of run-length encoded strings, Theor. Comput. Sci. 432
(2012) 1–9.

[3] M.J. Atallah, F. Kerschbaum, W. Du, Secure and private sequence comparisons, in: Proceedings of the 2003 ACM Workshop on Privacy in the Electronic
Society, New York, USA, 2003, pp. 39–44.

[4] S.W. Bae, I. Lee, On finding a longest common palindromic subsequence, Theor. Comput. Sci. 710 (2018) 29–34.
[5] B.S. Baker, R. Giancarlo, Longest common subsequence from fragments via sparse dynamic programming, in: Proceedings of the 6th Annual European

Symposium on Algorithms, Venice, Italy, 1998, pp. 79–90.
[6] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: Proceedings of the 7th International Symposium on String

Processing and Information Retrieval, A Coruña, Spain, Sept. 2000, pp. 39–48.
[7] K. Borozdin, D. Kosolobov, M. Rubinchik, A.M. Shur, Palindromic length in linear time, in: Proceedings of the 28th Annual Symposium on Combinatorial

Pattern Matching (CPM 2017), Warsaw, Poland, 2017, pp. 23:1–23:12.
[8] H.T. Chan, H.T. Chiu, C.B. Yang, Y.H. Peng, The generalized definitions of the two-dimensional largest common substructure problems, Algorithmica 82

(2020) 2039–2062.
[9] S.R. Chowdhury, M.M. Hasan, S. Iqbal, M.S. Rahman, Computing a longest common palindromic subsequence, Fundam. Inform. 129 (4) (Oct. 2014)

329–340.
[10] G. Fici, T. Gagie, J. Kärkkäinen, D. Kempa, A subquadratic algorithm for minimum palindromic factorization, J. Discret. Algorithms 28 (2014) 41–48.
[11] A. Fuglsang, The relationship between palindrome avoidance and intragenic codon usage variations: a Monte Carlo study, Biochem. Biophys. Res.

Commun. 316 (May 2004) 755–762.
[12] R. Groult, E. Prieur, G. Richomme, Counting distinct palindromes in a word in linear time, Inf. Process. Lett. 110 (20) (2010) 908–912.
[13] M.M. Hasan, A.S.M.S. Islam, M.S. Rahman, A. Sen, Palindromic subsequence automata and longest common palindromic subsequence, Math. Comput.

Sci. 11 (2) (June 2017) 219–232.
[14] M. Hoffmann, J. Rychlewski, Searching for palindromic sequences in primary structure of proteins, Comput. Methods Sci. Technol. 5 (Jan. 1999) 21–24.
[15] T. I, S. Sugimoto, S. Inenaga, H. Bannai, M. Takeda, Computing palindromic factorizations and palindromic covers on-line, in: Proceedings of the 25th

Annual Symposium on Combinatorial Pattern Matching (CPM 2014), Moscow, Russia, 2014, pp. 150–161.
[16] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS and constrained LCS problems, Inf. Process. Lett. 106 (1) (2008) 13–18.
[17] S. Inenaga, H. Hyyrö, A hardness result and new algorithm for the longest common palindromic subsequence problem, Inf. Process. Lett. 129 (2018)

11–15.
[18] T. Inoue, S. Inenaga, H. Hyyrö, H. Bannai, M. Takeda, Computing longest common square subsequences, in: Proceedings of the 29th Annual Symposium

on Combinatorial Pattern Matching (CPM 2018), Qingdao, China, 2018, pp. 15:1–15:13.
[19] M. Kutz, G.S. Brodal, K. Kaligosi, I. Katriel, Faster algorithms for computing longest common increasing subsequences, J. Discret. Algorithms 9 (4) (2011)

314–325.
[20] T.W. Liang, C.B. Yang, K.S. Huang, A fast algorithm for the longest common palindromic subsequence problem, in: Proceedings of the 37th Workshop

on Combinatorial Mathematics and Computation Theory, Kaohsiung, Taiwan, 2020, pp. 128–133.
[21] S.F. Lo, K.T. Tseng, C.B. Yang, K.S. Huang, A diagonal-based algorithm for the longest common increasing subsequence problem, Theor. Comput. Sci. 815

(2020) 69–78.
[22] N. Nakatsu, Y. Kambayashi, S. Yajima, A longest common subsequence algorithm suitable for similar text strings, Acta Inform. 18 (2) (Nov. 1982)

171–179.
[23] A.H.L. Porto, V.C. Barbosa, Finding approximate palindromes in strings, Pattern Recognit. 35 (11) (2002) 2581–2591.
[24] H.T. Kung, F. Luccio, F.P. Preparata, On finding the maxima of a set of vectors, J. ACM 22 (Oct. 1975) 469–476.
[25] Y.T. Tsai, The constrained longest common subsequence problem, Inf. Process. Lett. 88 (2003) 173–176.
[26] K.T. Tseng, D.S. Chan, C.B. Yang, S.F. Lo, Efficient merged longest common subsequence algorithms for similar sequences, Theor. Comput. Sci. 708 (2018)

75–90.
[27] I.H. Yang, C.P. Huang, K.M. Chao, A fast algorithm for computing a longest common increasing subsequence, Inf. Process. Lett. 93 (5) (2005) 249–253.
485

http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA4C6948BDFCFDB2B71752E89D32FF517s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA4C6948BDFCFDB2B71752E89D32FF517s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib1EA2F1D65B4FA14EFEF1E4B37B5D0FAEs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib1EA2F1D65B4FA14EFEF1E4B37B5D0FAEs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib175608722F2DC8397AF362FC509DE1A8s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib175608722F2DC8397AF362FC509DE1A8s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib5FD8B0D46839D910610DABB293E35B54s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib6822BD2BE2DF0512310F08007177FBA4s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib6822BD2BE2DF0512310F08007177FBA4s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA63B7EA3EFE167C8439AE67FB5E5162As1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA63B7EA3EFE167C8439AE67FB5E5162As1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibC6E3251315F32955B5750C79D770B359s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibC6E3251315F32955B5750C79D770B359s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibF9AB571A4AA5855E39AACBECC3D788E4s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibF9AB571A4AA5855E39AACBECC3D788E4s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibF0AC19BD810F536C9836EFF08264F540s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibF0AC19BD810F536C9836EFF08264F540s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib903DC7C31BFCB0E63B5B3321FC8F700Cs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA537C0F404789896753439872E8FE08Bs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibA537C0F404789896753439872E8FE08Bs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibEE3AC5A51A9E47495455344A4598B4B3s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib4951AF82F16608796511508471279393s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib4951AF82F16608796511508471279393s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib7ACE64978C2D1BBF6B750E6E1659A2D7s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibB4E444105FC124E5CE17598EEA3FBDD9s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibB4E444105FC124E5CE17598EEA3FBDD9s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibCD380A06FEF74A5D7AC96779024290B7s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib95052B6F80947E7B3D1C343EB948ECF5s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib95052B6F80947E7B3D1C343EB948ECF5s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib0AEC4814A788AB22867ED84D40BDD16Ds1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib0AEC4814A788AB22867ED84D40BDD16Ds1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib3E13E93BD0005A099C1C8AA7A3A26039s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib3E13E93BD0005A099C1C8AA7A3A26039s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibB80F4A67CE235B6251BEA33318B3BE58s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibB80F4A67CE235B6251BEA33318B3BE58s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibD9C06D0D794CBC293938392B31D39BBAs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibD9C06D0D794CBC293938392B31D39BBAs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibCF3225B2CA37376F64232988C2ECC201s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibCF3225B2CA37376F64232988C2ECC201s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib49E4CF6893ECA157DECC02E1C8B34E38s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib5F5F7ECE93C40979E7040AF0A07C28E2s1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bibEF7C5BC81CA86612BCDC8FC46581D8DBs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib895C713EEFE87D8EE112E9BB864CED2Cs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib895C713EEFE87D8EE112E9BB864CED2Cs1
http://refhub.elsevier.com/S0304-3975(22)00270-5/bib0D55B11CDDDF2B8462BC43C86AA087CDs1

	An efficient algorithm for the longest common palindromic subsequence problem
	1 Introduction
	2 Preliminaries
	2.1 The LCPS Algorithm by Chowdhury et al. [9]
	2.2 Maximum depth nesting rectangle structures by Inenaga and Hyyrö [17]
	2.3 The LCPS algorithm by Bae and Lee [4]
	2.4 Multi-dimensional maxima finding

	3 Our diagonal-based algorithm
	4 Experimental results
	5 Conclusion
	Declaration of competing interest
	References

