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Abstract

We revisit the classic combinatorial pattern matching prob-
lem of finding a longest common subsequence (LCS). For
strings = and y of length n, a textbook algorithm solves
LCS in time O(n?), but although much effort has been

spent, no O(n?~¢)-time algorithm is known. Recent work in-
deed shows that such an algorithm would refute the Strong
Exponential Time Hypothesis (SETH) [Abboud, Backurs,
Vassilevska Williams FOCS’15; Bringmann, Kiinnemann
FOCS’15].

Despite the quadratic-time barrier, for over 40 years
an enduring scientific interest continued to produce fast
algorithms for LCS and its variations. Particular attention
was put into identifying and exploiting input parameters
that yield strongly subquadratic time algorithms for special
cases of interest, e.g., differential file comparison. This line
of research was successfully pursued until 1990, at which
time significant improvements came to a halt. In this paper,
using the lens of fine-grained complexity, our goal is to (1)
justify the lack of further improvements and (2) determine
whether some special cases of LCS admit faster algorithms
than currently known.

To this end, we provide a systematic study of the
multivariate complexity of LCS, taking into account all
parameters previously discussed in the literature: the input
size n := max{|z|,|y|}, the length of the shorter string
m := min{|z|, |y|}, the length L of an LCS of = and vy,
the numbers of deletions § := m — L and A := n — L, the
alphabet size, as well as the numbers of matching pairs M
and dominant pairs d. For any class of instances defined
by fixing each parameter individually to a polynomial in
terms of the input size, we prove a SETH-based lower
bound matching one of three known algorithms (up to

lower order factors of the form n°<1)). Specifically, we
determine the optimal running time for LCS under SETH
as (n 4 min{d, dA, dm})'*°M . Polynomial improvements
over this running time must necessarily refute SETH or
exploit novel input parameters. We establish the same lower
bound for any constant alphabet of size at least 3. For
binary alphabet, we show a SETH-based lower bound of
(n+min{d, 6A,5M/n})'~°D and, motivated by difficulties
to improve this lower bound, we design an O(n+0M /n)-time
algorithm, yielding again a matching bound.

We feel that our systematic approach yields a compre-
hensive perspective on the well-studied multivariate com-
plexity of LCS, and we hope to inspire similar studies of
multivariate complexity landscapes for further polynomial-
time problems.

*Part of this work was done while visiting the Simons Institute
for the Theory of Computing at University of California, Berkeley.

Marvin Kiinnemann'

1 Introduction

String comparison is one of the central tasks in combina-
torial pattern matching, with various applications such
as spelling correction [67, [81], DNA sequence compari-
son [8], and differential file comparison [45] [65]. Perhaps
the best-known measure of string similarity is the length
of the longest common subsequence (LCS). A textbook
dynamic programming algorithm computes the LCS of
given strings x,y of length n in time O(n?), and in the
worst case only an improvement by logarithmic factors
is known [64]. In fact, recent results show that improve-
ments by polynomial factors would refute the Strong
Exponential Time Hypothesis (SETH) [l 28] (see Sec-
tion for a definition).

Despite the quadratic-time barrier, the literature
on LCS has been steadily growing, with a changing
focus on different aspects of the problem over time (see
Section for an overview). Spurred by an interest
in practical applications, a particular focus has been
the design of LCS algorithms for strings that exhibit
certain structural properties. This is most prominently
witnessed by the UNIX diff utility, which quickly
compares large, similar files by solving an underlying
LCS problem. A practically satisfying solution to
this special case was enabled by theoretical advances
exploiting the fact that in such instances the LCS
differs from the input strings at only few positions (e.g.,
[65, [69]). In fact, since Wagner and Fischer introduced
the LCS problem in 1974 [81], identifying and exploiting
structural parameters to obtain faster algorithms has
been a decades-long effort, [13] 14} [36], [44], [46], 49, 69, 70,
84].

Parameters that are studied in the literature are,
besides the input size n := max{|z|, |y|}, the length
m := min{|z|, |y|} of the shorter string, the size of the
alphabet ¥ that z and y are defined on, the length L of
a longest common subsequence of x and y, the number
A =n — L of deleted symbols in the longer string, the
number § = m — L of deleted symbols in the shorter
string, the number of matching pairs M, and the num-
ber of dominant pairs d (see Section for defini-
tions). Among the fastest currently known algorithms
are an O(n + dL)-algorithm due to Hirschberg [44], an

+ : . .«

1 Max  Planck — Institute  for Informatics, Saar O(n + 0A)-algorithm due to Wu, Manbers, Myers, and
and Informatics Campus, Saarbriicken, Germany, N ~ R

(kbringma|marvin)@mpi-inf .mpg.de. Miller [84], and an O(n + d)-algorithm due to Apos-

Copyright © 2018 by SIAM

1216 Unauthorized reproduction of this article is prohibited



tolico [13] (with log-factor improvements by Eppstein,
Galil, Giancarlo, and Italiano [36]). In the remain-
der, we refer to such algorithms, whose running time is
stated in more parameters than just the problem size n,
as multivariate algorithms. See Table
for a non-exhaustive survey containing the asymp-
totically fastest multivariate LCS algorithms.

The main question we aim to answer in this work
is: Are there significantly faster multivariate LCS algo-
rithms than currently known? E.g., can ideas underly-
ing the fastest known algorithms be combined to design
an algorithm that is much faster than all of them?

1.1 Owur Approach and Informal Results We
systematically study special cases of LCS that arise from
polynomial restrictions of any of the previously studied
input parameters. Informally, we define a parameter
setting (or polynomial restriction of the parameters) as
the subset of all LCS instances where each input pa-
rameter is individually bound to a polynomial relation
with the input size n, i.e., for each parameter p we fix
a constant oy, and restrict the instances such that p
attains a value ©(n®r). An algorithm for a specific pa-
rameter setting of LCS receives as input two strings x, y
guaranteed to satisfy the parameter setting and outputs
(the length of) an LCS of z and y. We call a param-
eter setting trivial if it is satisfied by at most a finite
number of instances; this happens if the restrictions on
different parameters are contradictory. For each non-
trivial parameter setting, we construct a family of hard
instances via a reduction from satisfiability, thus ob-
taining a conditional lower bound. This greatly extends
the construction of hard instances for the n2~°() lower
bound [T}, 28§].

Results for large alphabets Since we only con-
sider exact algorithms, any algorithm for LCS takes
time Q(n). Beyond this trivial bound, for any non-
trivial parameter setting we obtain a SETH-based lower

bound of

min {d, §A, 5m}170(1).

Note that this bound is matched by the known algo-
rithms with running times O(n + d), O(n + (5L and

O(n + 0A). Thus, our lower bound very well explains
the lack of progress since the discovery of these three
algorithms (apart from lower-order factors).

TNote that L < m. At first sight it might seem as if the
O(n + 6L) algorithm could be faster than our lower bound,
however, for L > m/2 we have §L = ©(dm), which appears in
our lower bound, and for L < m/2 we have § = m — L = O(m)
and thus 6L = ©(Lm) which is Q(d) by the relation d < Lm (see

Table , and d appears in our lower bound.
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Results for constant alphabet size For the
alphabet size |X|, we do not only consider the case of
a polynomial relation with n, but also the important
special cases of |X| being any fixed constant. We
show that our conditional lower bound for polynomial
alphabet size also holds for any constant [X| > 3. For
|2| = 2, we instead obtain a SETH-based lower bound
of

min {d, 6A, 6M/n}' "

This lower bound is weaker than the lower bound for
|2| > 3 (as the term dM/n is at most dm by the triv-
ial bound M < mn; see Section [2.1] for the definition
of M). Surprisingly, a stronger lower bound is impos-
sible (assuming SETH): Motivated by the difficulties to
obtain the same lower bound as for |X| > 3, we discov-
ered an algorithm with running time O(n + §M/n) for
|X| = 2, thus matching our conditional lower bound. To
the best of our knowledge, this algorithm provides the
first polynomial improvement for a special case of LCS
since 1990, so while its practical relevance is unclear,
we succeeded in uncovering a tractable special case. In-
terestingly, our algorithm and lower bounds show that
the multivariate fine-grained complexity of LCS differs
polynomially between || = 2 and |X| > 3. So far, the
running time of the fastest known algorithms for vary-
ing alphabet size differed at most by a logarithmic factor
in |X|.

We find it surprising that the hardness assumption
SETH is not only sufficient to prove a worst-case
quadratic lower bound for LCS, but extends to the
complete spectrum of multivariate algorithms using the
previously used 7 parameters, thus proving an optimal
running time bound which was implicitly discovered
by the computer science community within the first
25 years of research on LCS (except for the case of
¥ = {0, 1}, for which we provide a missing algorithm).

1.2 Related Work on LCS Table [—on the nexf]
gives a non-comprehensive overview of progress on
multivariate LCS, including the asymptotically fastest
known algorithms. Note that the most recent polyno-
mial factor improvement for multivariate LCS was found
in 1990 [84]. Further progress on multivariate LCS
was confined to log-factor improvements (e.g., [36, [49]).
Therefore, the majority of later works on LCS focused
on transferring the early successes and techniques to
more complicated problems, such as longest common
increasing subsequence [32] [57, [66] [85], tree LCS [68],
and many more generalizations and variants of LCS, see,
e.g., [6, 17,19, [10, 20, 211, 4] 311 35, [37, [0, 42}, 47, 48, 52
54, 56l [BIH6T, 72, [75] 76l [78, 82]. One branch of
generalizations considered the LCS of more than two
strings (e.g., [1, 25]), with variations such as string con-
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Reference

Running Time

Wagner and Fischer [81]
Hunt and Szymanski [40]
Hirschberg [44]
Hirschberg [44]
Masek and Paterson [64]

Nakatsu, Kambayashi and Yajima [70]
Apostolico [13]

Myers [69]

Apostolico and Guerra [14]

Wu, Manbers, Myers and Miller [84]

Eppstein, Galil, Giancarlo and Italiano [30]

Niopoulos and Rahman [49]

O(mn)
O((n+ M)logn)
O(nlogn + Ln)
(nlogn + Ldlogn)
(n 4 nm/log®n) assuming || = O(1)
(n - (52))

(nd
(nlogn + dlog(mn/d))

(nlogn + A?)

(nlogn + Lmmin{logm,log(n/m)})
(nlogn + 0A) E|

(nlogn + dloglog min{d, nm/d})
O(n+ Mloglogn)

(@)
o
(@)
@)
(@)
(@)
(@)
(@)
(@)

Table 1: Short survey of LCS algorithms. See Section for definitions of the parameters. When stating the
running times, every factor possibly attaining non-positive values (such as d,log(n/m), etc.) is to be read as
max{-,1}. For simplicity, log(X)-factors have been bounded from above by logn (see [71] for details on the case

of constant alphabet size).

sensus (e.g., [II, 12]) and more (e.g., [9, 19, B34, 40,
A1) [60]). Since natural language texts are well com-
pressible, researchers also considered solving LCS di-
rectly on compressed strings, using either run-length
encoding (e.g., [I5} B0, 33 56]) or straight-line pro-
grams and other Lempel-Ziv-like compression schemes
(e.g., 39, [43] [62] [77]). Further research directions in-
clude approximation algorithms for LCS and its variants
(e.g., [41) [42] [58]), as well as the LCS length of random
strings [18], [63].

For brevity, here we ignore the equally vast litera-
ture on the closely related edit distance. Furthermore,
we solely regard the time complexity of computing the
length of an LCS and hence omit all results concern-
ing space usage or finding an LCS. See, e.g., [22] [T]]
for these and other aspects of LCS (including empirical
evaluations).

1.3 (Multivariate) Hardness in P After the early
success of 3SUM-hardness in computational geome-
try [38], recent years have brought a wealth of novel
conditional lower bounds for polynomial time problems,
see, e.g., [1H4l [16], 17, 26129, 55, [73, 80, B3] and the
recent survey [79]. In particular, our work extends
the recent successful line of research proving SETH-

ZSee [23] for how to extend the Masek-Paterson algorithm to
non-constant alphabets.

3Wu et al. state their running time as O(nd) in the worst case
and O(n+40A) in expectation for random strings. However, Myers
worst-case variation trick [69] Section 4c| applies and yields the
claimed time bound O(nlogn + §A). The additional O(nlogn)
comes from building a suffix tree.
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based lower bounds for a number problems with effi-
cient dynamic programming solutions such as Fréchet
distance [26] 29], edit distance [16, 28], LCS and dy-
namic time warping [I, 28]. Beyond worst-case condi-
tional lower bounds of the form n¢=°(1) | recently also
more detailed lower bounds targeting additional input
restrictions have gained interest. Such results come in
different flavors, as follows.

Input parameters, polynomial dependence. Consider
one or more parameters in addition to the input size n,
where the optimal time complexity of the studied prob-
lem depends polynomially on n and the parameters.
This is the situation in this paper as well as several
previous studies, e.g., [4, 26, (5]. To the best of our
knowledge, our work is the first of this kind to study
combinations of more than two parameters that adhere
to a complex set of parameter relations — for previous re-
sults, typically the set of non-trivial parameter settings
was obvious and simultaneously controlling all parame-
ters was less complex.

Input parameters, superpolynomial dependence. Re-
lated to the above setting, parameters have been studied
where the time complexity depends polynomially on n
and superpolynomially on the parameters. If the stud-
ied problem is NP-hard then this is known as fixed-
parameter tractability (FPT). However, here we focus
on problems in P, in which case this situation is known
as “FPT in P”. Hardness results in this area were initi-
ated by Abboud, Vassilevska Williams, and Wang [4].

A finite/discrete number of special cases. Some
input restrictions yield a discrete or even finite set of
special cases. For example, Backurs and Indyk [I7]
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and later Bringmann et al. [27] studied special cases of
regular expression pattern matching by restricting the
input to certain “types” of regular expressions. The set
of types is discrete and infinite, however, there are only
finitely many tractable types, and finitely many minimal
hardness results. Their approach is similarly systematic
to ours, as they classify the complexity of pattern
matching for any type of regular expressions. The major
difference is that our parameters are “continuous”,
specifically our parameter exponents «, are continuous,
and thus our algorithms and lower bounds trace a
continuous tradeoff.

While in all of the above settings the design of
fast multivariate algorithms is well established, tools
for proving matching conditional lower bounds have
been developed only recently. In particular, the sys-
tematic approach to multivariate lower bounds pur-
sued in this paper provides an effective complement
to multivariate algorithmic studies in P, since it estab-
lishes (near-)optimality and may uncover tractable spe-
cial cases for which improved algorithms can be found.

Beyond SETH Motivated in part to find barriers
even for polylogarithmic improvements on LCS, a sur-
prising result of Abboud et al. [2] strengthens the con-
ditional quadratic-time hardness of LCS substantially.
More precisely, they show that a strongly subquadratic-
time algorithm for LCS would even refute a natural,
weaker variant of SETH on branching programs. In the
full version of this article, we survey their result and
show that the conditional lower bounds we derive in
this paper also hold under this weaker assumption.

2 Preliminaries

We write [n] := {1,...,n}. For a string x, we denote
its length by |z|, the symbol at its i-th position by
z[i], and the substring from position ¢ to position j by
x[i..j]. If string z is defined over alphabet ¥, we denote
the number of occurrences of symbol ¢ € ¥ in z by
#o(x). In running time bounds we write ¥ instead of
|| for readability. For two strings z,y, we denote their
concatenation by x oy = zy and define, for any ¢ > 0,
the (-fold repetition z* := szl x. For any strings x,y
we let LCS(z, y) be any longest common subsequence of
x and y, i.e., a string z = z[1..L] of maximum length L
such that there are iy < ... < iy with x[ix] = z[k]
for all 1 < k < L and there are j; < ... < jp with
yljr] = z[k] for all 1 < k < L. For a string = of length n,
let rev(z) := z[n] x[n — 1] ... x[1] denote its reverse.

the two strings, so that n = n(z,y) := |z| is the input
size (up to a factor of two). Then m = m(x,y) := |y
is the length of the shorter of the two strings. Another
natural parameter is the solution size, i.e., the length of
any LCS, L = L(z,y) := |LCS(z,y)|.

Since any symbol not contained in z or in y cannot
be contained in a LCS, we can ensure the following using
a (near-)linear-time preprocessing.

ASSUMPTION 2.1. Every symbol o € X occurs at least
once in x and iny, i.e., #.(x), #,(y) > 1

Consider the alphabet induced by z and y after
ensuring Assumption namely ¥ = {z[i] | 1 < i <
lZ}n{yli] 1< < |y|}~ Its size X(z,y) = [X] is a
natural parameter.

Beyond these standard parameters n,m, L, |X| (ap-
plicable for any optimization problem on strings), pop-
ular structural parameters measure the similarity and
sparsity of the strings. These notions are more specific
to LCS and are especially relevant in practical appli-
cations such as, e.g., the diff file comparison utility,
where symbols in « and y correspond to lines in the
input files.

Notions of similarity To obtain an LCS, we have
to delete A = A(x,y) := n — L symbols from z or
0 = §(x,y) := m — L symbols from y. Hence for
very similar strings, which is the typical kind of input
for file comparisons, we expect § and A to be small.
This is exploited by algorithms running in time, e.g.,
O(n+0A) [84] or O(n+ L) [44].

Notions of sparsity Based on the observation
that the dynamic programming table typically stores
a large amount of redundant information (suggested,
e.g., by the fact that an LCS itself can be reconstructed
examining only O(n) entries), algorithms have been
studied that consider only the most relevant entries
in the table. The simplest measure of such entries
is the number of matching pairs M = M(z,y) =
#{(,7) | z[i] = y[j]}. Especially for inputs with a
large alphabet, this parameter potentially significantly
restricts the number of candidate pairs considered by
LCS algorithms, e.g., for files where almost all lines
occur only once. Moreover, in the special case where x
and y are permutations of ¥ we have M = n = m, and
thus algorithms in time O(n+ M) [45, 46} 49] recover the
near-linear time solution for LCS of permutations [74].

One can refine this notion to obtain the dominant
pairs. A pair (i,7) dominates a pair (¢/,7") if we have
i <i and j < j'. A k-dominant pair is a pair (i, j) such

2.1 Parameter Definitions We survey parameters {},¢ L( [1..i],y[1..5]) = k and no other pair (i, j/) with
that have been used in the analysis of the LCS problem L(z[1..i'],y[1..j']) = k dominates (i,j). By defining
(see also [22] [T1]). Let =,y be any strings. By possibly L[i,j] = L(z[1..i],y[1..]) and using the well known
swapping = and y, we can assume that x is the longer of ocyrsion Lli,j] = max{L[i—1,j],L[i,j—1],L[i—1,j —
Copyright © 2018 by SIAM
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m(z,y) = |yl

A(.’L’,y) = ‘x| - L(l’,y)

=#{zl] | 1<i< |z} n{yl] [ 1<) < [yl})
= #{(i,7) | x[i] = yl5]}

debeobd n(a,9) = lal,
d [@1 111 1[{ L(z,y) = |LCS(z,y)]
c 11 1222 2 5(z,y) = ly| — L(z,y),
b 1 1]2]2 2[8]3 S(z,y)
a 1[2]2 2233 Mz
d i72 2 2 3] d( )
c 122383 4 (z,y)

= #{(’La]) | L[Zaj} > L[l_ 1?]] and L[Z»]] > L[Lj - 1]}7

where L[, j] :== |[LCS(z[1..7], y[1..5])|.

(b)

Figure 1: (a) Iustration of the L-table, matching pairs and dominant pairs. Entries marked in orange color and
bold letters correspond to dominant pairs (which by definition are also matching pairs), while entries marked in
blue are matching pairs only. (b) Summary of all input parameters.

1]414[j=y[j}, We observe that (i, j) is a k-dominant pair
if and only if L[i,j] = k and L[i — 1,j] = L[i,j — 1] =
k — 1. Denoting the set of all k-dominant pairs by Dy,
the set of dominant pairs of x,y is (Jy~; Dk, and we
let d = d(z,y) denote the number of dominant pairs.
Algorithms running in time O(n + d) exploit a small
number of dominant pairs [I3} [36]. Figure [Ia]illustrates
matching and dominant pairs.

While at first sight the definition of dominant pairs
might not seem like the most natural parameter, it plays
an important role in analyzing LCS: First, from the
set of dominant pairs alone one can reconstruct the L-
table that underlies the basic dynamic programming al-
gorithm. Second, the parameter d precisely describes
the complexity of one of the fastest known (multivari-
ate) algorithms for LCS. Finally, LCS with parameter d
is one of the first instances of the paradigm of sparse
dynamic programming (see, e.g., [30]).

On practical instances, exploiting similarity notions
seems to typically outperform algorithms based on
sparsity measures (see [65] for a classical comparison
to an algorithm based on the number of matching
pairs M [45, [46]). To the best of our knowledge,
Figure summarizes all parameters which have been
exploited to obtain multivariate algorithms for LCS.

We remark that for some intermediate strings x,y
constructed in the proofs, the assumption |z| > |y| may
be violated; in this case we use the definitions given in
Figure 1| (and thus we may have n(z,y) < m(z,y) and
A(z,y) < §(x,y)). Since L, M,d, and ¥ are symmetric
in the sense L(z,y) = L(y,z), these parameters are
independent of the assumption |z| > |y|.

2.2 Hardness Hypotheses The Strong Exponen-
tial Time Hypothesis (SETH) was introduced by Im-
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pagliazzo, Paturi, and Zane [50, [51] and essentially as-
serts that satisfiability has no algorithms that are much
faster than exhaustive search. It forms the basis of
many conditional lower bounds for NP-hard as well as
polynomial-time problems.

HypoTHESIS 2.1. (SETH) For any € > 0 there is a
k > 3 such that k-SAT on n variables cannot be solved
in time O((2 —&)™).

Effectively all known SETH-based lower bounds
for polynomial-time problems use reductions via the
Orthogonal Vectors problem (OV): Given sets A, B C
{0,1} of size |A| = n, |B] = m, determine whether
there exist a € A, b € B with Zil ali] - b[i] = 0 (which
we denote by (a,b) = 0). Simple algorithms solve OV
in time O(2P (n+m)) and O(nmD). The fastest known
algorithm for D = ¢(n)logn with ¢(n) = n°®) runs in
time n2~1/000gc(") (when n = m) [5], which is only
slightly subquadratic for D > logn. This has led to
the Orthogonal Vectors Hypothesis (OVH).

HypOTHESIS 2.2. (OVH) OV restricted to n = |A| =
|B| and D = n°MY requires time n>—°1).

A well-known reduction by Williams [83] shows that
SETH implies OVH. Thus, OVH is the weaker assump-
tion and any OVH-based lower bound also implies a
SETH-based lower bound. The results in this paper do
not only hold assuming SETH, but even assuming the
weaker OVH. For simplicity, we will always work with
the following equivalent variant of OVH.

HypOTHESIS 2.3. (UNBALANCED OVH (UOVH))

For any o, € (0,1], and computable functions
f(n) = n*=°W g(n) = nf=°W  the following problem
requires time n®tP=°W): Given a number n, solve a
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given OV instance with D = n°V |A| = f(n) and
B[ = g(n).

LEMMA 2.1. (ESSENTIALLY FOLKLORE) UOVH 18
equivalent to OVH.
UOVH;5 [ OVH

Proof. Clearly, UOVH implies OVH (using a = 8 =
1, f(n) = g(n) = n). For the other direction, assume
that UOVH fails and let a, 8 € (0,1], f(n) = n>=°M),
and g(n) = n?~°M) be such that OV with D = n°(t)
and |A| = f(n) and |B| = g(n) can be solved in time
O(n*+P=¢) for some constant ¢ > 0. Consider an
arbitrary OV instance A, B C {0,1}? with D = n°(1),
We partition A into s := (ﬁ} sets Aq, ..., As of size
f(n) and B into t := [ﬁnﬂ sets By, ..., B; of size g(n)
(note that the last set of such a partition might have
strictly less elements, but can safely be filled up using
all-ones vectors). By assumption, we can solve each OV
instance A;, B; in time O(n®*t#=¢). Since there exist
a € A b € B with {(a,b) = 0 if and only if there exist
a € A;,be Bj with (a;,b;) =0 for some i € [s],j € [t],
we can decide the instance A, B by sequentially deciding
the s -t = O(n?~(@+A)+°(1)) OV instances A;, B;. This
takes total time O(s - ¢t - n®+F=¢) = O(n?¢") for any
¢’ < e, which contradicts OVH, proving the claim.

3 Formal Statement of Results

Recall that mn is the input size and P =
{m, L,6,A,|X|, M,d} is the set of parameters that were
previously studied in the literature. We let P* :=
P U{n}. A parameter setting fixes a polynomial re-
lation between any parameter and n. To formalize this,
we call a vector a = (ap)pep With a, € R>g a pa-
rameter setting, and an LCS instance x,y satisfies the
parameter setting a if each parameter p attains a value
p(z,y) = ©(n®). This yields a subproblem of LCS con-
sisting of all instances that satisfy the parameter setting.
We sometimes use the notation o, = 1.

For our running time bounds, for each parameter
p € P except for |X| we can assume «, > 0, since
otherwise one of the known algorithms runs in time
O(n) and there is nothing to show. Similarly, for g < 1
there is an O(n) algorithm and there is nothing to show.
For 3, however, the case ay =0, i.e., |3 = O(1), is an
important special case. We study this case more closely
by also considering parameter settings that fix |X| to
any specific constant greater than 1.

DEFINITION 3.1. (PARAMETER SETTING) Fiz v > 1.
Let o = (op)pep with o, € R>o. We define LCS™ (o)
as the problem of computing the length of an LCS of two
given strings x,y satisfying n“» /vy < p(x,y) < n -~y
for every parameter p € P, where n = |x|, and |x| > |y|.
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We call o« and LCS” () parameter settings. In some
statements we simply write LCS(ax) to abbreviate that
there exists a v > 1 such that the statement holds for
LCS" ().

For any fixed alphabet X, constant v > 1, and
parameter setting a with ay = 0, we also define the
problem LCS"(a,X), where additionally the alphabet
of x,y is fixed to be X. We again call (a,X) and
LCSY (e, X)) parameter settings.

We call a parameter setting o or (a, ) trivial if
for all v > 1 the problem LCS”(a) or LCS”(a,X),
respectively, has only finitely many instances.

As our goal is to prove hardness for any non-trivial
parameter setting, for each parameter setting we either
need to construct hard instances or verify that it is
trivial. That is, in one way or the other we need a
complete classification of parameter settings into trivial
and non-trivial ones. To this end, we need to understand
all interactions among our parameters that hold up to
constant factors, which is an interesting question on its
own, as it yields insight into the structure of strings
from the perspective of the LCS problem. For our seven
parameters, determining all interactions is a complex
task. This is one of the major differences to previous
multivariate fine-grained complexity results, where the
number of parameters was one, or in rare cases two,
limiting the interaction among parameters to a simple
level.

THEOREM 3.1. (CLASSIFICATION OF NON-TRIVIALITY)
A parameter setting a or (o, X) is non-trivial if and
only if it satisfies all restrictions in Table[J

Note that the restrictions in Table |2| consist mostly
of linear inequalities, and that for small alphabet sizes
|X| € {2,3} additional parameter relations hold. The
proof of this and the following results will be outlined
in Section[d We can now state our main lower bound.

THEOREM 3.2. (HARDNESS FOR LARGE ALPHABET)
For any non-trivial parameter setting o, there is
a constant v > 1 such that LCS”(a) requires time

min {d, §A, 6m}1_0(1), unless OVH fails.

In the case of constant alphabet size, the (condi-
tional) complexity differs between |X| = 2 and |X| > 3.
Note that |X| = 1 makes LCS trivial.

THEOREM 3.3. (HARDNESS FOR SMALL ALPHABET)
For any non-trivial parameter setting (a,X), there
is a constant v > 1 such that, unless OVH fails,
LCSY (e, X)) requires time

1—o0(1)

e min {d, 0A, ém} if 3] > 3,
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e TR 2B non-tri val

Parameter Restriction

m 0<a, <1

L 0<ar<an,

5 {0§a5§am if ap, = ayy,
a5 = otherwise

A as<apn <1 ifar=a,=1
apn =1 otherwise

|2] 0<ag<an

d ag > max{ar,ax}

ag <201 + ax

ag <min{ayp + am,ar + ant
M apr > max{l,aq, 2, — as}

oy <ap+1

if |E| =2: apy > ap + ay,

if|2|:2: apy > 1l+ag —ap

if |X]=3: ap > am +aqg—ar

Table 2: Complete set of restrictions for non-trivial
parameter settings.

1—o0(1)

e min {d, 0A, §M/n} if %] = 2.

Finally, we prove the following algorithmic result,
handling binary alphabets faster if M and § are suf-
ficiently small. This yields matching upper and lower
bounds also for |X| = 2.

THEOREM 3.4. (ALGORITHMIC RESULT) For |X| = 2,
LCS can be solved in time O(n + 6 M /n).

4 Hardness Proof Overview

In this section we present an overview of the proofs of
our main results. We first focus on the large alphabet
case, i.e., parameter settings a, and discuss small
constant alphabets in Section [£.4]

4.1 Classification of Non-trivial Parameter Set-
tings The only-if-direction of Theorem [3.1] follows from
proving ineqalities among the parameters that hold for
all strings, and then converting them to inequalities
among the «a,’s, as follows.

LEMMA 4.1. (PARAMETER RELATIONS) For any
strings x,y the parameter values P* satisfy the re-
lations in Table [3  Thus, any non-trivial parameter
setting o or (o, X)) satisfies Table @

Proof. (Sketch.) The full proof is deferred to the full
version of this article. Some parameter relations follow
trivially from the parameter definitions, like L < m < n.
Since by Assumption [2.I] every symbol in 3 appears in
x and y, we obtain parameter relations like || < m.
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Relation Restriction Reference
L<m<n trivial
L<d<M trivial

A<n trivial

6<m trivial

<A trivial
d=m—1L by definition
A=n-1L by definition
X <m Assumption [2.1
n<M Assumption 21
d<Lm see full version
d < L?|%] see full version
d<2L(A+1) see full version
2] <d see full version
% < M<2Ln see full version
M > Lm/4 if || =2 see full version
M >nd/(5L) if |X| =2 see full version
M >md/(80L) if|¥]|=3 see full version

Table 3: Relations between the parameters.

Other parameter relations need a non-trivial proof, like
M > md/(80L) if || = 3.

From a relation like L < m we infer that if af, > o,
then for sufficiently large n no strings «, y have L(z,y) =
O(n*r) and m(z,y) = ©(n*), and thus LCS”(«x) is
finite for any v > 0. This argument converts Table [3] to
Table 21

For the if-direction of Theorem the task is to
show that any parameter setting satisfying Table [2] is
non-trivial, i.e., to construct infinitely many strings in
the parameter setting. We start with a construction
that sets a single parameter p as specified by «a, and all
others not too large.

LEMMA 4.2. (PADDINGS) Let o be a parameter setting
satisfying Table[4 For any parameter p € P* and any
n > 1 we can construct strings xp,y, such that (1)
P(xp,yp) = O(n*), and (2) for all ¢ € P* we have
q(p, yp) = O(n®). Moreover, given n we can compute
Zp, Yp, and L(zp,yp) in time O(n).

Note that although for Theorem the ezistence
of infinitely many strings would suffice, we even show
that they can be computed very efficiently. We will use
this additional fact in Section

Proof. (Sketch.) We defer the full proof to the full
version of this article and here only sketch the proof
for the parameter |X|. Let w := 12...t be the
concatenation of t := [n“®] unique symbols. We argue
that the strings w,w or the strings w,rev(w) prove
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Lemma for parameter p = |X|, depending on the
parameter setting a. Clearly, both pairs of strings
realize an alphabet of size t = ©(n®=), showing (1). By
Table[2] we have o, = vy, Or a5 = i, In the first case,
we use L(w,w) =t = O(n*®) together with ay < ay, =
ar, as well as §(w,w) = A(w,w) = 0 < n% < s,
to show (2) for the parameters L,d, A. In the second
case, we similarly have L(w,rev(w)) = 1 < n®L and
d(w,rev(w)) = A(w,rev(w)) =t —1 = O(n*=) and
ay < Q= a5 < aa.

The remaining parameters are straight-forward.
Let (z,y) € {(w,w), (w,rev(w))}. We have n(x,y) =
m(z,y) =t = O(n**) = O(n®*m) = O(n). Moreover,
d(z,y) < M(z,y) =t = O(n*>) = O(n?*) = O(n*).
Clearly, the strings and their LCS length can be com-
puted in time O(n).

To combine the paddings for different parameters,
we need the useful property that all studied parameters
sum up if we concatenate strings over disjoint alphabets.

LEMMA 4.3. (DISJOINT ALPHABETS) Let Xq,...,%%
be disjoint alphabets and let x;,y; be strings over alpha-
bet X; with |x;| > |y;| for all i. Consider x := x1 ...z
and y :=y1...yx. Then for any parameter p € P*, we
have p(z,y) = 1 p(wi, yi)-

Proof. The statement 1is trivial for the string
lengths n,m, the alphabet size |X|, and the number of
matching pairs M. For the LCS length L we observe
that any common subsequence z can be decomposed
into z7 ...z, with z; using only symbols from ¥;, so
that |z;| < L(x;, ;) and thus L(z,y) < Zle L(zi,y)-
Concatenating longest common subsequences of z;,y;,
we obtain equality. Using d = m — L and A =n — L,
the claim follows also for § and A.

Since every dominant pair is also a matching
pair, every dominant pair of x,y stems from prefixes
x1...2;2 and yi...y;y', with 2’ being a prefix of
zj+1 and y being a prefix of y;41 for some j. Since
L(zy...xj2' v y1 .. yy) = Yoi_, Lz, v:) + L(2',y),
where the first summand does not depend on z’,y’, the
dominant pairs of z,y of the form x1 ... z;2',y1 ... y;y/
are in one-to-one correspondence with the dominant
pairs of x;41,y;+1. This yields the claim for parame-
ter d.

With these preparations we can finish our classification.

Proof. (Proof of Theorem for large alphabet.) One
direction follows from Lemma .1l For the other direc-
tion, let e be a parameter setting satisfying Table[2] For
any n > 1 consider the instances z,y, constructed in
Lemma[4:2] and let them use disjoint alphabets for dif-
ferent p € P*. Then the concatenations z := O,ep~ Tp
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and y := Q,ep+ Tp form an instance of LCS(av), since
for any parameter p € P* we have p(x,,y,) = O(n*),
and for all other instances x,/,%, the parameter p is
O(n%), and thus p(z,y) = ©O(n%) by the Disjoint
Alphabets Lemma. Thus, we constructed instances of
LCS(a) of size ©(n) for any n > 1, so the parameter
setting « is non-trivial.

We highlight two major hurdles we had to be
overcome to obtain this classification result:

e Some of the parameter relations of Table [3|are scat-
tered through the LCS literature, e.g., the inequal-
ity d < Lm is mentioned in [I4]. In fact, prov-
ing any single one of these inequalities is not very
hard — the main issue was to find a complete set
of parameter relations. The authors had to per-
form many iterations of going back and forth be-
tween searching for new parameter relations (i.e.,
extending Lemma and constructing strings sat-
isfying specific parameter relations (i.e., extending
Lemma , until finally coming up with a com-
plete list.

e The dependency of d on the other parameters is
quite complicated. Indeed, eight of the parameter
relations of Table [3| involve dominant pairs. Apos-
tolico [13] introduced the parameter under the ini-
tial impression that “it seems that whenever [M]
gets too close to mn, then this forces d to be
linear in m”. While we show that this intuition
is somewhat misleading by constructing instances
with high values of both M and d, it is a rather
complex task to generate a desired number of dom-
inant pairs while respecting given bounds on all
other parameters. Intuitively, handling dominant
pairs is hard since they involve restrictions on each
pair of prefixes of x and y. For Lemma we
end up using the strings (01)%+ 0%(01)° as well
as ((lo...ot)o(t'o...01))(1o...0t)5~ & (lo...o0t)*
for different values of R, S,t,t.

4.2 Monotonicity of Time Complexity It might
be tempting to assume that the optimal running time
for solving LCS is monotone in the problem size n
and the parameters P (say up to constant factors,
as long as all considered parameters settings are non-
trivial). However, since the parameters have complex
interactions (see Table [3)) it is far from obvious whether
this intuition is correct. In fact, the intuition fails for
|X| = 2, where the running time O(n+JM /n) of our new
algorithm is not monotone, and thus also the tight time
bound (n + min{d, A, M /n})'*°() is not monotone.

Nevertheless, we will prove monotonicity for any
parameter setting a, i.e., when the alphabet size can be
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assumed to be at least a sufficiently large constant. To
formalize monotonicity, we define the problem LCS< (cx)
consisting of all instances of LCS with all parameters at
most as in LCS(ex).

DEFINITION 4.1. (DOWNWARD CLOSURE) Fiz v > 1
and let o be a parameter setting. We define the
downward closure LCS (a) as follows. An instance of
this problem is a triple (n,x,y), where p(x,y) < 7 -nor
for any p € P*, and the task is to compute the length
of an LCS of x,y. In some statements, we simply write
LCS<(a) to abbreviate that there exists a v > 1 such
that the statement holds for LCSY ().

Similarly, for any fived alphabet ¥ we consider the
downward closure LCSY (e, X) with instances (n,z,y),
where x,y are strings over alphabet ¥ and p(z,y) <
v -n for any p € P*.

LEMMA 4.4. (MONOTONICITY) For any non-trivial pa-
rameter setting a and 8 > 1, LCSY(a) has an O(n?)-
time algorithm for all v if and only if LCSL (a) has an
O(n?)-time algorithm for all .

Proof. The if-direction follows from the fact that if
(z,y) is an instance of LCSY(a) then (|z|,z,y) is an
instance of LCSY (av).

For the other direction, let (n,,y) be an instance
of LCS< (). Since a is non-trivial, it satisfies Table
by Theorem [3.1] Lemma[£.2] thus allows us to construct
paddings x,, y, for any p € P* such that (1) p(zp,yp) =
©(n®) and (2) (n,zp,yp) is an instance of LCS< (o).
We construct these paddings over disjoint alphabets for
different parameters and consider the concatenations
v = 10Queprp and ¥y = yoOpepyp. Then
(1), (2), and the Disjoint Alphabets Lemma imply
that p(z’,y’) = O(n*) for any p € P*, so that
(z',y’) is an instance of LCS(a). By assumption,
we can thus compute L(z',%’) in time O(n”). By
the Disjoint Alphabets Lemma, we have L(x,y) =
L(@",y') — > ep L(zp,yp), and each L(zp,y,) can be
computed in time O(n) by Lemma which yields
L(z,y) and thus solves the given instance (n,z,y). We
finish the proof by observing that the time to construct
z',y’ is bounded by O(n).

Note that this proof was surprisingly simple, con-
sidering that monotonicity fails for |X| = 2.

4.3 Hardness for Large Alphabet Since we estab-
lished monotonicity for parameter settings «a, it suffices
to prove hardness for LCS< () instead of LCS(ex). This
makes the task of constructing hard strings considerably
easier, since we only have to satisfy upper bounds on
the parameters. Note that our main result Theorem [3.2]
follows from Lemma [£.4] and Theorem [.1] below.
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THEOREM 4.1. (HARDNESS FOR LARGE ALPHABET)
For any non-trivial parameter setting o, there
exists v > 1 such that LCSL(a) requires time

min {d, ém, 5A}170(1), unless OVH fails.

Proof. (Sketch.) The full proof is deferred to Section
We provide different reductions for the cases as = ag,
and a5 = a,,. Intuitively, this case distinction is
natural, since after this choice all remaining restrictions
from Table [2| are of an easy form: they are linear

inequalities.

In the case «g = o, the complexity
min{d, 0A, dm}*°M)  simplifies to d'*°() (since
ag < ap + am < 2a,m = a5 + o, and similarly

ag < as + ay, = 2a5 < as + aa, see Table . This
simplification makes this case much easier. For constant
alphabet, instantiating the known reduction from OV
to LCS [28] such that = chooses one of ~ L vectors and
y chooses one of ~ d/L vectors yields the claim. For
larger alphabet, the right-hand side of the parameter
relation d < L?|Y| increases and allows for potentially
more dominant pairs. In this case, the second set of
vectors would increase to a size of ~ d/L = w(L), and
the length of an LCS of this construction becomes
too large. We thus adapt the reduction by using
the construction for constant alphabet multiple times
over disjoint alphabets and concatenating the results
(reversing the order in one).

The case ay, = «, is harder, since all three terms
of the complexity min{d,dA,dm}'*°(1) are relevant.
The known reduction [28] fails fundamentally in this
case, roughly speaking since the resulting § is always
as large as the number of vectors encoded by any
of z and y. Hence, we go back to the “normalized
vector gadgets” from the known reduction [28], which
encode vectors a,b by strings NVG(a), NVG(b) whose
LCS length only depends on whether a, b are orthognal.
We then carefully embed these gadgets into strings that
satisfy any given parameter setting. A crucial trick is
to pad each gadget to NVG/(a) := 0“1%(01)"NVG(a)1”
for appropriate lengths «, 3, . It is easy to see that this
constructions ensures the following:

(1vs1) The LCS length of NVG'(a), NVG'(b) only de-
pends on whether a, b are orthognal, and

(2vs1) NVG'(b) is a subsequence of NVG'(a) o
NVG/(a’) for any vectors a,a’, b.

In particular, for any vectors a(®,... a1 and
b, ... 6™ on the strings 2 = O*T'NVG/(a?)) and
y = OF_NVG/ (b)) we show that any LCS consists of
k — 1 matchings of type 2vsl and one matching of type
1vsl (between NVG' () and NVG/(a? =) for some
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7). Thus, the LCS length of x and y only depends on
whether there exists a j such that a(*=1 b\ are or-
thogonal. Moreover, since most of y is matched by type
2vsl and thus completely contained in x, the parameter
d(x,y) is extremely small compared to the lengths of
x and y — which is not achievable with the known re-
duction [2§]. Our proof uses an extension of the above
construction, which allows us to have more than one
matching of type 1vsl. We think that this 1vsl/2vsl-
construction is our main contribution to specific proof
techniques and will find more applications.

4.4 Small Alphabet Proving our results for small
constant alphabets poses additional challenges. For
instance, our proof of Lemma fails for parameter
settings (a, X)) if |X| is too small, since the padding
over disjoint alphabets produces strings over alphabet
size at least |P| = 7. In particular, for |X| = 2 we
may not use the Disjoint Alphabets Lemma at all,
rendering Lemma completely useless. However,
the classification Theorem still holds for parameter
settings (a, X). A proof is implicit in our constructions,
as we construct (infinitely many) hard instances for all
parameter settings (o, X) satisfying Table

As mentioned above, the Monotonicity Lemma
(Lemma is wrong for |X| = 2, since our new
algorithm has a running time O(n + 6M/n) which is
not monotone. Hence, it is impossible to use general
strings from LCS< (e, ¥) as a hard core for LCS(a, ).
Instead, we use strings from a different, appropriately
chosen parameter setting LCS<(a’,Y¥’) as a hard core.
Moreover, instead of padding with new strings x,,y,
for each parameter, we need an integrated construction
where we control all parameters at once. This is a
technically demanding task to which we devote a large
part of the full version of this article. Since the cases
|Z| = 2, |¥] = 3, and |¥| > 4 adhere to different
relations of Table[2] these three cases have to be treated
separately. Furthermore, as for large alphabet we
consider cases a5 = a,, and ajr = «,,. Hence, our
reductions are necessarily rather involved and we need
to very carefully fine-tune our constructions.

5 Organization

The remainder of the paper gives details to the proofs
of Theorems and following the outline given
in Section The proofs of all parameter relations
(Lemma as well as the proof of the padding lemma
(Lemma had to be deferred to the full version of
this article due to space constraints. Instead, we focus
on the proof of Theorem To this end, Section [6]
starts off with basic facts and technical tools easing the
analysis — this includes a simple greedy prefix matching
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property as well as a surprising technique to reduce the
number of dominant pairs of two given strings. Section|7]
then constructs hard instances for large alphabet (for
the downward closure of any parameter setting, proving
Theorem and thus Theorem |3.2). Here, we concen-
trate on the case that necessitates our new 2vsl/1lvsl
gadget. The much more intricate case of small constant
alphabet sizes such as |X| = 2 had to be omitted, as it
takes up a large fraction of the full version of this arti-
cle. Finally, our new algorithm proving Theorem is
deferred to the full version as well.

6 Technical Tools and Constructions

To prepare later constructions and ease their analysis,
this section collects several technical results. Their
proofs had to be deferred to the full version. We start off
with the simple fact that equal prefixes can be greedily
matched.

LEMMA 6.1. (GREEDY PREFIX MATCHING) For any
strings w, x,y, we have L(wz,wy) = |w| + L(z,y) and
d(wz, wy) = |w| +d(z,y).

The remainder of this section prepares a surprising
technique to reduce the number of dominant pairs in
an instance: Let x, y be any strings (see Figure
for an examplary instance exhibiting a large number
of dominant pairs). We can build strings z’,y’ such
that L(z',y") lets us recover L(x,y), but the number of
dominant pairs may be reduced significantly, namely to
a value d(z’,y’) = O(d(z,y) - n(z,y)), independently of
d(z,y).

01010101

o
—
o
—
o
—
o
—
o
—

o 1111111111111 1111
0 11[2J222222222222222
0 1122[B]3333333333333
0 112233[4]44444444444
0 11223344[8]555555555
1 1[2]2[8]3[4]4[8]5]6]6 6 6 6 6 6 6 6
o 12[83Ml45]56le6lm7 7T 7T T
112 3[@4]8]5]6]6[7[7]8]8 8 8 8 8 8
0 123485667 7[8]8[9]9 9 9 9 9
11234 56|67 7[8]8]9]9[L010101010
0 12345 6[@7[8]s][9]9m010ma111111
1123456 7[88][9]9@0[10E11[T21212
0 123456 7 899 E010[E1[E212[T313
1 12345678 9oonyiii212[s1spd

Figure 2: The L-table for the strings z = (01)%*+% and
y = 0%(01)° with R = 4,8 = 5 (where the entry in
row j and column ¢ denotes L(x[l..7],y[l..j])). The
indicated entries represent dominant pairs.
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Figure 3: Illustration of Lemma The strings 2’ = y2x,y’ = 2%y are defined using z = (01)+%, y = 0%(01)",
R =14,5=25, and ¢ = 2. The number of dominant pairs is significantly reduced compared to Figure

To ease the analysis, the next lemma allows us
to “eliminate” 0°-blocks when computing the LCS of
strings of the form z0%y,0°z, provided that ¢ is suffi-
ciently large.

LEMMA 6.2. For any strings x,y,z and £ > #o(x) + |2|
we have L(z0%,0°2) = £ + L(0#0(®)y, 2).

The following lemma bounds the number of domi-
nant pairs of strings of the form =’ = yx, ¢y = zy by
dz',y') = O(z] - [¥|). If |2'| > |¢/|, this provides a
bound of O(§(2’,y") - m(2',y")) instead of the general,
weaker bound O(A(z',y') - m(z’,y’)) of the parameter
relation d < 2L(A 4 1).

LEMMA 6.3. For any strings x,vy,z, let ¥’ = yx, vy =
zy. Then

d(',y) < |yl - (|2l +1) +d(@’,2) < [y| - (| + 1) + ]2,

With the tools collected above, we can finally state
our dominant pair reduction technique, whose effect is
illustrated in Figure

LEMMA 6.4. (DOMINANT PAIR REDUCTION)
Consider strings z,y and a number £ > |y| — L(z,y).

(i) If 2 is a symbol not appearing in x,y, then =’ =
y2te and y' = 2% satisfy L(x',y') = L(z,y) + ¢
and d(z,y) < 3¢ |y|.

(i) For any symbols 0,1 (that may appear in x,y)
set o = 0F1Fy1°0*1*z and 3" = 1°0%1%y with
k:=2|y|+|z|+1. Then L(z",y") = L(x,y)+0+2k
and d(z,y) < OU(|z| + |yl + ).
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7 Hardness for Large Alphabet

In this section, we consider a parameter setting o
satisfying the relations of Table and we prove a
lower bound for LCS<(a) assuming OVH, thus proving
Theorem [£.I] We split our proof into the two cases
a5 = y, (where L may be small) and af, = a,, (where
L islarge). For readability, but abusing notation, for the
target value [n®»] of parameter p we typically simply
write p.
In this section we can assume that

(LB) ar,m,as,aa >0 and ag > 1,

since otherwise the known O(n 4 min{d, dm,dA}) al-
gorithm runs in (near-)optimal time O(n) and there is

nothing to show (here we used the parameter relations
d < Lm and L,m,d§, A <n).

7.1 Small LCS Assume a5 = g, i.e., 6 = O(m).
In this case, the longest common subsequence might
be arbitrarily small, i.e., any value 0 < a; < ap,
is admissible. Due to space constraints, we omit the
constructions in this case, which heavily rely on the
previous reduction from OV to LCS of [2§].

7.2 Large LCS Now assume «aj = q,,, ie, L =
O(m). Then the number of deletions in the shorter
string might be arbitrary small, i.e., any value 0 < as <
Qy, is admissible. In this case, the construction of [28] is
no longer applicable. The new 1vsl/2vsl gadgets that
we design for constructing hard strings for small § can
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be seen as one of our main contributions.

7.2.1 Hard Core The following lemma (which ef-
fectively represents an intermediate step in the proof
of [28]) yields the basic method to embed sets of vectors
into strings x and y.

LEMMA 7.1. Let two sets A = {a1,...,aa} and B =
{b1,...,bg} of vectors in {0,1}7 be given. In time
O((A + B)D) we can construct strings xi,...,xs of
length fx and y1,...,yg of length fy over alphabet
{0,1}, as well as integers p1 < po, such that for all
i € [4],j € [B] we have

(i) &y < tx < O(D),

(i) L(xi,y;) = po if (as,b;) =0,
(1it) L(zi,y;) = p1 if (ai,b;) # 0, and
(iv) L(x;,y;) > by/2.

Proof. We can construct strings zf,...,2y of length
. = O(D) and yi,...,y of length ¢, = O(D) and
integers p} < pf, as in |28, Claim IIL6] (using the so
called normalized vector gadget) that satisfy L(x},y}) =
po if {(ai,b;) = 0 and L(xf,y;) = pj otherwise. To
additionally enforce conditions (i) and (iv), we define
z; = 1506112, and y; = 051y Since L(z;,y;) =
L(z},y;) + ¢, + 1 by Lemmas and we thus
obtain conditions (ii) and (iii) for pg := p) + & + 1
and p; := p} + ¢, + 1. Since by definition ¢y = 24, + 1
holds, the first condition follows directly and the trivial
bound L(x;,y;) > ¢, +1 > {y/2 shows that the last
condition is fulfilled.

1vsl/2vsl gadget The aim of the following con-
struction is to embed given strings yi,...,yg into a
string y and strings x1, ...,z p into x, where P = 0(Q),
such that in an LCS each y; is either aligned with a sin-
gle string z; or with several strings z;, x;+1,...,2y. In
the first case, |y;|—L(z;,y;) characters of y; are not con-
tained in an LCS of x and y, while in the second case y;
can be completely aligned. By choosing P = 2Q — N for
an arbitrary 1 < N < @, it will turn out that the LCS
aligns N strings y; with a single partner z;, and the re-
maining ) — N strings y; with two strings x;, ;41 each.
Thus, only N strings y; are not completely aligned.

To formalize this intuition, let P > Q. We call a
set A = {(i1,751),---, (ik,Jk)} with 0 < k < @ and 1 <
i1 <ig< <y <Pandl1<j <jo<--<jp<Q
a (partial) multi-alignment. Let A(j) = {i | (i,7) € A}.
We say that every j € [Q] with |A(j)| = k is k-aligned.
We will also refer to a 1-aligned j € [Q] as being uniquely
aligned to i, where A(j) = {i}. Every j € [Q] with
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A(j) = 0 is called unaligned. Note that each i € [P]
occurs in at most one (z,7) € A. We denote the set of
multi-alignments as A?‘gi.

We will also need the following specialization of
multi-alignments. We call a multi-alignment A € Arﬁ"‘gﬁ
a (1,2)-alignment, if each j is either 1-aligned or 2-
aligned. Let A};?Q denote the set of all (1,2)-alignments.

Given strings z1,...,2p of length ¢x and y1,...,y¢
of length ¢y, we define the walue v(A) of a multi-
alignment A € ABHY as v(A) = ZJQ:I vj where

0 if § is unaligned,
L(x;,y;) if j is uniquely aligned to 7,
Uy if j is k-aligned for k > 2.

v =

LEMMA 7.2. Given strings z1,...,xp of length {x and

Y1,...,Yq of length by, construct
= G(;L‘l) G(CCQ) N G(.TP),
= Gly) G(y2) - Glye),

where G(w) := 07 172 (01)73 w 173 with 3 := lx + Ly,
Yo := 8v3 and 1 := 6vy2. Then we have

(7.1)
max v(A) < L(z,y)-Q(1+72+373) < max v(A).
AeALZ, AeApy

Proof. For the first inequality of , let A € A}D’,QQ.
For every y;, we define 2; = O;cp(j) G(i). Consider
a l-aligned j and let ¢ € [P] be the index j is
uniquely aligned to. We have that z; = G(z;) =
07172(01)"2;17 and hence by Lemma we obtain
L(z;, G(y;)) = 1 +72+3v3+ L4, y;) = 11 +72+373+
vj. Likewise, consider a 2-aligned j and let 7,7’ € [P] be
such that A(j) = {i,7'}. Then z; = G(z;)G(z;). We
compute

L(z,G(y;))

= M + Y2 + 3’}/3 + L(xil'YSO”“ 172 (01)’\/3.%'1‘/, yj)
>y 472+ 3y + L((01)7,y5)

7+ v2 + 373+ by =71+ 72 + 33 + vy,

where the first line follows from Lemma the second
line from monotonicity and the third line from vy3 > ¢, =
ly;|. Observe that 2125 ...2¢ is a subsequence of . We
conclude that

Q Q
L(z,y) > Y Lz, G(y;) = Qn + 72+ 393) + > vy,
j=1 J=1

It remains to prove the second inequality of (|7.1)).
Write « = 2122...z¢ such that L(z,y) =

Z?:l L(z;,G(y;)). We define a multi-alignment A by
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letting (¢,7) € A if and only if z; contains strictly more
than half of the 07-block of G(z;). Note that the thus
defined set satisfies the definition of a multi-alignment,
since no two z;’s can contain more than half of G(z;)’s
0"-block and if (i,7),(i',j') € A, then j < 7
plies ¢ < 4'. It remains to show that L(z;,G(y;)) <
Y1 + Y2 + 33 +v; for all j to prove the claim.

In what follows, we use the shorthand H(w) :=
172(01)"*w1”s. Note that G(w) = 0" H(w). Consider
an unaligned j € [Q]. By definition, z; is a subsequence
of 0"/2H (x;)07/? for some i € [P]. We can thus bound

(using Lemma [6.1))
L(zj, G(y;)) < L(0™/2H (2;)0™ /2,07 H (y;))

71 L 1
= D L(H(@)0" 2,072 H yy)).

By Lemma [6.2 with £ := 71 /2 > 275 + 673 + {x + by =
|H (2:)| + [H (y;)| > #0(H (2:)) + |H(y;)|, we have that
L(H (z;)07/2,0"/2H (y;)) equals

H(y;j)) < 7/2+#0(H(y;))
< ’71/2""_’}/3"’6\{-

71/2 + L(o#O(H(l i)

Hence, in total we have L(zj,G(y;)) <71 +73+ 4y <
Y1+ Y2 + 3v3 =71 + y2 + 33 + vj, as desired.

Consider a j € [Q] that is uniquely aligned (un-
der A) to some i. Then z; is a subsequence of
07M/2H (x;_1)0" H(x;)0"/2. Analogously to above we
compute

L(z;, G(y;))

= % + L(H (w;1)07 H (2;)074/%,01/2 H (y;))

= 1+ L(O#O(H(ﬁi—l))""'ylH(xi)071/27H(yj))

= 1+ L(OFHEi-1)4m92(01) 3 4,173071/2,

172 (Ol)VSyjl““).

Using Lemma with symbol 0 replaced by 1 yields,
since £ = 7y > 3y3 + £y = [(01)"y;17] and
Hq (0Fo(H (i) +1) =

L(zj,G(y;))
<y e+ L((01) 221730772 (01) 72y, 17%)

= 1+ e+ 23+ L(x;17207/2 g, 1),

Similarly, using Lemma|[6.2] with symbol 0 replaced by 1
on the reversed strings yields, since ¢ := v3 > £y = |y;|
and #1(0M/2) =0,

L(x;1730™M/2 y;17%) = y3 + L4, y;)-

Hence, we obtain the desired L(z;,G(y;)) < v + 72 +
33 + L(zi,y;) = 1 + 72 + 373 +vj.
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It remains to consider j € [@)] that is k-aligned for
k > 2. In this case, the claim follows from the trivial
bound L(z;, G(y;)) < |G(y;)| = 71 472 + 373 + v;-

Thus z,...,2g defines a multi-alignment A €
A?})‘gﬁ with

Q
ZL 25, G
j=1

proving the second inequality of (7.1)).

) < Q71+ 72+ 373) +v(A),

We can now show how to embed an OV instance
A = {al,...,aA},B = {bl,...,bB} - {O,I}D with
A < B into strings z and y of length O(B-D) whose LCS
can be obtained by deleting at most O(A - D) symbols
from y. For this we will without loss of generality
assume that A divides B by possibly duplicating some
arbitrary element of B up to A — 1 times without
affecting the solution of the instance.

The key idea is that for any P and Q = 2P — N
with N € {0,...,P}, APQ is non-empty and each

A e A1 2 has exactly N uniquely aligned j € [Q] and
exactly P N 2-aligned j € [Q]. At the same time
each A € ABY leaves at least N indices j € [Q] either
unaligned or uniquely aligned.

LEMMA 7.3. Let ai,...,as,b1,...bp C {0,1}" be
given with A | B. Construct the corresponding strings
T1,...,x4 of length Uy, y1,...,yp of length ¢y < lx <
O(D), and integers po, p1 as in Lemma[7.1] and define

i = (&1,...,%p)
e €2 T O 2 P ) W - SO O
2-(B/A)+3 groups of size A
g = (U, 9)
= (yla"'1y1ay19"'7yBa Y, -1 )a
—
A copies of y; A copies of y;
where P := 2B + 3A and QQ := B + 2A. Then the

instance v := O,; G(7:), y := O; G(7;) of Lemma
(with the corresponding choice of v1,v2 and v3) satisfies
the following properties:

(i) For every i € [A] j € [B], there is a (1,2)-
alignment A € Ap%, such that some { € [Q] is
uniquely aligned to some k € [P] with &) = x; and

Yo = Yj-

(i) We have L(z,y) > Q(v1+72+373)+(A—=1)p1+po+
(Q — A)ly if and only if there are i € [A],j € [B]
with (a;,b;) = 0.

(iii)) We have |y| < |z| < O(B - D) and 6(z,y) =
O(A- D).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited



Proof. For (i), we let j € [B] and note that y; = g, for
¢:= A+ j. We will show that for every A € {0,..., 4 —
1}, there is a (1,2)-alignment A with (k, £) € A2 PQ where
k= 2(A+j) —1— A By the cyclic structure of z,
(Zk)o<r<a cycles through all values x1,...,x4. Hence,
for some choice of A the desired Zj = x; follows, yielding
the claim.

To see that for any A\ € {0,...,A4 — 1}, some
A € A};?Q with (k,f) € A exists, observe that there
are { — 1 = A+ j — 1 predecessors of gy and k — 1 =
2044+ 75 —1)— X = 2({ — 1) — X\ predecessors of Tj.
Hence there is a (1,2)-alignment A; € A,lﬁl ¢+ (leaving
A indices j € [Q] uniquely aligned). Similarly, observe
that there are Q — ¢ = B + A — j successors of g, and
P-k=2B+A—2j+A+1=2Q—0)—(A—A—1)
successors of Zy, hence there is a (1,2)-alignment Ay €
A}f_k,Q_é (which leaves A — (A + 1) indices j uniquely
aligned). By canonically composing Aj, (k,¢) and As
we can thus obtain A € A}ﬁig with (k,¢) € A.

For (ii), assume that there are i € [A],j € lB]
satisfying (a;,b;) = 0. By (i), there is some A € A 2@
where some ¢ € [Q)] is uniquely aligned to some k € [P)]
such that ; = x; and g, = y;. To apply Lemma [7.2]
observe that A has @ — A 2-aligned j € [Q], which
contribute value ¢y to v(A), and A uniquely aligned
j € ]Q), in particular, £ is uniquely aligned to k. Since
any I; corresponds to some x;/, every y; corresponds
to some y;» and L(z;,y;:) € {po, p1}, we conclude that
¢ contributes py to v(A) and the other A — 1 uniquely
aligned j contribute at least p;. Hence by the lower
bound in Lemma [7.2] we obtain L(z,y) > Q(y1 + 72 +
3v3) + v(A), where v(A) > (A —1)p1 + po + (Q — A)ly.

Assume now that no i € [A],j € [B] satisfy
(a;;b;) = 0, and let A € ABY". Then any j € [Q]
uniquely aligned to some i € [P] contributes L(Z;, ;) =
p1 to v(A). Let A be the number of j € [Q)] that are k-
aligned for any k > 2, each contributing ¢, to v(A).
Then there are at most min{P — 2\, Q@ — A} uniquely
aligned j € [Q] (since every k-aligned j blocks at least
two ¢ € [P] for other alignments), and the remaining
Jj € [Q] are unaligned, with no contribution to v(A).
Hence v(A) < My+min{P—2X,Q—A}-p; = min{Pp; +
(by — 2p1)A\, Qp1 + (&y — p1)A}. Note that £y /2 < p; <
ly (by Lemma [7.1fiv)), hence this minimum of linear
functions with leading coefficients ¢y — 2p; < 0 and
ly — p1 > 0 is maximized when both have the same
value, i.e., when A = P — Q = Q — A. Thus, v(A) <
(Q = Ay + Ap1 < (Q — A)ly + (A —1)p1 + po. Thus
by the upper bound of Lemma we conclude that
L(z,y) < Q1 +72+373) +(Q— A)by + (A—1)p1+ po.

For (iii), since P > @ and ¢y > ¢y we have |z| > |y|,
and by P < O(A) and |G(%;)| < O(x) < O(D) we
obtain |z| < O(AD). Note that for any (1,2)-alignment
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Ae APQ, we have

v(A) = Q- by — > (b = L(zs, y5))
7 uniquely aligned to 7
=Q - ly—O(A-D),
since by P = 2Q — A the number of uniquely aligned

indices j in A equals A, and ¢, = O(D). Hence by

Lemmal7.2} L(z,y) > Q(v1+72+373)+Qfb—O(A-D) =
ly|=O(A-D), implying 6(z,y) = [y|—L(z,y) < O(A-D).

7.2.2 Constant Alphabet First assume ay = 0 and
thus |3] = O(1). Consider any n > 1 and target values
p=n% for p € P. We write |z]s for the largest power
of 2 less than or equal to x. Let A = {a1,...,a4},

= {b1,...,bg} C {0,1}” be a given OV instance
with D = n°") and where we set

a= [ o sy,
B := {% min{m,A}J .
By am,aa <

A > nmm{aL,ad 1}— 0(1)
nmin{am,aA} o(1) Q(1) )

Q we  obtain
) and B =

=n Also note that UOVH
implies that solving such OV instances takes time
(AB)'=°M) = min{d, dm,sA}~°)  which is the
desired bound. We claim that A < B, implying
A | B. Indeed, if § < d/min{m, A} this follows from
the simple parameter relations § < m and § < A.
Otherwise, if 6 > d/min{m, A}, then in particular
dA > d, implying d < A2. Together with the pa-
rameter relations d < Lm < m? we indeed obtain

d/min{m, A} < min{m, A}.

Thus, we may construct strings z,y as in
Lemma We finish the construction by invoking
the Dominant Pair Reduction (Lemma to obtain
strings z/ := 0F1Fy10F1%2 and ¢/ := 1°0F1%y with
k= 2yl +|z| + 1 and ¢ := O(A - D) with suffi-
ciently large hidden constant, so that £ > 6(x,y). Then
from the LCS length L(z',y’) we can infer whether
A, B has an orthogonal pair of vectors by L(z',y’) =
L(z,y) + € + 2k and Lemma [7.3[(ii). Moreover, this re-
duction runs in time O(|z'| + |y'|) = O(|z| + |y|) =
O(BD) < O(min{d, ém,§A}*~¢) for sufficiently small
e > 0 (since a5 > 0 and ag > 1 > aum,an by
and Table [2). We claim that (n,2’,y’) is an in-
stance of LCS<(a). This shows that any algorithm
solving LCS< (e) in time O(min{d, dm, §A}!~¢) implies
an algorithm for our OV instances with running time
O(min{d, dm,A}1~¢), contradicting UOVH. Hence, in
the current case ay = a,,, and ay = 0, any algorithm
for LCS< () takes time min{d, m, A}'=°(1) proving
part of Theorem
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It remains to show the claim that (n,z’,y’) is
instance of LCS<(a). From Lemmas [6.4] ﬂ and (7.3 -
we obtain L(a',y’) = €+ 2k + L(z,y) = £+ 2k
ly| = d0(z,y) = [y| — O(AD), and thus 6(a’,y’)
O(AD) < O(6). Using the parameter relations L <
m < n, Lemma [7.3(iii), and the definition of B, we
have L(z',y") <m(a',y') < n(a',y') = |2'| < O(BD) =
O(min{m, A}), which together with the relation m <n
and the assumption «y = «,, shows that p(z',y") <
O(p) = O(n*) for p € {L,m,n}. Similarly, we
obtain A(z’,y’) < n(2’,y") < O(min{m,A}) < O(A).
Since z’,y’ use the binary alphabet {0,1}, we have
IZ(2',y)| = 2 < O(n*s). For the number of matching
pairs we have M(2',y") < n(2,y')? = O(BD)?) =
O(L?). Since we are in the case ax = 0, from the
parameter relation M > L?/|X| we obtain L? < O(M)

an
i)
+
<
<

and thus also M (z',y’) is sufficiently small. Finally,
we use Lemma to bound d(z',y') < O - |y|) <

O(AD - BD), which by definition of A, B is O(d). This
proves that (n,2’,y’) belongs to LCS< (a).

7.2.3 Superconstant Alphabet The crucial step in
extending our construction to larger alphabets is to
adapt the 1vsl/2vsl gadget such that the strings use
each symbol in the alphabet X roughly evenly, thus
reducing the number of matching pairs by a factor |X|.

Recall that given a 2-element alphabet ¥’ and a
string z over {0,1}, we let 21X’ denote the string z
lifted to alphabet ¥’ by bijectively replacing {0, 1} with
Y.

LEMMA 7.4. Let P = 2B 4+ 3A and Q = B + 2A for
some A | B. Given strings x1,...,xp of length £x and

Y1,...,Yq of length ly, we define, as in Lemma
G(w) = 07 17 (01)"® w 178 with v3 = lx + {y,

Yo = 8y3 and vy := 67v2. Let Xq,...,%; be disjoint
alphabets of size 2 with Q/t > A/2+ 1. We define

.= H(xzy) H(zz) ... H(zp),

G(y) T Er) Gy2) T Ep2) - Glye) T25(q),

where f(j) = [é -t] and

G (i) T Xk41 0 Gwi) T X%,
if UM G)Y = (ke + 1),
if UL G)Y = (k)

Then we have
(7.2)

max v(A) < L(z,y)—Q(y1+72+373) < , max v(A).
AEALT, cAmus
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Proof. Note that H(-) is well-defined, since f(-) maps
{1,...,Q} to constant-valued intervals of length at least
Q/t =1 > A/2, as f(j) = k if and only if j €

( Qk_Q %] containing at least Q/t—1 integers. Hence

fo; eveltry ztthe < A/2values f([i/2]),..., f(|(i+A)/2])
can touch at most 2 different constant- Valued intervals.
The proof of (7.2) is based on the proof of
Lemma (7.2 - (the analogous lemma for alphabet ¥ =
{0,1}). For the first inequality of (7.2)), let A € A1 2
and define for every j the substring 2 = O,ea()) H(ml)
Note that under A, each A(j) consists of one or two el-
ements from {2j — A,...,2j}, since there are at most
2Q — P = A uniquely aligned j. In other words, for
any i € A(j) we have 7 € {[i/2],...,[(: + A)/2]}.
Thus, by definition each H(x;) for i € A(j) con-
tains G(z;) T ¥y(;) as a substring and hence 2/ contains
Oiengj) G(zi) Xy as a subsequence. This proves

L(z, G(y;) T Z5(5))

> L<' o) G(xi)TEfm,G(yj)TEf(j))
i€A(4)

= 1(, 0 6. Goy).

which reduces the proof to the case of ¥ = {0,1} —
note that the last term is equal to L(z;,G(y;)) in the
proof of the same inequality of Lemma [7.2]and thus the
remainder follows verbatim.

It remains to show the second inequality of .
Essentlally as in the proof of Lemma - we write © =
2125 - ZQ with L(z,y) = Z ( G(y;) T Zp(5))-
For every z; we obtain a Strmg ZJ by deleting all sym-
bols not contained in ¥y (;y and then hftlng it to the al-
phabet {0,1}. We conclude that L(z}, G(y;) T 3y;)) =
L(z;,G(y;)). We claim that z := zlzz ...2q is a sub-
sequence of x¢p 1} = G(x1)...G(xp) (which is equal
to the string x that we constructed in the case of
¥ = {0,1}). Indeed, if H(z;) is of the form wyyiwy
for some k with wy, = G(z;) 12y, then symbols of at
most one of wy and wy41 are contained in z. To see
this, note that if wy is not deleted then at least one of
its symbols is contained in some zj with f(j) = k, but
then no symbol in wgy; can be contained in zg-, with
f(3") = k + 1, since this would mean j' > j, S0 Wiy is
deleted. Thus,

Mo

L(z,y) = L(25, G(y) 1 257))

1

<.
Il

Il
Mo

L(zj,G(y;)) < L(z{0,13: Y10,1})
1

<.
Il

where y0.13 = G(y1) ... G(yq) is the string y that we
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constructed in the case of ¥ = {0, 1}. Hence, the second
inequality of ([7.2)) follows from the proof of Lemma

By the same choice of vectors as in Lemma[7.3] we
can embed orthogonal vectors instances.

LEMMA 7.5. Let ay,...,as,b1,...bp C {0,1}F be
given with A | B. Construct & = (Z1,...,%p),§ =
(F1,---,9q) with P := 2B + 3A and Q := B +2A
as in Lemma [7.3 For disjoint alphabets %1, ...,%; of
size 2 with Q/t > A/2 + 1, we construct the instance
=, H(Z:), y == Q; G(7;) of Lemma (with the
corresponding choice of y1,v2 and 73 ). This satisfies the
following properties:

(i) We have that L(x,y) > Q(y1+72+37v3)+(A—1)p1+
po+(Q—A)Ly if and only if there are i € [A],j € [B]
with (ai, b]> =0.

(ii) We have |y| < |z| < O(B - D) and 6(z,y) =
O(A- D).

Proof. The lemma and its proof are a slight adaptation
of Lemma For (i), since Lemma proves
which is identical to , we can follow the proof of
Lemma [7.3(i) and (ii) verbatim (since we have chosen
Z and ¢ as in this lemma). For (ii), the bounds |y| <
|z| < O(B- D) and §(z,y) = O(A - D) follow exactly
as in Lemma 7.2 (note that only |x| has increased by at
most a factor of 2, so that |z| < O(B - D) still holds by
the trivial bound).

We can now finish the proof of Theorem [4.1] for the
case of ap = a,;, and ax > 0. Consider any n > 1 and
target values p = n® for p € P. Let A= {ay,...,a4},
B = {by,...,bg} C {0,1}” be a given OV instance
with D = n°M) and where we set, as in the case ax, = 0,

. d

A= {5 o {5’ min{m, A} }J 2
B = {% min{m,A}JZ.
As before, we have A | B, so we may construct
strings x,y as in Lemma where we set t :=
min{[Q/(A/2 + 1)],[X]} = O(min{B/A, [Z[}). We
finish the construction by invoking the Dominant Pair
Reduction (Lemma to obtain strings z’ = y2x
and y’ := 2%y, where 2 is a symbol not appearing in z,y
and we set £ := ©(A - D) with sufficiently large hidden
constant, so that ¢ > d(z,y).

For the remainder of the proof we can follow the
case ay; = 0 almost verbatim. The only exception is
the bound on the number of matching pairs. Note that
symbol 2 appears O(AD) times in 2’ and y’. As in

1231

x and y every symbol appears roughly equally often
and the total alphabet size is ©(t), for any symbol
o # 2 we have #,(z) < O(|z[/t) and #.(y) <
Oyl /1), implying £, ('), #o(y') < O(BD/t). Hence,
M(z',y') < O(AD)? +t - (BD/t)?). Using t =
©(min{B/A,|X|}) and A < B, we obtain M(2',y") <
O(max{AD - BD,(BD)?/|2|}) < O(max{d,m?/|%|}.
The assumption a; = «a,, and the parameter relations
M > L?/]%] and M > d now imply M(x',y’) < O(M).
This concludes the proof of Theorem

8 Discussion

We present a systematic study of SETH-based lower
bounds for special cases of the longest common sub-
sequence problem that are defined by polynomial re-
strictions of all 7 previously studied input parameters.
Our tight conditional lower bounds completely explain
the lack of polynomial time improvements since 1990,
except for a special regime on ¥ = {0,1}, for which
we design an improved algorithm matching our lower
bound. We conclude that to obtain polynomially faster
algorithms one has to either (1) refute the Strong Expo-
nential Time Hypothesis or (2) design new reasonable
and algorithmically tractable input parameters.

This work showcases the paradigm of multivariate
fine-grained complexity on a classic problem with 7 pa-
rameters that display a complex set of relations. We be-
lieve that this paradigm can be applied to further prob-
lems yielding similar systematic insights and helping
to find algorithmic improvements for natural restricted-
input instances.
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