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An Approximation Algorithm for the Multi-dimensional
Knapsack Problem based on Hopfield Networks

Jen-Chun Chang, Jui-Sheng Chang, Hsin-Lung Wu
Department of Computer Science and Information Engineering
National Taipei University, New Taipei City, Taiwan

Abstract

In this paper, we study the d-dimensional knap-
sack problem (d-KP). The problem d-KP is an
generalized problem of the well-known knapsack
problem which is an NP-complete problem. It is
also known that there is no fully polynomial-time
approzximation scheme for d-KP for d > 1 un-
less P = NP. We design an approximation al-
gorithm for d-KP based on the Hopfield networks.
Ezxperimental results show that our proposed algo-
rithm performs better than a well-known greedy al-
gorithm in many cases.

1 Introduction

The knapsack problem is a well-known prob-
lem in combinatorial optimization. The problem
states that, given a set of items each labeled with a
weight and a value, determine the number of each
item to include in a collection so that the total
weight is less than or equal to a given limit and
the total value is as large as possible. The multi-
dimensional knapsack problem denoted as d-KP
is a variant of the knapsack problem. In this vari-
ant, the weight of knapsack item ¢ is expressed by
a d-dimensional vector w; = (w1, -+ ,w;q) and
the knapsack has a d-dimensional capacity vector
W = (Wy,...,Wy). The goal is to maximize the
sum of the values of the items in the knapsack so
that the sum of weights in each dimension j does
not exceed Wj.

There is no efficient algorithm to find opti-
mal solutions for a given d-dimensional knapsack
problems. Instead of finding an optimal algo-
rithm to solve the d-KP, one may try to design
an approximate algorithm to solve it. In gen-
eral, we consider two types of approximate al-
gorithms: polynomial-time approximation scheme
(PTAS) and fully polynomial-time approximation
scheme (FPTAS). A PTAS is a polynomial-time

algorithm which takes an instance of an optimiza-
tion problem and a parameter € > 0 and produces
a solution that is within a factor 1+ € of being op-
timal. FPTAS is a restrictive version of PTAS. A
FPTAS is a PTAS which requires the algorithm to
be polynomial in both the problem size n and 1/e.
For the d-dimensional knapsack problem, it was
shown by Gens and Levner [3] and independently
by Korte and Schrader [5] that the existence of a
fully polynomial time approximation scheme even
for (2-KP) would imply that P equals NP. Thus,
it is hard to design a good efficient approximation
algorithm for 2-KP problem. The most obvious
idea to find a feasible solution for (d-KP) is based
on greedy-type heuristics.

In this paper, we design an efficient approx-
imation algorithm for 2-KP problems based on
the well-known Hopfield networks [4]. We com-
pare our algorithm with a common greedy algo-
rithm GREEDY for 2-KP. Experimental results
demonstrate that our algorithm outperforms the
algorithm GREEDY in many cases.

2 Preliminaries
2.1 Hopfield Neural Network

Hopfield neural network (denoted as HNN) is
proposed by Hopfield in [4]. Here we use notations
used in [1]. A Hopfield neural network is a graph
with n nodes denoted by {y1,y2,- -+ ,yn}. Let hy;
denote the weight connected with edge (j,%) con-
necting node y; to y;. Let ¢; denote the threshold
value of each node y;. Let H be the n x n ma-
trix whose (4, j)-th entry is h;; and let T' be the
threshold vector whose the i-th entry is t;. Let
yi(t) € {-1,1}, t = 0,1,2,---, denote the state
of the i-th node at time t. The state at time ¢
of the Hopfield network is denoted as the vector
Y(t) = (y1(t),y2(t), - -, yn(t)). The state Y (t+1)
at time ¢ + 1 of the Hopfield network is obtained



from H, T, and Y (¢). Each node is updated as

follows:
1 if E;;l hijyj (t) —t; > 0
yit+1) =< wi(t) i 255 hijy;(t) —t; =0
=1 i 350 hijys(t) — 6 <0

Once the state vector Y (¢) is not updated any-
more, this state vector Y (¢) is called a stable state.
Given a HNN, one of methods to show the exis-
tence of a stable state of this HNN is based on the
method of energy functions. The energy function
of a given Hopfield neural network is defined by

Ety=-Y®)T -H-Yt)+2vt) - T.

H is assumed to be symmetric and the diagonal
entries are all non-negative. We define AE(t) =
Et+1)— E@{) and AY(t) = Y(t+ 1) — Y(¢).
The goal is to show that AFE(t) < 0 for all ¢. Let
Ay;(t) = y;(t + 1) — y;(t) for each i. Note that

2 ify(t)=—1
and Z?:l hijyj (t) - tl' >0
0 ifyi(t) =30 hijy;(t) —ti

Ay;i(t) =
-2 if yi(t) =1
and Z?:l hijyj (t) —t; <O.
It is not hard to see that
AE = —h;;j(Ay;(t)” —2 thgyj ti)Ay;(t).

Since Ay;(t) has three possible values, we con-
tinue the analysis by the following three cases.

e In the case that Ay;(t) = 2, we have y;(t) =
—1 and y;(t + 1) = 1. This implies that
> izi higy;(t) —ti > 0. Hence AE < 0.

e In the case that Ay;(t) = —2, we have y;(t) =
1 and y;(t + 1) = —1. This implies that
Z;L;éi hijyj (t) —t; < 0. Hence AF < 0.

e In the case that Ay;(¢) = 0, we have y;(t) =
yi(t + 1). This implies that Z#l iy (t) —
t; = 0. Thus AFE = 0.

Based on the above observation, we conclude that
AFE <0.

2.2 Multi-dimensional Knapsack

Problems

Knapsack Problem (denoted as KP), is one of
well-known NP-complete problems. The problem
is defined as follows. n items are given and the
i-th item has its value v; and its weight w;. The
maximum capacity of the knapsack is W. The tar-
get is to select a subset of {1,2,---,n} such that
the total cost of the selected items is maximized
and the total weight is at most W. A given knap-
sack problem can be modeled as a solution of the
following linear programming.

n
Maximize E VX
i=1

n
subject to Zw,xl < W
i=1
x; €{0,1}, i=1,...,n

d-dimensional Knapsack Problem (denoted as
d-KP) is a generalized problem of the knapsack
problem. The problem is defined as follows. n
items are given and the i-th item has its value v;
and d weights w;1, w;2, ..., w;q. There are d ca-
pacity constraints Rp,---,R4. The target is to
select a subset S of {1,2,--- ,n} such that the to-
tal value of the selected items is maximized and
satisfies d requirements Zie swi; < Ry for each
j€{1,2,---,d}. A given d-dimensional knapsack
problem can be modeled as a solution of the fol-
lowing linear programming.

n
Maximize g Vi
i=1

subject to Zwijmi < R;Vje{l,2,---,d}
i=1
x; € {0,1}, 1=1,...,n

3 Our Main Approximation Algo-
rithm for d-KP

In this section, we show our approximation al-
gorithm for d-KP. Our algorithm is designed based
on Hopfield neural networks. For reader’s com-
prehension, we give our algorithm for 2-KP. It is
easy to extend our proposed algorithm to d-KP for
d>2.



An n x d weight matrix (w;;), an n-dimensional
value vector V = (vi,v2,---,v,)T, and two ca-
pacity constraints R;, Re are given as inputs.
Next, we define the matrix H and its corre-
sponding energy function E for this 2-KP. For
j € {1,2}, let W; be the n-dimensional vector
(wlj, ng, R ,wnj)T.

H=V - VT -y (a1 - Wy - WT +ay- Wy - W)

where oy and as are two parameters which con-
trol the degree of how the feasible solutions satisfy
two given linear constraints. Note that diagonal
entries of the matrix H are required to be non-
negative. To obtain this, we use another parame-
ter v to control this requirement. Precisely, let ¢
be the following value:

2

. v
min  (———
ic{1,2, - ,n}( (W} + w2)

f:

Now, we require that 7 is a parameter chosen from

1%’%,... 0. Let 1= (1,1,---,1)T. Then the

threshold vector T is set as
T=H-17.

Let us see how it works. We transform the bi-
nary vector X (¢) € {0,1}" into the vector Y (t) €
{—1,1}" by setting

X(t) = % (T"-v®).

The original energy function E is defined as
BEt)=-XtT H-X(t)

where it captures the given optimization problem
2-KP. However, the state vector in the HNN is a
—1/1 vector. Thus, we have to transform X ()
into Y (t). Therefore we have

4B(t
—Y(t)
2

==

= —4

= 1T H-I+2vy®)-H-)-Yt)'-H-

After eliminating the constant term —17 - H - T,
we define the following new energy function E’(¢).

E'®t) = -Y®U - H-Y@#®)+2v@®)" -H-T
= Yy -H-YO)+2v()" - T
where T'= H - 1. Therefore, H and T are used to

generate the desired Hopfield networks to obtain
an approximated feasible solution.

4 Experiments

In this section, we compare our algorithm with
the greedy algorithm GREEDY. The algorithm
GREEDY is executed as follows.

Vi

1. First it computes the ratio r; = o)

2. It chooses the item with the highest ratio r;.

3. Add this item into the knapsack if the con-
strains are satisfied after adding this item and
delete it from the item set otherwise.

4. Repeat this procedure until all items are
checked.

The test input sets are generated randomly. We
show our experimental result in Figure 1 where the
value in X-axis represents the first capacity con-
straint R; and the value in Y-axis represents the
second capacity constraint Rs. the value in Z-axis
represents the ratio between the maximum values
obtained by two approximate algorithms and the
optimal dynamic programming algorithm of 2-KP.
When the ratio between R; and Rs is high, our al-
gorithm outperforms the algorithm GREEDY.

5 Conclusion

In this paper, we study the d-dimensional knap-
sack problem and design an approximation algo-
rithm based on Hopfield networks. We consider
2-KP in our experimental results. Experimental
results show that our proposed algorithm outper-
forms the algorithm GREEDY when the ratio of
two input constrains is high.
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Abstract

In this paper, we study an online prediction prob-
lem: at time t, an example x; is given, the learner
makes a prediction ¥, and receives the labeled value
yi. The loss at this step is (J: — y¢)?. We assume
that y: = axi+ B+e€; for two fized but unknown con-
stants a and 8 and for some value €; with |e;| < B.
In addition, we assume that x; = t. We propose
an online algorithm based on the Follow-the-Leader
strategy and show a logarithmic regret bound for this
algorithm.

1 Introduction

In this paper, we consider a prediction problem
in which the t-th example is z; € R and its label
y; is the value such that y; = axy + 8 + € for two
fixed but unknown constants « and 3 and for some
value e with |e;] < B. The examples are given in
an online way. At time ¢, the example x; € R is
given to the learner. The learner predicts a value g
before observing the label y;. We require that the
memory of the learner is limited. That is, the size of
the learner’s memory is constant. Next, the square
loss is used to measure the accuracy of a prediction
method. Precisely, for a labeled example (zy,y:),
the loss of a prediction §; is (y; — 9¢)?. The regret
of the learner is defined as

T T
Regret = Z(yt — )% — min Z(axt +b— )2
t=1 wb i
Note that the best pair (a, b) which obtains the min-
imum value Zthl(a:ct + b —y)? is just the least-
square solution of the linear regression problem for
the data set {(a¢,v:) : 1 <t < T}. Thus our goal is
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to design a prediction method such that the regret
to the linear regressor is as small as possible.

In this paper, we propose an online algorithm
to solve this problem. Our algorithm is designed
based on the so-called Following-the-Leader (FTL)
strategy and obtains logarithmic regret under the
restriction that z; = t. Precisely, under the re-
striction that z; = t, the regret of our algorithm
is O(B%logT) where B is the upper bound of the
error term ¢; and T is the number of iterations.

For the bounded case that there exists a fixed
constant C' such that |z;| < C for all ¢, this prob-
lem can be solved by using the online algorithm pro-
posed by Zinkevich [2] or the logarithmic regret al-
gorithms developed by Hazan et al. in [1]. However,
their methods cannot be applied to the unbounded
case.

2 Preliminaries

Given a data set {(z1,¥1), (z2,¥2), -, (@1, Y1)},
we assume that there exist three constants «, 3, and
B such that, for each t, y; = ax; + 8 + € for some
e: with |e;| < B. Let Xy, Et, Y; be matrices defined
by

1 €1 Y1

1 z €2 Y2

Xt = . 7Et - . a}/t - .

1z €t Yt
Suppose, at time ¢, we have collected ¢
labeled examples {(w1,y1), (2,92), -, (Tt,Ye) }-
The best linear function y = @iz + b
which minimizes the sum of square errors

Zzzl(atmi + by — ;)? is the least-square solution



of the linear regression problem for the data set

{(z1,91), (2,y2), -, (x£,9y:)}. Precisely, the least
solution (as, b:)T = (X' X;) "t XTY;. Therefore, we
conclude that

ar = ()t — be(T)s

and
by — Sz = (@)~ @)
25:1(%‘ — (T)4)?
where (Z); = %Z:Zl z; and (y): = %22:1 Yi.

3 The Main Online Algorithm

Our algorithm is designed based on the
Following-The-Leader (FTL) strategy. That is,
at time ¢ 4+ 1, the algorithm computes the
least-square solution (a;,b;) for the data set
{(z1,91),- .., (z,y:)} and makes a prediction

Yt+1 = QyTyq1 + by

In order to compute (a¢, b;), the algorithm needs to
store the data set {(z1,vy1),..., (s, y:)}. However,
the memory space of the algorithm is limited and
hence is not allowed to store the whole labeled ex-
amples. To overcome this, we observe that it is suf-
ficient to maintain following four values to compute

(at,bt).
T
i me (t) - Zt:l Tty
® Va:(t> = Z?:l Lt,
o V,(t) =1 v, and

o Viu(t) = Zthl x%

Indeed,

AR AIA

‘ tVou (t) — Vi (1)2
and

Vy(t) = biVa(t)
ap =Lt —""c
t

Therefore, after predicting the yi41, Viy(t +

1), Vet +1),Vy(t + 1), Ve (t + 1) can be updated
easily in an online sense.

Based on the above observation, we propose
the following constant-memory-size online linear ap-
proximation algorithm.
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Algorithm 1: FTL-based Online Linear
Approximation

Input: data set (z¢,y:) € S comes
sequentially ,Vt =1,2,....,T
Output: g€ Y
Set
Vay(0) = 0,V;(0) =0,V,(0) =0,V,,(0) =0
Randomly generate a1, by
fort=1;t<T do
Receive x; then computes ; = a;xy + by
to make a prediction
Receive the true value y; and suffer a loss
ft(at,bt) = @t - yt)2
Update four values
Vay(t) = Vay(t = 1) + 24,
V,(t) = V,(t— 1) + s,
Compute by = —t‘%‘e}g)(;)‘f‘(/i)(‘s’g(t)
Vy () —b: Ve (2)
7

and

ay =

3.1 Performance Analysis for the case
that =, =t
Our goal is to bound the following regret:

T T
Regret = Z(yt — )% — rfzngl Z(amt +b— )2

t=1 t=1

It is not hard to derive by induction that

T T
Z(yt - @t)z - migl Z(axt +b— yt)2
t=1 )

T

N

Et(at, bt) — 1’2’11}’1 t_zl Et(a, b)

o~
Il

1

< (e(at, be) — Le(arr1,bet1)) -

M=

o~
Il
N

Our target is to bound #;(as, by) — €e(ats1,bet)-
Note that y, ar; + B + € for some fixed but
unknown constants o and 8. For convenience, we
define the following terms:

o A= Zle(xi —7;)? and

o By =Y (2 —T)(es — ).
Lemma 1. A; and A;_1 can be bounded in © (t3).



Proof. According to the setting of special case
Ty = Z,Vl

t—1 t—1

Ar =) (@i —T0)? <)y <.

i=1 i=1
So, similar with A;. O
Lemma 2. B; and B;_1 can be bounded in O(Bt?).

Proof. According to the setting of special case

t—1 t—

1
Biy=Y (w;—Te1)(ei —5-1) < »_()(2B)
i=1 =1
t—1
<2BY t<2Bt’.
i=1

The bound for B; is similar to B;_1. O

In addition, it is easy to derive following equa-
tions:

B
=B+ (1)
B;_
At 1

a1 =B+

bt—Ol-f—Et—l'tA
t

By 4
Ay

bi1 =a+E_1—T4_1

Then, we have

gt(atflvbtfl) - ft(at,bt)

(ar—1y + b1 — Z/t)2 — (agzy + by — yt)2

Moreover, it is not hard to obtain following lem-
mas.

Te—Ti—1
t

Lemma 3. |T;—1 — T| =

t—Et—1

Lemma 4. |g;_ 1 — | = < can be bounded in

o(%).

Furthermore, we observe that

t—l

i — Tp—1)(€i —E4—1) Ti — Tg—1

M

B 1—Bt|—|2

+ZT1 — fft)(&?i — €1+t E&-1—¢&
t—1

=|- Z(zi —Ty—1)(Epm1 — &) —

=1 7

t—1
- Z(gtﬂ — &) (Ty_1 —T4) —
i=1

t—1 — t

(e %n(et 2|

(ei = &1-1)(Tt-1 — T4)

-
|

(z1 — Tt) (et — &)

1

t—1
e O AR

i=1

In addition, we also observe that

1 1 Ay — A

|— — —| = 1 (2 — Tp—1)?
A1 A AiAy

=1 A A,

By _ _
Now we bound 3= (z; — T¢—1) + %(xt —T) +
Zi—1 + &t — 2¢4). According to the assumption that

zy = t, Lemma 1 and, Lemma 2, we have

By B
(G (e = Tem1) + (@ = Ter) + (Bem1 + )
— 28,5‘
Bt? Bt?
< |(t—3t) + (t—gt) +2B — 2B
< 2B|

= (q—1z+b—1 —axy — B — €t)2
—(arxy + by — —axy — f — et)2
B;_ B;_
= [A;ixt + €1 — A;ift_l - Gt}z
B B
[Azxt—i—et Azft—e’:‘t]2
B, _ B
= [At ! (¢ —Tp1) + Zt(ift —Ty) + Er—1 + & — 2¢4]
t—1 t
By

(2 —Tp—1) —

o A,

*t(ﬂft —Ty) + &1 — &4

Next, we bound [i:: (xe —Te-1) + %(@ —x) +
Zt—1 — &¢). By Lemma 1, Lemma 2, Lemma 3, and



Lemma 4, we have

B;_ B
|Az_1 (Tt —Ty—1) — ﬁ(fﬂt —T) + (Br—1 — &)
B;_ B B B
= H(Az_i - ﬁ)(xt —Tp-1) + ﬁ(xt —Tp-1)] — Xz(wt —Tt)
+ (E—1 — &1)]
B,., B 3 B, _ _ _
|(At—1 At)(xt Ty-1) + A, (Tt = Tp—1) + (Be—1 — &)
B;_1 B B B
— . t - i
|<At_1 At)| +o t|
B;_1— B; 1 1 B
= B t+2—
[ A, t‘At—l AtH +25
Bt 1 B
<= + (B)(=)] 42—
< |55+ (B3l + 25
B B
Z 49
= + 7
<B
-t

Now, after combining two upper bounds, we con-
clude that Et_l(at_h bt—l) —Zt_l(at, bt) = O(Bz/t)

So far, we can obtain our main theorem.

Theorem 1. Suppose that x; =t. The regret bound

of the FTL-based Online Linear Approximation is
O(B?1ogT).

Proof.
T

T
Z(yt — )% - Igllbn t_zl(axt +b—y)?

T
te(az, by) — min Z ti(a,b)
t=1

1 ’

o~
Il
i

|
N

o~
Il

(be(ag, be) — Le(apy1,bi41))

] =

~
I
A

T
< OB 1/t)
t=1
= O(B%*logT).
O
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Algorithm 1.  Cluster formation algorithm

Initialization

1. Receive CLUSTER_FORM form the BS
2 find friends and neighbors

3. calculate W (i) according to eq.(14)

4 set a timer t for the node, and then do State
Determination

State Determination

1. if t >0 then

2. bid for the head //#::% £ 8 &

3. if (W;=W,(<k, k€N;)) && (Cluster head
distance limitations to eq.(18)) then

4. become the head, calculate R(i) according to
eq.(15), according R(i) range broadcast HEAD
message to neighbors, and then exit

5. else if receiver HEAD from neighbor j then

6. become member of node j ,and then exit

7. else//# = & 8k

8. find near head j, join member of node j ,and
then exit

9. end if

10. endif
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Algorithm 3. Rerouting algorithm

Head Replacement executed by exhausted cluster

head i

1.  broadcast HELP message to neighbors

2. recalculate W according to eq.(14), without
considering the exhausted node i

3. select the best node, as new cluster head,
broadcast HEAD message to neighbors, and
thendo B /222 % 7 & 2

IEETR ih& B 7 £ ATl 3%

Path Reconnection executed by an exhausted node j

1.  broadcast DEATH message to connected node
of the node j

2. if receive response(s) from node j then

3. recalculate W according to eq.(14) without
considering the exhausted node j

4. select the best node, denoted by i, as
connection head

5. inform disconnect node to connect node i

/3 TR e Bhig 4R 58
6. endif
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Abstract

Given two sequences A and B of lengths m and
n, respectively, the consecutive suffix alignment
(CSA) problem is to compute the longest com-
mon subsequence (LCS) between A and each suf-
fix of B. A two-dimensional S-table is constructed
for solving the CSA problem. The linear-space S-
table consists of the first row of the S-table and the
changes between every two consecutive rows. Sup-
pose that A = AW AP (concatenation of two sub-
strings), and we are given the S-table of A®) and
B, and the alignment result of AV and B. The
concatenated LCS (CoLCS) problem is to find the
alignment result of A and B. By using the linear-
space S-table, instead of the 2-D S-table, we first
propose an O(nlogn)-time algorithm to solve the
CoLCS problem. Then, we propose a more effi-
cient algorithm for the CoLCS problem, in O(n)
time, with the technique of set find and union.

1 Introduction

The longest common subsequence (LCS) prob-
lem [2, 6, 8, 10, 12, 13, 15, 20, 22, 30] is a
fundamental method for estimating the similar-
ity between sequences. The LCS problem has
been extensively studied for several decades since
1970. The LCS problem can be solved in O(mn)
time [13] by the dynamic programming approach,
where m and n denote the lengths of the two input

*This research work was partially supported by the Min-
istry of Science and Technology of Taiwan under contract
MOST 104-2221-E-110-018-MY3.

fCorresponding author.
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sequences, respectively. Lots of variant LCS prob-
lems were proposed, such as the merged longest
common subsequence problem [14, 23, 29], which
considers the LCS with the merged sequence, and
the constrained LCS [4, 5, 9, 24, 27, 28], which
computes the LCS with the constrained sequence.

The consecutive suffix alignment (CSA) prob-
lem is one of the variant LCS problems. Given
two sequences A and B, the CSA problem is to
compute the LCS between A and each suffix of B
[16], where a suffix of a string means a substring
starting at a certain position and ending at the last
position. The S-table can be used to solve the CSA
problem. The CSA problem can be used in var-
ious applications, such as the common substring
alignment problem [18, 19], cyclic string compar-
ison between two strings or between A and each
suffix of B [17, 21, 25]. In 2003, Landau et al. [18]
proposed a linear time algorithm with the given
S-table to solve the common substring alignment
problem.

In 2004, Landau et al. [16] proposed two al-
gorithms to solve the CSA problem. One solves
the problem in O(nl) time and space with con-
stant alphabets, and the other solves the problem
in O(nl+n|log X|) time and O(n) space, where |X|,
[ denote the alphabet size and the length of LCS,
respectively. In 2005, Alves et al. [3] proposed an-
other algorithm with O(mn) time and O(n) space
for the CSA problem. In addition, Alves et al.
[3] proposed the linear-space S-table, which con-
sists of the first row of the S-table and the changes
between every two consecutive rows.

Let A = AMA® (concatenation of two sub-

strings). And we already have the S-table of A®)
and B, and the alignment result of A®) and B.



The concatenated LCS (CoLCS) problem is de-
fined to calculate the alignment result of A and
B. In this paper, we proposes two algorithms in
O(nlogn) and O(n) time for solving the CoLCS
problem with the linear-space S-table, instead of
the 2-D S-table.

The organization of this paper is given as fol-
lows. Section 2 introduces the preliminary knowl-
edge of the LCS and CSA problems, and the S-
table. Next, our algorithms for the CoLLCS prob-
lem are proposed in Section 3. Finally, the con-
clusions are given in Section 4.

2 Preliminaries

A sequence of characters is denoted as an
upper-case letter, such as A or B. Taking sequence
A as an example, the notations used in this paper
are listed below.

o A=ajas---ap,.

e |Al: the length of sequence A.

e q;: the ith character or element of A.

e j..j: an index range from position ¢ to j.

e A; j: the substring of A from index ¢ to j.
Note that A; ; =0 if i > j.

A subsequence of A is obtained by deleting an
arbitrary number of characters (not necessarily
consecutive) in A. For example, A = tctgatggt,
the subsequences of A may be tctgatggt, catt,
ctga, tatgt, a, and so on. The longest common
subsequence problem is defined as follows.

Definition 1. (LCS) Given two sequences A and
B with lengths m and n, respectively, the longest
common subsequence (LCS) problem is to find the
common subsequence between A and B with the
maximal length.

For example, suppose A = cggattctgt and
B = tctgatggt. The LCS of A and B, denoted
as LCS(A, B), is cgatgt with length 6. The LCS
problem can be solved by the grid directed acyclic
graph (GDAG) [19] as shown in Figure 1.

Definition 2. (Pg(i,j)) For 0 <i<m and 0 <
j < n, Pg(i,j) is the value of the highest weight
path from G(0,0) to G(3, j).

With the GDAG, the length of LCS is equal
to Pg(m,n). The LCS problem can be solved
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Figure 1: The grid directed acyclic graph
(GDAG) for solving the LCS problem with A =
cggattctgt and B = tctgatggt. Here, the
path formed with thick lines is the LCS solution
(cgatgt). Note that diagonal edges with weight 0
are not shown.

through the dynamic programming (DP) approach
in O(mn) time by Equation 1 [30].

PG(Zu.j):
0 ift=0o0rj =0,
max PG(Zfl,jf].)ﬁ*l ifal':bj7
Pa(i—1,j .
max{ PGELj—lg if a; # b;.

2.1 The Consecutive Suffix Alignment
Problem and the S-table

Definition 3. (consecutive suffix alignment)
Given two sequences A and B, the consecutive
suffiz alignment (CSA) problem is to compute the
alignment of A and each suffiz of B.

With the above DP approach for the LCS prob-
lem, |[LCS(A, B1. ;)| can be computed in O(mn)
time for all 1 < j < n. The naive method for
the CSA problem with the DP approach requires
O(mn?) time by computing each |[LCS(A, B;_;)|,
for 0 < i < j < n. However, it is inefficient. In
the GDAG, the CSA problem can be transformed
to finding the maximal weight path from G(0,1)
to G(m,j) for 0 <i<j<n.

Definition 4. (Cg(i,j)) For 0 < i < j < n,
Ca(i,7) is the mazimal weight of all the paths from
G(0,%) to G(m, j).



Table 1: The matrix Cg with A = ttct and B =

tctgatggt.
) 710 1 2 3 4 5 6 7 8 9
0O |0 I 2 3 3 3 3 3 3 3
1 /oo 1 2 2 2 2 2 2 3
2 oo o111 2 2 2 3
3 /oo o o000 1 1 1 2
4 /oo 0000 1 1 1 2
5 oo o o0 o001 1 1 2
6 |0 o0 000 O0UO0O0 1
7 /oo 0o o0 o0 000 01
S oo o o0 o0 o000 01
9 o o0 0 0 000 0 0

Table 2: The S-table S of A = ttct and B =
tctgatggt, where the starting index means of the
position of B, and the column of D means that
the number is the first occurrence in the row.

Length

0 1 2 3 D

00 1 2 3
111 2 3 9 9
212 3 6 9 6
313 6 9 oo || o©
Starting | 4 |4 6 9 oo | 4
index 5|5 6 9 o 5
6|6 9 oo o0|
717 9 oo o 7
818 9 oo o 8
919 o0 o0 ™| o

With Definition 4, it is clear that Cg(i,j) =
|LCS(A, Bit1.j)|. Table 1 shows an example of
Cg with A = ttct and B = tctgatggt.

Some properties in C¢ are listed as follows.

e For each row in Cg, the value starts from 0.

e For each row in Cg, the values from left to
right are nondecreasing.

e For each row in Cg, the difference between
two consecutive values is either 0 or 1.

With the above properties, Cg can be repre-
sented by Table 2, denoted as S.

Definition 5. [3] (S-table) For 0 <i<n, S;o =
i. For0<i<mnand0 < j < L, where L is the
mazimal value in Cg, S;; is the minimum of k
for Ca(i, k) = j. If no such k exists, S; ; = oco.

The first element in S; . (row ¢ of S) is S; 9 =
i, and each remaining element in S; . records the
index of the column which is the leftmost of each
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number appears in row ¢ of Cg. For example, in
row 3 of Cg, the leftmost 1 appears at the column
6, so S31 = 6. Alves et al. proposed and proved
the following property of S-table [3].

Theorem 1. [3] For 0 <i<mn in S,

1. Ezactly one element of S; . does not appear
m SiJrl’*, which is Si’() =1.

2. At most one element with a finite value in
Sit1,« does not appear in S; ..

Definition 6. [3] (D) For 0 < i < n, d; records
the element which appears in S; . but not in S;_1 ..
If there is no such new element, we set d; = co.

An example of D is shown in the rightmost col-
umn of Table 2. The S-table can be constructed
from g the Sp. and D. Therefore, the solution
of the CSA problem can be represented with the
S-table, or Sy . and D [3]. In the following, the
linear-space S-table means the first row of the S-
table (Sp,«) and D.

2.2 Solving the Concatenated LCS
Problem with the S-table

In this subsection, we use an example to explain
how to solve the LCS problem with multiple com-
mon substrings by the S-table [18, 19]. Suppose
we are given two strings A = cggattctgt and
B = tctgatggt, where A is formed by concate-
nating three substrings A1) = cgga, A®) = ttct
and A®) = gt. In other situations, A" may re-
peat several times, but not consecutively, to form
a longer sequence A. Note the S-table of A(®) and
B has been already established in Table 2. Figure
2 shows the GDAG of A and B, which is com-
posed of three subgraphs, corresponding to AM),
A®) and A®)| respectively. The alignment result
of the first subgraph can be viewed as the input of
the second subgraph, and the alignment result of
the second subgraph can be viewed as the input
of the third subgraph.

Let G(") denote subgraph r, whose input and
output are denoted as I(") and O, respectively.
In addition, let S denote the S-table of A") and
B. The goal is to get the output O") with the
input 7(") and S-table S("). The following DP for-
mula can be easily obtained [18, 19].

0% = max{I{"” +Cge (i, j)}, for 0 <i < j. (2)

For example, O:(f) =3 =max{0+ 3,0+ 2,1+
1,1+ 0}. The value of Oz(f) comes from the input
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Figure 2: The GDAG composed of three sub-
graphs with A = cgga, A®) = ttct, AG) =gt
and B = tctgatggt.

I and G®). The case from I§2) can be ignored
since IS = I =1 and Cy(2,3) > Ci) (3,3).
Similarly, If ) can be ignored since I(g ) = I£2) =0.
As another example, O((f) =4 = max{0 + 3,0 +
2,1+2,1+1,24 1,3+ 1,3+ 0}. Thus, only the
leftmost position of I with value k is needed to
compute O, Let PI;, denote the smallest index
in 1" with value k, and PO, denote the smallest
index in O with value i. In this example, PI =
(0,2,4,5) and PO = (0,1,2,3,6,9). Now, O")
can be represented as PO in Equation 3 [18].

POl :min{j|k+CG(T)(PIkaj) :iv
0<k<iand 0<j<n.}

3)

With the S-table S()
formed into Equation 4.

, Equation 3 can be trans-

PO; = mm {S Pheiokts if SI(DI i, exists. (4)

For example, the smallest column index of

value 4 in O, denoted by PO4, 15 obtained by

. 2 2 2 2
mln{SI(-"I)O 4 51(31)1 39 51(31)2 29 51(31)3 1> PI4 o}

mm{S(()24, 55237 5'4(‘22)7 Sé21)7 Soe 2)
mm{ ,9,9,6,—} = 6. It means
LCS(AD, B, z)l + [LCS(A®), B )|

that
1+3

= 4, |LCS(AM By ,)| |LCS(A®), Bs o)
= 24+ 2 = 4, and |[LCS(AW, By 5)| +
|LCS(A®) Bsg) = 3+ 1 = 4. And 6 is

the leftmost index of B to get LCS length 4.
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Definition 7. (M) Mk,i = SPIk,i—kH fOT 0 S k S
|PI|—1 and k < i < k+ L if such Spy, i—i exists.

With the definition of matrix M, PO;
ming<p<|prj-1{Mg,i}, for 0 < i < L. The ma-
trix M is shown in Table 3. The computation of
PO is equivalent to finding the minimum of each
column in M.

Table 3: The matrix M, where the row index
means that of M, and each number in the bot-
tom row is the column minimum.

Length
M 01 2 3 45
0[0 1 2 3
. 1 2 3 6 9
Row index 9 46 9
3 5 6
Minimum [ [0 1 2 3 6 9|

To find the column minimum, the brute-force
method needs O(nl) time to examine all the num-
bers, where | denotes the length of LC'S(A—1 +
A B). Note that the symbol + means the con-
catenation strings A”~1 and A(). The matrix
M has been proved to be a totally monotone ma-
triz [18]. Therefore, a recursive algorithm, named
SMAWK and proposed by Aggarwal et al. [1], can
find the column minimum of a totally monotone
matrix in O(]) time. With the S-table S(") and the
input 1), the alignment of G(") can be computed
in O(I) time, instead of the original DP approach
in O(mn) time.

In summary, given two substrings A" and A
and one string B with the S-table S(® of A(?) and
B, the concatenated LCS (CoLCS) problem is to
find the LCS length of A + A®) and B. It can
be solved in O(I) time [18].

3 Our Algorithms for the Concate-
nated LCS Problem

In this section, we propose two new algorithms
for solving the CoL.CS problem in O(nlogn) and
O(n) time with the linear-space S-table: Sy . and
D, instead of using the whole S-table.

3.1 The Alignment with the Linear-
Space S-table

For easy explanation, we denote the infinity
symbol oo mentioned in S-table and D as 001, 009,

-, and so on. Therefore, Table 2 is modified and
shown in Table 4.



Table 4: The modified S-table and D with A =
ttct and B = tctgatggt, where the starting in-
dex means of the position of B, and the value in
column D means that the number is the first oc-
currence in the row.

Length
S-table 0 1 2 3 D
010 1 2 3
1)1 2 3 9 9
2|2 3 6 9 6
3|3 6 9 001 || 001
Starting | 4 | 4 6 9 o0 4
index 515 6 9 001 5
616 9 001 002 || 00g
7 z 9 o001 (o)) z
8|8 9 001 009 8
919 o00;p o002 o003 | 003

The modified computation matrix M is shown
in Table 5(a). Clearly, the same result is obtained
if only the finite values are considered when the
column minimums in M are computed. The finite
values are considered as the output. The minimum
of column 6 is co1, so we can ignore it. The output
of Table 5(a) is identical to Table 3.

Property 1. Once a number k appears in S; ., k
must appear in S; . fori < j < k.

Definition 8. Let C} ; denote the minimum of
Mo g, for 0<k <|PI|—1and0<j<k+L.
And, let hy, denote the maximum of My . \ Cr—1 .«
(My, « with excluding Cy_1 ), where the symbol \
denotes the set difference operation.

For example, the matrix C' is shown in Ta-
ble 5(b). And, hy = 9, he = ooy and hy = 6.
With the above definition, the alignment result
PO = Ciprj—1» = C3. = (0,1,2,3,6,9,001). We
present a property of two consecutive C_; . and
C,« as follows.

Theorem 2. Cy_1 U{hp} = Ci, for 1 <k <
|PI| —1.

Proof. Let j be the smallest index for Cp_;; >
My, ;. We can divide C},  into two parts by index
j as follows.

1. 0 <7 < j. In this case, Cr—1,; < My;. Thus,
Cri =min{Cr_1,;, My ;} = Cr_1,.

2.5 <1 < k+ L. Because Ci_1,; > My,
we have Ckyj = min{Ck,Lj,Mk’j} = Mk’j.
The value of Cj_1; comes from one number
in rows Ply, PIy,--- ,PI_1 of S. Because
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Table 5: The modified matrix M and C, where
PI =(0,2,4,5). (a) The matrix M, where each
number in the bottom is the column minimum.
(b) The matrix C.

(a)

Length
M 01 2 3 4 5 6
0j0 1 2 3
. 1 2 3 6 9
Row index 9 46 9 oo
3 5 6 9 o0
Minimum | [0 1 2 3 6 001
(b)
Length
C 01 2 3 4 5 6
0jo0 1 2 3
. 110 1 2 3 9
Row index 210 1 2 3 9 oo
3]0 1 2 3 6 9 o0

Crk-1, > PI, with Property 1, Cy_1,; ap-
pears in My, . after My, ; for all 4. Therefore,
Crit1 = Cr_1,.

Thus, Ci—1,+U{hi} = Ck «, where hy = My, ;. O

For example in Table 5, C1 . = {0,1,2,3,9}
={0,1,2,3}U{9} = Co . U{9}, where Cy . = Sp .
027* = {0, 1, 2, 3, 9} ] {001} and 03,* = 027* U {6},
where 6 is the maximum of Ms . \ Ca ..

With the above properties and PO = C|py|_1 «,
we can compute PO from Cj . sequentially where
Co,« = So,«. The alignment result PO consists
of Sp. and hy for 1 < k < |PI| —1. Since Sp«
has already been given, we focus on finding hy.
We first propose an O(n log n)-time algorithm, and
then a linear time algorithm.

3.2 An O(nlogn)-time Algorithm

We first find the value of hi in a sequential
method with k =1 to |PI| — 1 sequentially.

Lemma 1. S;. consists of the L largest
numbers in Sp. U Dy, where D; ; denotes

{di7di+17 T ad]}

Proof. Each element in S;, is greater than or
equal to . With Theorem 1, the smallest num-
ber of S;_1 . does not appear in ;.. Then, with
|S;«| = L, the elements of S; . are the L largest
numbers in Sp . U Dy_;. O

For example in Table 4, S . consists of the four
largest numbers in {0, 1,2,3} U{9,6}.



Theorem 3. hy = max(Dy _ps, \ Hi.x-1), for
1< k<|PI|-1.

Proof. By Definition 7, My, ; = Spy, i—r. With ig-
noring the detailed column index and applying the
set concept, we have My, . = Spy, «. By Definition
8 and Lemma 1, hy is the maximum of (Sp . U
D1 pr,) \ Ci—1,%- Since Cy = S« C C_1,4, We
have that hy, is the maximum of Dy _py, \ Ck—1,x.
By Theorem 2, Ok—l,* U {hk} = Ok,*, e} Ck—l,* =
007* U {hl} @] {hQ} U---u {hk—1}~ We get

hi = max(D1. pr, \ {h1,h2, -+, hx—1})

=max(D;._pr, \ Hi. k-1)- 5)

O

By Theorem 3, we can use a sequential method
to find hy by querying the range maximum of D,
and remove hy from D after finding. Take Tables
4 and 5 as an example, where PI = (0,2,4,5)
and My, = (0,1,2,3). The sequential process is
described as follows.

(1) PI; = 2, so we find hy in max(D; 2) =9,
and remove 9.

(2) PIy = 4 and max(D;. 4) = 001, 80 hy = 001
and we remove 001 .

(3) PI; = 5 and max(D;.5) = 6, so hy = 6.
Therefore, PO = C5 . = (0,1,2,3,6,9,001).

The range maximum query and single point
update (removal) of D with the segment tree
structure requires O(logn) time for each opera-
tion [7] . Thus, the problem for finding the LCS
of A= 4 A and B needs O(|PI|logn)
O(nlogn) time, when PI, Séf’*) (row 0 of S-table
of A and B) and D) are given. The algorithm
is presented in Algorithm 1.

Algorithm 1 An O(nlogn)-time algorithm

Input: PI, Sy, and D
Output: PO
1: PO = Sy // insert each of Sy . into PO
2: for k=1to |PI|—1do
3: i = max(D;. pr,) // i is the index of the
range maximum
4: insert d; into PO // hy = d;
5: d; = —o0 // remove d; from D
6: return PO

3.3 An O(n)-time Algorithm

In Section 3.2, we compute hjy with the range
maximum of D; py,, for 1 < k < |PI| -1, and
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remove hy, after finding. Now we focus on whether
the number d; will become the value of one h; or
not.

Definition 9. nextPI(d;) is the smallest PIy
such that i < Plj.

The nextPI of Table 4 is shown in Ta-
ble 6, where PI = (0,2,4,5). For example,
nextPI(d;) nextPI(9) 2 means that the
smallest P} satisfying 1 < PI} is 2.

Table 6: An example of nextPI. If nextPI(d;)
does not exist, we keep it empty. PI = (0,2,4,5)
is underlined in column .
1 d; || nextPI(d;)
9 2

6
01
4
5

T N

© 00 DU W =

With the preprocessing of nextPI, we explain
how to compute hy for 1 < k < |PI| — 1. We
check the numbers in D = {d;,ds,--- ,d,} with
the decreasing order of the d; value. If nextPI(d;)
is empty, we ignore it. The computation process
is demonstrated as follows.

(1) nextPI(oco3) and nextPI(co2) are empty,
so we ignore them.

(2) nextPI(co01) =4 = PIy. 0oy appears in the
S-table after row PI; = 2. So oco; should be the
new member from C . to Ca.. In other words,
he = max(D1. pr,) = max(D;. 4) = 001, because
we check the numbers of D in decreasing order.

(3) nextPI(9) =2 = PI;. So hy = 9.

(4) nextPI(8) and nextPI(7) are empty, so we
ignore them.

(5) nextPI(6) = 2. We find PI; = 2, and hy
has been already determined, so we check next of
PI,. Again, we find PI; = 4, and hy has been
already determined, so we check PI3. Thus, we
have hs = 6.

(6) We finally get hy =9, ho = 001 and hg = 6,
and PO = Sy . UH; 3=1(0,1,2,3,6,9,001).

Since we check the numbers in D from the
largest to the smallest, by Theorem 2, the above
process can correctly find which hy should be of
the value d;.

When we examine d;, we use the union-find
data structure [11, 26] to check whether PIj and



h;, have been determined or not. If PI; and hy
have been determined, we have to try the next,
Plyy1 and hygy1. The operations in the union-find
data structure are listed as follows.

e make(z,C): Create a new set named C con-
taining exactly x.

e find(x): Find the name of the set containing
x.

e union(z,y,C): Unite the set containing x and
the set containing y into a new set named C'.

In the union-find data structure, each number
in PI except Pl is initially in a unique set, im-
plemented by make(PIy, k) for 1 < k < |PI|— 1.
We also use make(oo, |PI|) to set the boundary.
Our algorithm for finding PO is presented in Al-
gorithm 2, where D is sorted in decreasing order.

Algorithm 2 An O(n)-time algorithm

Input: PI, Sy., D and nextPI, where D is
sorted in decreasing
Output: PO
: PO =Sy, // insert each of Sp . into PO
for k=1 to |PI|—1do
make(PIy, k)
make(oo, |PI|) // set the boundary
for d; € D from the largest to the smallest
number do // decreasing order, achieved by
bucket sort
6: if nextPI(d;) exists
find(nextPI(d;)) # |PI| then
set k = find(nextPI(d;))
8: insert d; into PO // hy = d;
union(PIy, Plii1, find(Plk41))
return PO

and

3

©

10:

Figure 3 shows an example of the union-find
process, with Table 4 and PI = (0,2,4,5). In this
case, |PI| = 4 is the boundary number. We start
from checking the largest number in D, which is
003. The detailed steps are shown as follows.

1. nextPI(oo3) and nextPI(coq) are empty, so

skip them.
2. nextPI(co1) = Plo = 4, and k =
find(4) = 2 # |PI| = 4, so we have

he = oo1 and union(Ply, PIs, find(PI3))
= wunion(PIy, PI3,3). In this situation, hg
with PI5 has been determined. If hs is de-
sired to be set next time, union(PlI,, Pls,3)
guarantees to set hy with Pl3, instead of hs.
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STEP 0 STEP 2 STEP 3 STEP 5

O OE

OE=D
@O

Figure 3: An example of the union-find process.
Each thin circle is an element, and each bold circle
is a set. The number beside each set is the name
of the set.

In other words, when either ho or hg may be
set next time, we always set hs.

3. nextPI(9) P, = 2, and k
find(2) 1 # |PI| = 4, so we have
h1 = 9 and union(PIy, Pls, find(PIy)) =
union(PIy, PIy,3). After union(PIy, Ply,3)
is performed, if one of hy, hy and hg is desired
to be set next time, we always set hg.

4. nextPI(8) and nextPI(7) are empty, so skip

them.
5. nextPI(6) = 4 and k = find(4) = 3 #
|[PI| = 4. So hz = 6, and union(PIs,

Ply, find(P1y)) = union(PlIs, PI4,4).

6. The algorithm finishes after H; 3 are found.
If we check the next number d; 5,
nextPI(5) = PI; =5, and find(5) = |PI| =
4. d; = 5 cannot be the value of any hy.

Finally, the output is (0,1,2,3,6,9,001), where
the elements (0, 1,2, 3) come from S ..

For the general union-find problem, the time re-
quired for each operation of union or find is O(3),
where the lower bound of 8 was proved to be func-
tional inverse of Ackermann’s function [26]. The
union-find structure we use is a single path tree,
and we only unite two consecutive sets. With the
definition of static tree set union, the time com-
plexity of each operation is reduced to O(1) [11].
Our algorithm needs O(n) operations of find and



union, so the time complexity is O(n). The align-
ment result can be computed in linear time, when
the linear-space S-table is given. In addition to
get PO with increasing order, we can collect the
elements hy, and apply the bucket sort on these
elements with an array of size n. It needs O(n)
time. In summary, the concatenated LCS prob-
lem with the linear-space S-table can be solved in
linear time.

4 Conclusion

In the previous studies of the S-table, the whole
S-table of quadratic space is needed for further
applications. Due to the growth of data size,
to reduce the required space is an important is-
sue. This paper considers the linear-space S-table,
which consists of the first row of the S-table and
the changes between every two consecutive rows.
New algorithms are proposed to solve the concate-
nated LCS problem in O(nlogn) and O(n) time
with given the linear-space S-table, instead of the
whole S-table reconstruction.
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Abstract—Wireless sensor networks raise a number of
interesting and undiscovered algorithmic issues, but traditional
techniques are not sufficient to solve these problems in the
right way. This is specifically due to constrained energy and
computation capability, nondeterministic sensor failures,
channel impairments, node mobility, hostile and distrusted
environments, and even external attackers. A sector is obtained
by taking a portion of a disk with central angle <z radians. A
sector graph G=(V, r, ) consists of equal-sized sectors (with
sector degree #and radius r) placed in a two-dimensional space
R? and directed edge set E={[i, j] | sector i contains the center of
sector j where i, j are in vertex set V}. Given a sector graph, if it
is not connected, we try to rotate some sectors properly so that
the resulting sector graph becomes connected by applying the
proposed algorithms. We also compute the probability of
rotating a disconnected sector graph into a connected one
where 8<.

Keywords-
algorithms.

Random sector graphs, wireless sensor networks,

. INTRODUCTION

Wireless sensor networks raise a number of interesting and
undiscovered algorithmic issues, but traditional graph techniques
are not sufficient to solve these problems in the right way. This is
specifically due to constrained energy and computation capability,
nondeterministic sensor failures, channel impairments, node
mobility, hostile and distrusted environments, and even external
attackers. In all these issues, wireless sensor networks exhibit
substantial vulnerability when compared to other networks. It is
challenging to design a robust wireless sensor network by devising
novel algorithms or developing new graph theories whilst
introducing minimal communication overhead and energy
consumption.

However, the algorithmic and theoretical issues in the wireless
sensor networks were not fully explored. The main focus of this
article is devoted to quick understanding of the algorithms and
theories which are developed to build up a robust wireless sensor
network.

Applications of random geometric graphs [10] and random
graphs [2] include classification, spatial statistics, epidemiology,
astrophysics and wireless communications networks with omni-
directional antenna [16]. However, random geometric graphs and
random graphs cannot be used to represent wireless ad hoc
networks equipped with directional antenna properly, which has
various advantages over omni-directional antenna [9]. As a
result, in this paper, we define a new graph, called random sector
graphs as follows. A sector is obtained by taking a portion of a
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disk with central angle é<r radians. A sector graph G=(V, r, 6)
consists of equal-sized sectors (with sector degree & and radius r)
placed in a two-dimensional space R and directed edge set E={[i,
il | sector i contains the center of sector j Where i, j are in vertex set
V}. Let X;={X4, X,, ..., X, } be a set of independently and uniformly
distributed random sectors. Here, ¥(.X;, r, 6, A) is used to denote
the random sector graph (RSG) of n sectors on X, with central
angle #and radius r and placed in an area A. RSGs consider sector
graphs on random sector configurations.

An RSG (X, r, 6, A) is appropriate for modeling an wireless
ad hoc sensor network consisting of n mobile devices with a
directional antenna that are independently and uniformly
distributed randomly in an area A. The transmission radius of each
equipped antenna is r unit length, and its coverage is often limited
and can be modeled by a circular sector in the plane. Specifically,
an RSG ¥(X,, r, 8, A) consists of n same size circular sectors with
sector degree ¢, which uniformly randomly distribute in space A. If
a circular sector i covers the center of another circular sector j,
there exists an arc (directed edge) [i, j], which also indicates
transceiver i can communicate directly with transceiver j. Figure 1
is such network with its associated RSG.

[

|~

Figure 1. A wireless ad hoc network (equipped with directional antenna) and its
associated RSG

Figure 1 displays an RSG and its representing network. In the
example, area A is a rectangle used to model the deployed area
such as a meeting room. Area A, however, can be a circle, or any
other shape, and even infinite space. Note that torus convention is
adopted here to remove border effects such that the deployed area
appears to be homogeneous at any point [1], [8].

According to the above definitions, we have that RSGs are a
natural generalization of random geometric graphs. That is, a
random geometric graph is a special case of a RSG when 6 =360.
Also random scaled sector graphs are a superset of RSGs.


http://mathworld.wolfram.com/Disk.html
http://mathworld.wolfram.com/CentralAngle.html
http://mathworld.wolfram.com/Disk.html
http://mathworld.wolfram.com/CentralAngle.html
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Figure 2. A wireless ad hoc network (equipped with directional antenna) and its
associated RSG after proper rotations on some specific sectors.

Usually, we need a sink device to collect all detected useful
information in a given wireless sensor network. That implies there
exists a directed tree with a root for the sink in the corresponding
sector graph. However, given an arbitrary sector graph, it is not
necessary to be connected. Similarly, the probability of a random
sector graph to be connected is not always high.

Fortunately, suppose that each sensor is equipped with a
rotation mechanism, we are able to adjust the direction of the
associated antenna for selected sensors (sectors) to proper position.
In this work, we find that the resulting sensor network may contain
a desired routing tree with a high probability.

When a given sector graph is not connected, this work aims to
design an algorithm to rotate some sectors properly so that the
resulting sector graph becomes connected. We also compute the
probability of rotating a disconnected sector graph into a connected
one. To the best of our knowledge, no previous work mentioned
similar related results.

The rest of the paper is organized as follows. Section I
introduces definitions and notations. Section Il then briefly
surveys pertinent literature. Next, Section IV analyzes the
probability of a connected random sector graph, followed with an
algorithm for rotating disconnected sector graphs into connected
one in Section V. Section VI concludes this work.

The subgraph probability of a labeled subgraph G=(V, E)
in Y(X,, r, 6 A) is defined formally as follows. Let 2={G,,
G,, ..., Gy} represent every possible labeled simple %raphs

DEFINITIONS AND NOTATIONS

of (X, r, 6, A), where X,={xy, Xy, ..., X,} and w=2 ’ . For
each labeled graph G=(V, E) with V,={1, 2, s n} in 0

we have E,cVixVy, where [i, jleE, and 1<k<2 ’ _Given a
subgraph G,=(V,, E,) where V,c{1, 2, ..., n} and E,cV,xV,
the subgraph probability of G, in ¥(Xj, r, A), denoted by
Pr(Gy), is summing up the probabilities of all label graphs in
0 whose induced subgraphs by V, are identical to G,.
Specifically, we have Pr(G,)= Z Pr(G).

vGeQandG, =G,

I1l. RELATED WORK IN RSGSs

We summary related results as follows. A book and several
papers written by Penrose [10]-[13] provide and explain the theory
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of random geometric graphs (RGGs). Graph problems considered
in the book include subgraph and component counts, vertex
degrees, cliques and colorings, minimum degree, the largest
component, partitioning problems, and connectivity and the
number of components.

For n points uniformly randomly distributed on a unit cube in
d>2 dimensions, Penrose [13] showed that the resulting geometric
random graph G is k-connected and G has minimum degree k at the
same time when n—oo. In [3], [4], Diaz et al. discussed many
layout problems including minimum linear arrangement, cutwidth,
sum cut, vertex separation, edge bisection, and vertex bisection in
random geometric graphs. In [5], Diaz et al. considered the clique
or chromatic number of random geometric graphs and their
connectivity.

Some results of RGGs can be applied to the connectivity
problem of ad hoc networks. In [14], Santi and Blough discussed
the connectivity problem of random geometric graphs ¥(.X;, r, A),
where A is a d-dimensional region with the same length size. In
[1], Bettstetter investigated two fundamental characteristics of
wireless networks: its minimum node degree and its k-connectivity.
In [6], Dousse et al. obtained analytical expressions of the
probability of connectivity in the one dimension case.

In [7], Gupta and Kumar have shown that if

r= (109N +C(N) | then the resulting network is connected with
m

high probability if and only if c(n)—o. In [17], Xue and Kumar
have shown that each node should be connected to ®(log n)
nearest neighbors in order that the overall network is connected.
Yen and Yu have analyzed link probability, expected node
degree, and expected coverage of MANETS [19]. In [18], Yang has
obtained the limits of the number of subgraphs of a specified type
which appear in a random graph. In [20], Yu has proposed the first
paradigm for exactly computing subgraph probability of RGGs.

IV. COMPUTING THE PROBABILITY OF A RANDOM SECTOR
GRAPH

In the section, at first, a novel paradigm for exactly
computing subgraph probability of RSGs with sector degree
less than 60 is proposed. For simplicity, we always assume
that A is sufficiently large to properly contain a circle with
radius r ina ¥(X;, r, 6, A) throughout the paper. By applying
this paradigm, we maybe have a chance to estimate the
probability of connectivity of given a random sector graph.

First, a graph drawing convention used in [20], which is
helpful for describing the proposed paradigm, is given. A
solid line denotes an arc of G; a broken line denotes a
possible arc between them; two vertices without a line
denote a non-edge of G. A class graph G=(V, As, Ag)
consists of a vertex set V and two disjoint arc sets Esand Eg,
where Eg (Eg) denotes a set of solid-line arcs (broken-line
arcs) joining two vertices of V. A complete class graph is a
class graph whose vertices are pair-wise adjacent with two
arc one of which is either a solid line or a broken line. Here
we introduce two additional graphs a(G) and B(G) from any



class graph G = (V, E, E;) such that a(G) = (V, Es) and 8(G)
=(V,Es U Eg).

Some operators and notation of class graphs used in this
work are defined similarly to that in [20]. The union of two
class graphs G, and G, denoted G,+G,, is the set whose
elements are exactly the graphs in either G, or Gy. The
difference of two class graphs G, and Gy, denoted GGy, is
the set containing exactly those elements in G, that are not
in G, When G is a class graph, Pr(G) denotes the probability of
the occurrence of G,eG in (X, r, 6, A). If every element
in G, is also in Gy, we have G,cG,,. Evidently, if G,cG, then
Pr(Go)<Pr(Gy), and if G, is isomorphic to G, then Pr(G,)=Pr(Gy,).
The union and difference of class graphs can be represented
by the graph drawing convention in Figure 2.

Note that the class graphs discussed here are directed
graphs, which are different from that in [20]. Actually, the
class graphs with their graph drawings are more
complicated than that in [20].

O =059 -O0t8 - 09 + 0D

O »®=0t=y® -0+
O0—® =0t=—8 -0

Figure 3. Graph drawing conventions and derivations used in RSGs

The probabilities of the following subgraphs ina (X, r,
6, A) can be computed by manipulating elementary
geometric techniques. Due to the page limit of this paper, all
derivations of the following results are skipped here, and
Table 1 summaries the results briefly.

Table 1. List of derived probabilities of ¥( X, r, 6<60, A)

Notation G G Gs
G o<__" ° 04_' _’_. .;_'_'t.
6%r? or?
Pr(G) — 1
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/' o ~ he
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Given a subgraph G=(V, E), the paradigm, similar to that
shown in [20], computes its probability Pr(G) of a RSG by
exploiting the following three steps:

(1) Preprocessing step: First, generate all complete class
graph set CG, with the same labeled vertex set where
n=|V|. Find out all the equivalence sets such that the
underline graph of each class graph is isomorphic to
each other in same set. Next, compute the subgraph
probability Pr(x) for each equivalence set x. Moreover,
one element from each distinct equivalence set is
selected to form a basis {G;, G, ..., G} of CG,. For
example, for |V|=2, {G;, G,, G3} in Table 1 forms a
basis of CG,; moreover, for [V|=3, {G4, Gs, ..., G} in
Table 1 forms a basis of CGs.

(2) Decomposing step: Decompose G into a linear
combination of the selected basis of CG,. ¢,G;+
CGot...+cGy by repeatedly applying the graph
derivations in Figure 2 for each pair of vertices in class
graph G. An example of the graph decomposition is
shown in Figure 3. Note that the graph is decomposed
into a linear combination of {G,, Gs, Gg, G7, Gg, G10}-

(3) Manipulating step: Compute Pr(G) = ¢;Pr(G,) + ¢,Pr(G,)
+...+ ¢Pr(Gy), where Pr(G;) is obtained in the
preprocessing step, for 1<i<k. Accordingly, the
probability of the derived graph in Figure 4 is equal to
Pr(Gyg)- Pr(Ge)-Pr(Gg)+3Pr(Gs)-Pr(G;)-Pr(Gy).



Figure 4. Decompose a graph G into a linear combination of the selected
basis.

For example, G5 is a complete class graph and its a(G)
is a directed tree and S(G) is a complete graph. Please note
that for this kind of graphs, its probabilities (shown below)
can be easily computed by applying the similar method
shown in [20].

Theorem 1: Given a complete class graph G = (V, E, E,), if
a(G) is a directed tree then Pr(G) = (&r¥/2|A])V1.

V. ALGORITHMS ON RANDOM SECTOR GRAPHS

In this section, we design an algorithm so that we can
follow to select and to rotate the directions of antennas of
some sensors to obtain a connected sensor networks.

The proposed rotating algorithm is described as follows:

Step 1: Construct a geometry graph G=(V, E) by replacing
each sector with a circle with the same radius in the
given sector graph.

Step 2: Assign each edge e in E of G with the value of cost
to rotate the associated antenna.

Step 3: Find out the minimum cost spanning tree T in the
weighted graph G.

Step 4: Rotate every selected sensor according to the
resulting tree created in Step 3.

Step 5: Construct a routing aggregation tree for the given

wireless sensor network.

After following the above algorithm, we can show that
with high probability the resulting graph is connected.
Moreover, the time complexity of the above algorithm can
be easily obtained.

For a given vertex as a sink in a wireless sensor network,
if we can count the number of different spanning trees in the
network, with the help of Theorem 1, we may sum up their
probabilities and obtain the probability of a random sector
graph with a directed spanning tree. Please also note that all
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the graphs mentioned in this paper are labeled graphs.

Moreover, we also can compute the probability of the
corresponding random geometric graph created by Step 1 in
the proposed rotation algorithm by applying the similar
results in [20]. Finally, we obtain the probability of the
resulting sector graph being connected improved by
applying the proposed rotation algorithm.

VI. CONCLUSIONS

Given a sector graph, if it is not connected, in this work,
we have designed an algorithm to rotate some sectors
properly so that the resulting sector graph becomes
connected by applying the proposed algorithms. We also
computed the probability of rotating a disconnected sector
graph into a connected one. More applications in on
topology of ad hoc networks with directional antenna are
also a challenging work in the future.
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Abstract

Let G = (V, E) be a graph. For integer k£ > 1, a function f : V — {0,1,2,3,...}
is a {k}-dominating function of G if for every vertex v € V., f(v)+ 3 cp f(u) > k.
The weight of fis ) cp f(v). The {k}-domination number, denoted by ;1 (G), of
G is the minimum weight of a {k}-dominating function. Clearly, when k = 1, a {k}-
dominating problem is exactly the dominating problem, that is, v{1)(G)=7(G).

A circulant graph C(n;ai,as,...,a;) is a simple graph with the vertex set
V={vy=19|i=0,1,2,...,n— 1} and the edge set £ = {vjv; | i —j = a
(mod n),t =1,2,...,m}. In this talk, we completely determine the {k}-domination
number of circulant graphs C'(2n;1,n), C(n;1,2) and C(n;1,2,3).

Keywords: domination number, {k}-domination number, circulant graph

1 Introduction

Nowadays, almost everyone has a smart phone and can use the internet through Wi-Fi.
In order to make the Wi-Fi service more efficient and save more budgets, the problems
arise naturely: How to use the least Wi-Fi stations and how to arrange the Wi-F'i stations
to serve as many people as possible. The problem of Wi-Fi stations can be solved by
considerig the {k}-dominating problem. We trasform each area to a vertex and its neigh-
boring areas, adjacent vertices, are connected by edge. Building some Wi-Fi stations in
each area such that the total number of Wi-Fi stations in each area and its neighboring
areas is at least k. The {k}-dominating number is the minimum number of the total
Wi-Fi stations.

Let G = (V,E) be a graph. For integer k > 1, a function f : V — {0,1,2,3,...}
is a {k}-dominating function of G if for every vertex v € V, f(v) + >, cp f(u) > k.

36



The weight of fis > _p f(v). The {k}-domination number, denoted by vy (G), of G
is the minimum weight of a {k}-dominating function. The concept of {k}-dominating
problem was introduced by Domke, Hedetniemi, Laskar and Fricke [2]. In 1998, Haynes,
Hedetniemi and Slater [3] gave an upper bound on the {k}-domination number. For
Cartesian product of graphs, Bresar, Henning and Klavzar [1] gave the upper bound in
2006 and Hou and Lu [4] gave the lower bound in terms of packing in 2009. Kuan [5] gave
an lower bound and obtained the exact values of the complete graph K, the star S,,, the
path P, and P,OP, on the {k}-dominating number.

A circulant graph C(n;aq, as, ..., a,) is a graph with the vertex set V. ={v; =i | i =
0,1,2,...,n — 1} and the edge set £ = {v;v; | i —j = a; (modn),t =1,2,...,m}.
In this talk, we completely determine the {k}-domination number of circulant graphs
C(2n;1,n), C(n;1,2) and C(n;1,2,3).

2 The {k}-Domination Number ~,(C(2n,1,n))

In [5], Kuan obtained the lower bound of graphs on the {k}-domination number.

k|G|

Lemma 1 For any graph G, vy (G) > (AH .

Since the circulant graph C(2n;1,n) is 3-regular, vy (C(2n,1,n)) > [;%’ﬂ = [2k].

The following lemma is essential for finding the upper bounds for C'(2n;1,n).

Lemma 2 Let S = {0,i(n —2),i(i +2) | 1 <i < 27}, where r =n  (mod 4). Then
the followings hold.

1 [8] =142 157 = miZr,

2. Ifn=0 (mod 4), then S is a domination set.
3. Ifn=1 (mod 4), then S is an independent domination set.

4. Ifn=2 (mod 4), then S is a packing and U N[v] =V(C(2n;1,n)).

veS

5. Ifn=3 (mod 4), then S is a packing such that

n—3 n—3

T\ NP ={ (=2 +n—1L——(n+2) +n+1}

veS

and SUT is a dominating set.
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In what follows, we determine vy (C(2n,1,n)).

Lemma 3 Suppose n =0 (mod 4). Then
1 v (C(2n,1,n)) =2 if k=0 (mod 2).

2

2. v (C(2n,1,n)) =2 +14ifk=1 (mod 2).

Lemma 4 Suppose n =1 (mod 4). Then

1y (C(2n,1,n)) = [%] if k=0,1,3 (mod 4).

2. v (C(2n,1,n)) =2 +1if k=2 (mod 4).
Lemma 5 Suppose n =2 (mod 4). Then vy (C(2n,1,n)) = %k
Lemma 6 Suppose n =3 (mod 4). Then

L vy (C(2n,L,n)) = [%] if k=0,1,3 (mod 4).

2. v (C(2n,1,n)) =% +1if k=2 (mod 4).

3 The {k}-Domination Numbers ~;,(C(2n,1,2)) and

We also completely determine g3 (C(2n,1,2)) and vy (C(2n,1,2,3)) .

Lemma 7 v,(C(2n,1,2)) = [%].

Lemma 8 v(,;(C(2n,1,2,3)) = [%].
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Abstract

A phylogenetic tree is a branching diagram
base on the similarities of creatures in morphology,
structure, physiology, genetics, ecology and genetic
sequence. It shows a inferred evolutionary history
among species. To deal with the massive genetic
data, we propose a faster and more accurate
approach, BigBigTree, reconstructing phylogenetic
trees by divide and concatenate. The source code and
of  BigBigTree
https://github.com/imchanglab/bigbigtree

docker are  available in

and

changlabtw/bigbigtree, where the later allows users

one-click installation.

1 Introduction

1.1 Research motivation

Phylogenetic tree, a categorization facility that
classifies creatures by their genetic similarities, can
facilely find the common ancestors of every species,
such as Figure 1, each node represents the nearest
common ancestor of each branch, and the edge
lengths in phylogenetic trees may be interpreted as
time estimates.
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Figure 1 : Phylogenetic Tree of Life (Extracted from
[1D.

Building phylogenetic tree needs to confirm
relevance between species, since the evolution is a
extremely time-consuming process that we can not
confirm it through observation or experiment
directly, instead, we only proof it by collateral
evidences, that means all of phylogenetic trees are
hypotheses, building phylogenetic trees by different
models and methods may produce various results.
The major of biologists use two types of methods as
the basis to confirm the similarities of species.

First is morphology, the characterizations of
species fall into homology and analogy. homology
means creatures have resemble body structures, but
evolve into different appearances and abilities that
depend on their living environment (Figure 2.a);
Analogy, having
appearances or abilities but evolve from different

exactly the opposite, similar
body structures , which means analogy may not have
genetic relationship, only the result of convergent
evolution (Figure 2.b), therefore, if we want to use
the similar characterizations between fossils and
living creatures to confirm their relevance, we must


https://github.com/jmchanglab/bigbigtree

base on the homology to ensure the close and distant
relationships of species.

(@)

Pterodacty! Bird

Figure 2 : (a) Homology and (b) Analogy (Extracted
from [2]).

The other one is molecular biology, using DNA
sequenceing which confirms relevance between
creatures by the order of four bases—adenine,
guanine, cytosine, and thymine—in a strand of DNA.

A phylogenetic tree not only shows the close
and distant relationships of species but also can
handily classify each genotype and find the needed
parts that can use in genetic modification and
identification.

There are many ways building a phylogenetic
tree, but most of them could build trees in a short
time only when the input genetic data is small, when
face to huge amounts of data, how to optimize the
process of building a phylogenetic tree became an
issue. To build a phylogenetic tree accurately and
rapidly,basically we have two popular types of
methods: Maximum Parsimony (MP) and Maximum
Likelihood (ML).
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MP is using the degree of variation between
genetic sequences to confirm the close and distant
species, that is,
phylogenetic tree by changing the least in the
this way may misclassify different
creatures into similar species cause by the convergent

relationships  of building a

evolution,

evolution, therefore, this way usually uses in the
situation that the relationships of species are close;
MP is the way that using statistical data to estimate
the stochastic model.

Thanks to the development of Next-Generation
Sequencing, we can get lots of genetic sequences
easily, means that it is capable to build a phylogenetic
tree by genetic sequences. Compare to MP that is
easy to understand but has more deviation, ML is
more accurate but needs enormous calculations. Our
research hopes to combine the advantages of MP and
ML, using Divide and Concatenate algorithm which
clusters genetic sequences by their homology,
disposing them separately and then merge together,
this algorithm not only keeps the complicated genetic
informations completely but also can build a

phylogenetic tree accurately and quickly.

1.2 Related works

S. Mirarab et. al. presented that although there
are several multispecies coalescent models, but all of
them have disadvantages, BUCKy-pop has high time
complexity even if it can use in unrooted tree; BEST
and *BEAST can build gene trees and species trees
by sequence alignment simultaneously, but when data
is big enough will lead those methods incalculable
[3]. Another thesis also presented conflicts may occur
if we use different allele to build different
phylogenetic trees, to correct these conflicts we need
to align several allele to increase the accuracy of
phylogenetic trees, which make the data that it need
more enormous [4]. Thus, the problem in front of the
development of genetic technique is to reduce time
complexity, Accurate Species TRee ALgorithm
(ASTRAL) in the thesis is a way limit searching
space by abandoning the less grade side to make time
complexity in a polynomial time; in the other way,
we reduce time complexity by dividing and merging
data.

P. Vachaspati et. al. presented that many
methods use ILS (Incomplete Lineage Sorting) in



building species trees, but only ASTRAL-2 and NJst
can remain accuracy in a large data level, so he
redesign NJst to improve the compatibility of data
and can combine with different distance-based tree
estimative methods, called ASTRID, has similar
accuracy and even better efficiency than ASTRAL-2
[5]. The thesis also mentioned that INternode
Distances is important in building phylogenetic trees,
calculate the period of time in the evolution process
to analyze relationship, and make the correspondent
time be the proportion of the distance between nodes
in phylogenetic trees, which can make the results
more accurate.

2 Methods

2.1 Our Idea

In the course of meiosis or RNA replication, it
will occur a phenomenon called gene duplication, a
duplication of the gene region. Gene duplications are
an essential source of genetic novelty that can lead to
evolutionary innovation. Duplication creates genetic
redundancy, where the extra copy of the gene is often
free from selective pressure, that is, if one copy of the
gene experiences a mutation affecting its original
function, other copy can serve as a 'spare part' and
continue to function correctly. A mutation will have
no deleterious effects to its host organism. Thus,
duplicate genes accumulate mutations faster than a
functional single-copy gene, that is recognized as an
evolutionary manifestation.

According to the Figure 3, when the genome
region of an ancient species occur gene duplication, it
produces a-gene and B-gene in descendant species.
Afterward with speciation the species
gradually evolve to three species frag, chick and

event,

mouse. The a-genes of three species are ‘orthologous
genes’. The a-gene and B-gene of the same specie are
‘paralogous genes’.
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Figure 3 : Difference between orthology and
paralogy (Extracted from [6]).

Orthologous genes are more similar than
paralogous genes because the later had mutated
before speciation compared to the former had
mutated after speciation. So, the orthologous genes
between different species are more similar than
paralogous genes of the same species. Our approach
First,
sequences are clustered into groups (i.e., orthologous
genes) which are used to build individual trees. Then,

the hierarchical clustering of the those groups is

mainly takes advantage of this feature.

determined by the concatenated orthologous
alignment. The final phylogenetic tree is constructed
by merging individual orthologous tree with the

hierarchical clustering.

2.2 Algorithm Design

The algorithm is divided into six steps: 1) input
data, 2) use BLAST to compare sequences; 3) cluster
by hcluster, 4) align each cluster, 5) and then
concatenate each orthologs among species alignment
into on single string, 6) finally build a mother tree
base on the result of previous step and merge subtrees
of each clusters and the mother tree together. The
overall flowchart is shown in Figure 4. The detail of
each step is explained as the following:

Stepl : Input

Sequences with species annotation in FASTA
format. For example, there are m species and n
orthology gene families, in total, m*n sequences.

Step2 : Sequence comparison



We compare m*n sequences by Basic Local
Alignment Search Tool (BLAST). BLAST is a
program that have been used widely to align primary
structure of biological sequences in analysing
bioinformatics, which can let researchers find target
sequences or similar ones, using heuristic algorithm

to search and have quite speed and accuracy [7].

Step3 : DIVIDE - Cluster ortholog

According to the result of BLAST, we get
similarity between sequences. Then, we apply a tool,
hcluster, to cluster sequences into cross-species
orthologues and transfer them into FASTA format
[8]. FASTA is a text format used in recording nucleic
acid or peptide sequences, any nucleic acid and
amino acid present as single alphabet code so that we
can easily analyze sequences with scripting language
such as Python, Ruby, and Perl.

Step4 : Cluster alignment

Instead of generating a big alignment of all
sequences, we generate alignment for each cluster -
ortholog cluster (cluster,, culster,, ...
species cluster (spe,, spe,, ..., SpPe,,)-

, cluster,) and

Step5 : CONCATENATE - Orthology concatenation

We concatenate each orthologs among species
alignment (spe,, spe,, ..., Spe,,) into one single string.
Therefore, we will have the sequence alignment of
paralogous strings which not only provides more
information for phylogenetic reconstruction but also
reduces time complexity in building evolutionary

tree.

Step6 : Build tree & Merge tree

Users can choose either TreeBeST [9] or
PhyML [10] to build phylogenetic
orthologous sequences alignment (i.e., cluster,) and
A final
phylogenetic tree will be constructed by replacing the
leaf node of the concatenate tree with corresponding
orthologous trees. Compared with a traditional way,

trees of

the concatenate long-string alignment.

building tree directly based on all sequences, Divide
and Concatenate approach utilizes more information
of the concatenated strings to complete phylogenetic
tree accurately with reduced time complexity.
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Figure 4 : The flow chart of our algorithm.

2.3 Implementation

We reimplement whole pipeline by Nextflow
[11] instead of Python [12]. Nextflow simplifies the
implementation and the deployment of complex
parallel and reactive workflows, which is used in our
project to make the pipeline more quickly and more
efficiently. It is possible to execute locally by cloning
the repository from github or downloading docker
container. Both are
https://github.com/jmchanglab/bigbigtree
changlabtw/bigbigtree, respectively (Figure 5). We
will reconstruct a new web service for biologists

without installation.

MNMEXTFLOW ~ version 6.25.5
Launching "bigbigtree.nf’ [big swartz] -
RENATOY PEPELTNE

available in
and

revision: 1cda8

ample/Or_aa.fasta
speciesTree : [home/cs/Bigbigtree-final/bigbigtree-maste

nn : example/Or_nn_v2.fasta
cluster_dir: res_dic/cluster

[warm up] executor > local

[37/e3678a] Submitted process
[41/41c43a] Submitted process
[28/dcal162] Submitted process

stepl_icluster
step®_check_fasta_diff
stepl_z2dif

[19/1975e1] Submitted process
[@4/08a2ac] Submitted process
[fb/9a3eb8] Submitted process
[c1/6774e5] Submitted process
[38/08a2e3] Submitted process
[66/f41729] Submitted process
[72/f96T65] Submitted process
[38/c70277] Submitted process
[9b/6eb854] Submitted process

step2_cluster_to_fasta_n
step2_cluster_to_fasta_a
step3_1_alignment_aa
step3_1_alignment_aa
step3_1_alignment_aa (
step3_1 alignment_aa (
step3_1 alignment_aa (
step3_1_alignment_aa (
step3_1_alignment_aa

Figure 5 : The snapshot of execution of BigBiogTree
by Nextflow.
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2.4 Evaluation
2.4.1 Real biology data

For testing ability of BigBigTree, we collected
data sets with two evolutionary scenarios, which are
summarized in Tablel.

e Same family size among all species: The
data is token from JGI web server [13].

e Different family size among all species:
Olfactory receptor among 12 Drosophila
species.

Table 1. The summary of biology data.

# of
gene
families

# of
species

# of
sequences

Data Set
type

Same
family size

Cladiomy 5 3 15

microspor 29 8 232

Different
family size

Olfactory ~60 12 858

receptor

2.5 Comparison

We compared BigBigTree against RAXML
(Randomized Axelerated Maximum Likelihood),
which is a program for sequential and parallel
Maximum Likelihood based inference of large
phylogenetic trees [14]. The evaluation of
BigBigTree is conducted in a desktop with 2.60 GHz,
2 cores CPU and 2 GB memory. Evaluation of
RAxML is conducted in CIPRES Science Gateway
web service [15]. Considering that the performance
using RAXML in version Pthread at the local side
was not good enough to build phylogenetic trees, we
used RAXML-HPC2 on XSEDE in CIPRES Science
Gateway instead, which had better performance than
local side. The input data RAXML needed was
alignment data, so we used MAFFT to align raw data
into alignment data to build phylogenetic trees with
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RAXML and then compared the results to BigBigTree
without including alignment time and bootstrap time.
See the result below.

3 Result

The running time comparison is summarized in
Table 2. When the input sequences are in a small
amount, BigBigTree has about half execution time
than RAXML; from microspor and Olfactory receptor
two dataset, we can find out that in microspor dataset,
BigBigTree has about 12 times faster than RAXML,
and in Olfactory receptor dataset, BigBigTree has
about 5 times faster than RAXML, and therefore we
know that the difference in speed rate has nothing to
do with the total number of sequences, we believe it
relates to the number of sequences in the cluster after
BigBigTree clustered the sequences, because the less
number of sequences are in the cluster after clustered,
the less length of sequences will be after alignment,
and the program can get a better performance.
Besides running time, we evaluated the quality of the
tree by calculating its maximum likelihood score by
PhyML package with topology constrain. Currently,
only Cladiomy result is available, where BigBigTree
gets little better performance than RAXML, -8643.62
versus -8643.61.

Table 2. Running time(in secs)/maximum likelihood

analysis.

Data Set type BigBigTree* RAXML*
Cladiomy 13/-8643.62 27/-8643.61
microspor 257 3402
Olfactory 1748 9873

receptor

*running of BigBigTree = alignment + tree building,
RAXML = only tree building

4 Discussion

We get quite promising results in terms of running
time against RAXML thanks
concatenate approach. After brief visualizing tree

topology,
phylogenetics (Figure 6). We will further evaluate the

our divide and

BigBigTree come out reasonable



quality of topology based on log likelihood. Besides
real biology data, simulation data by SimPhy will be
included into evaluation such that we are able to
compare outputs again ground truths based on
Robinson Foulds distance metric [16].
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Figure 6 : The snapshot of Cladiomy tree by
BigBigTree. The topology is drawed by TreeViewer
on ETE 3 [17].
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Algorithm 1 AdaDiag(Q,)

Input : Q, Hn>5, f1=0,f,=
Output : A Bk RE (ﬂﬁﬂzﬂ@ﬁ Eﬁlgigﬁ &
HIBE) ©

Step 1 : IKIRHFEEE EE T(N) » EAEFERE

DRI EERSTE Q) -

Step 2 : #/T HHE ¥ 2 Hamiltonian(n)

TEQy, FF I3 37 A U ] o

Step 3 : £V A7 UEE B AT HEE 3

FourRoundTest ° 4 ¥ EAVIEM ©

Step 4 : #47T HEE 4 CyclePartition 5%

57 T L P %UEETEE‘E’J A0 FERAE o Sl P

A A FRISTFEAES S0 H o

Step 5 : ¥t S0 EF'FE%“EI"J R SEIERE NI AN

EITHEF - %3 - RIERE 1 1Y 10 FRER

S0 MR -

Step 6 : it T(N) W% fu DU f, * AL

s AT EETE 5 NodeColor HH HI 8 —1fk
70 FRERAIRIIR IR -

Step 7 : while( S0 # 0 ){
HATEHHETE 5 NodeColor ° HIE » fHHTE
Step 6 FTREIRIAIIAHRIE » 75 S0 FHH
B 40 FRRIE » KD 3BT L AR ~
RRelRh ~ RENES o BE3E > MIBRGEAIRAY A0 +
Ftéﬁ“ ’ gﬁ@zr FIE Sy0 FHEN —FFBRIE

/fT [2%)

}

Step 8 : WIRAHFIEARIE: » RIBUT T

BR s BRI > BT Step 11 ©

Step 9 : AT HEIE 6 Match ¥ E RENE,

FE S R B AT EC S - 2 HT o R R AFAE

HRANE o BIEIT F—(E28 s BHI > 4T Step
11

Step 10 : # {7 HEHEE 7 NodeColorl % H
ANEEER R T2 -

Step 11 : 5S¢ Hiis H BT A BEAUIR RS -

RPN

Algorithm 2 Hamiltonian(n)

Input : A positive integer n
Output : A Hamiltonian cycle(HC) of a @,
1: if (n =1) then
22 P=(0,1)
3: else
4: P =Hamiltonian(n — 1)
5 Let Py = <0’l)0,0’l}1,...,01}2n71_1> and P, =
(lvgn-1_1, ..., 1o, lvp)
6: Let HC:(P(),Pl,OUo)
7. {Comment : (Ovg,lvg) € E(Q,) and

(0’()271—1_1, 1U2n—1_1> € E(Qn)}
& end if
9: output HC

Algorithm 3 FourRoundTest

Input : Indices of nodes of Hamiltonian cy-
cle(HC)
Output : Syndrome () of all nodes

1: round 1 : test (44;4i — 1,4 + 1) and create
~y(4i34i — 1,45 +1) for 0 < <272 — 1.

2: round 2 : test (4¢ + 1;44,4i + 2) and create
Y(4i + 1;4i,4i +2) for 0 < i <2772 — 1.

3: round 3 : test (4i+2;4i+1,4i+3) and create
y(4i+ 25404+ 1,40+ 3) for 0 <i <2772 — 1.

4: round 4 : test (4i+3;4i+2,4i+4) and create
Y(4i+ 3;4i +2,4i +4) for 0 < i < 2772 — 1.

HAE S0 o HEL A0 FERIEHIRE B RE
N S LSRR 1 B 70 FREEAE S0
kR o 1% > Tfi#s T(N) - £ - f, EEWEH
ot > ZRHR AT & A TR SRR IERY A0 FRRAE -
TR BB ETE 4 A BEBIEHE 5 R H ?ﬁﬁ
¥ 5 NodeColor ° ERHEAR 0 TR

7 E B ROIR AR o BT HETE 5 NodeColor
IR > o ’éﬂgﬁ 2 B 12 O TR BB A = Ml B £ 2R
FR o HURZHPERGEAR A - HEHRBER H
o EABIEAE R ES > R MHE UK B 2R
R {FE 0 TEEHEIE 4 CyclePartitionH » P =
<Um 2, Um—1,Um, Um+41,--.,VUg— 17vq7vq+lyvq+2>7~%
*T'T%T:«éu& P = <Um,’l}m+1, sy Vg—1,0 > XELIT,Q
% +° ?%1:2 ?izﬁﬁﬁﬁﬁﬁiﬁﬁﬁﬁﬁﬁﬂﬂiﬁ ’
ﬁ]\ Sfb BB H K B AR AR - A

P 5 A > FAFT AT LUKNIE B B2 B H 00 (R 2
AR RS DL — - A SR - R A — A
A AN E AR RE 2K B B o
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3: {#H HHEE 2 Hamiltonian(n) f HEE
3 FourRoundTest £ Q,, " FT /2 AE W35 f 4
TEI ] DA K SE AR A i 451) ©

4:

e

g & A0
= (1,2,3,4,5,6,7) » (11,12,13,14) »
(18,19, 20, 21,22, 23, 24,25, 26,27) * (30) °

3.4 BCBHEEIE

I8 — 1 F AT A AR B A A T IR R R K
REMEATHCES o qAEE HORRERYIE AL o TR
H I 6 Match #7TA 20 B EMME R Y
MAETECE » BRI E T o] ) B SR R
JEiR > AT RE 3 A [R] R 0F 2 [F] — (8 fE O R D -
Pt A3 515 S5 3 A 80 /D ) (1 38 42
AMEITECES » DUBESR A A KNRE BE 1 1 2 A0 19 15
Do ATEm SCRR FIMMAERY » Fir DL 7E BC B
B R RSB (R AR = (A
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i B 6 Match EITACH LI RZEE »
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NodeColorl {HH % » 272 B o kR &0 25 5 Ak
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Algorithm 4 CyclePartition

Input : Syndrome (v) of HC
Output : S0 : The set of all ~9 subpaths sorted
by length.

1: Step 1 Choose a ~° mnode follow-
ing a y' node in right direction as the
Start node. {Comment : The Start node
is denoted by S.}

2: Step 2 Proceed inspecting the

following  node in  right  direction.
If the current node is °, then repeat Step 2.
If the current node is 7', then the

previous node is marked End node.

Then calculate the number of nodes between
S and E, save the 7? subpath into S,0.  Go

to Step 3. {Comment : The End node
is denoted by E.}
3: Step 3 Proceed inspecting the

following  node in  right  direction.
If the current node is ', then repeat Step 3.
If the current node is 4% and unmarked, then
mark it S and go to Step 2;

otherwise, the algorithm terminates.

4 EEREHER

7 B A S A B A R AT R R o B M A G
BB E R B RR o BE o JRHE R Intel
Core i3-3770 CPU 3.4 GHz ~ #18#816GB ~ 1E
A% windows 7 64-bit i B {F FH CEE S A5 FHBRTEH
FIRBRE AR o (REHPEES T LSS 2 u2 B
K ﬁﬁﬂ/xﬁ,ﬁ-@ub%ﬂﬁ’] B » BT AR &2
BRI o BRI & - TR BTh
= %%‘Tﬁleﬂﬁﬁl / BRI AGT R o M E
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B EE2 BRI 2 o BT RE 4 1%
B T(N) » WREFEE £ Qs T WFEEE
g 4 5 T(N) K> CHEIBERER—F » Frld
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Algorithm 5 NodeColor

Input : S0 : The set of all ~% subpaths sorted
by length, f, = 0.
Output : White nodes, black nodes and grey

nodes.

1: while S,0 #0 do

2. if |P/|>T(N)— f1 — fg — f» then

3: We color the v,,_2 and vg42 with black,
the vp,—1, and the v441 and all nodes in
P’ with white.

4: if v,—o € Sy, or vg40 € Sy, then

5: fo = fo+1and Sy, U{vgt2}; otherwise,

fo=fo+2and Sy, U{vm—o} U{vg42}.
6: end if

7 if v,,_o in other 4% subpath (P;) then

8: We colour all nodes of P; with black,
S’YO - {Pl} and Sfb U Py

9: fo=fo+|P1] -1

10: end if

11: if v 42 in other 7Y subpath (P) then

12: We colour all nodes of P, with black,
Swo - {Pg} and Sfb U Ps.

13: fo=fo+ [P -1

14: end if

15:  else

16: We colour all nodes of P’ with grey, S0 —

{P'} and Sy, U P’ .
17:  end if

18: end while

BB R BT 2 B o
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EEE] 30 (EHFRREL - m AR R 3 %
18 AT LUt I A R il SO BT R I BIEFE 2 B K
BRI A —ERVE A

B 5: BITHEHETE 4 NodeColor 5 &BhikRE 5B
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Algorithm 6 Match

Input : Sy : ﬁ%ﬁ(ﬂiﬂ%ﬁ)ﬁﬁﬁ/\ °
Output : BEAREE - HBL > BELEES -

Step 1 51% Sy, FHIEER - RIREFHERE -
H/INERHEF?.

S;ep 2 EBEBEHHESERDNE o BITER
E3)

Step 3 : ¥E—{EA o AHHBAO ALY - 4T
ﬁ??ﬁ)ﬁ%&iﬁ%fﬁ AARAR I B R > % A
HEHD E’Jﬁﬁﬁllza% w M u ETECE -

Step 4 LB w MABRYHERERS o > A w
JEITECE - # w, w and v LB —%

Step 5 : ¥tu, w and vig —AACEH FAES - fF
MM R EAT 2B -
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R HE > JIERLR A o % u 7Sy, MR -
Step 7 : 1 Sy, T o RBHEER LT —H
®i o B Step 2; AR Sy, FHYFTERIERE
o TEEERR o
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Abstract

To evolve contemporary knowledge economy,
cellular information transmission is getting more
importance. The mutually Hamiltonian property
(MIHP) of cellular honeycomb tori (HT) is studied,
used for parallel analyzing interference and
supporting cipher coding to offer privacy. It can
be expected that the honeycomb tori, HT(m) m>2,
have fully MIHP parallelism.

1 Introduction

Contemporary sensor-information networking
may hardly be seen yet, besides means of passive
crime prevention through environmental design,
“prototyping” [1], more holistic (everywhere or
concerning availability) [2,3,4], and reliable
(all-time) networking, is becoming critical to
facilitate profiling events in real time, to protect
and serve travelers and residents, and to prevent
incidents, counter  disasters, environmental
challenges and other wicked problems ([1], i.e.
problems that are difficult to anticipate).

The “2016 Taoyuan bus fire” being referred to
in the public media, including Wikipedia, and the
new London embassy [4] are evidenced that the
planning of holistic environmental control to
counter intentional terrorist attacks is needed.
Pervasiveness is the quality of spreading widely or
being present throughout an area or a group of
people. Pervasive computing is an emerging
development [3]. In terms of prototyping
systematic availability, the methodology of this
research can also be described as design or task
based, and holistic pervasiveness is the quality
aimed.

Well enhancing dependable capabilities, i.e.
ARM, or “availability, reliability and
maintainability” [5,6], to strategically create
resource utilization [7] and trust development is
the foundation of successful placemaking [8-10].
Effective, efficient capabilities on prevention or
mitigation of wicked acts is worthwhile to be
considered, through prototyping and with
integrative and public welfare oriented minds,
before disasters really happen [1].
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Facilities concerning attacks through advanced
technologies, e.g. through the unmanned aerial
vehicle (drone), which can hardly be detected by
the roadside surveillance due to it being small and
probably very far, are getting more concerns
[11(p.215),12]. Such drones are being considered
to be legally utilized, e.g. for logistic application;
however, they should be detectable, manageable
along each lane of the path. In areas off roadside
surveillance, more networking studies are
considered needed e.g. the network honeycomb
torus is introduced for cellular communication
applications.

2 Methodology

Communication/information  networks  are
usually illustrated by graphs in which nodes
represent processors and edges represent links
between processors. It is noted that mathematically,
scalable performance is beneficial in building up a
network prototype; the scalability is also important
for establishing a communication/information
sensor- node platform to flexibly support offering
the availability for dealing different environment
conditions; the mathematical Hamiltonian order
helps guarantee maintenance justifiably done
(without loss, and with rational efficiency). This
paper proposes an approach on the reliability in
establishing communication/information networks
for managing, serving areas which require quite
significant amount of sensor-nodes for reliable
communication/ information acquiring, serving
and managing.

Let G = (V, E) be a graph if V is a finite set and
E is a subset of {(a, b) | (a, b) is an unordered pair
of V}. A path is delimited by (xo, X1, X2, ... Xp.1). A
path is called a Hamiltonian path if its nodes are
distinct and span V. A cycle is a path of at least
three nodes such that the first node is the same as
the last node. A cycle is called Hamiltonian cycle
or Hamiltonian if its nodes are distinct except for
the first node and the last node, and if they span V.

A bipartite graph G = (V, E) is a graph such that
V =A UB and E is a subset of {(a, b) |a = Aand
b < B}; if G [ F remains Hamiltonian for any F
= {a, b} with a € A and b € B, then G is
1p-Hamiltonian. A graph G is 1-edge Hamiltonian



if G [] e is Hamiltonian for any e < E; moreover,
if there is a Hamiltonian path between any pair of
nodes {c, d} with ¢ € A and d € B, then the
bipartite graph G is Hamiltonian laceable. It is
noted that laceability is used for concerning the
connectivity to keep extended areas being
integrated, or vice versa, an area can be managed
hierarchically yet effectively.

Assume that m and n are positive integers,
where n is even and m>2. The honeycomb
hexagonal mesh HM(n) is the graph with the node
set {(Xg, X2, Xg) | n+ 1 <X, Xp, Xg<nand 1<x1
+ X2 + x3 < 2}. Two nodes (x'; , x> , x3 ) and
(X% , x% , X% ) are adjacent if and only |x!; — x%
[+)x% — x% |+|x's — x% | = 1. The honeycomb
(hexagonal) torus HT(n) is the graph with the
same node set as HM(n). The edge set is the union
of E(HM(n)) and the wraparound edge set {(i, n —
it1,1-n),(i-n1-in)|l1<i<n}uU{(1-n,
Ln—i+1),(ni—-n, 1-0)]1<i<n}U{G,1-
nn—i+1),i—-nn, 1-i)]1<i<n} Assumed
be any integer such that (m-d) is even. The
generalized honeycomb torus [13], GHT(m, n, d)
is the graph with the node set {(i, j)| 0< i< m,
0<j<n} such that (i, j) and (k, 1) are adjacent if
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they satisfy one of the following conditions: (1)
i=k and j=Ix1(mod n); (2) j=I and k=i-1 if i+j is
even; and (3) i=0, k=m-1, and I=j+d(mod n) if j is
even. GHT(m, n, n/2) is 1-edge Hamiltonian if
n>4; 1p-Hamiltonian if n>6 or m=2, n>4 [14] and
Hamiltonian laceable [15], besides, GHT(m, 6m,
3m) is isomorphic to honeycomb torus, HT(m)
(Fig. 1).

The number of links connecting a node is called
the degree, and networks regularly having smaller
degree are economic in general [16]. Two
Hamiltonian paths, P; = (uy, Uy, ..., Uy(G)) and P,
=(Vy, V2, ..., VW(G)) of G from u to v are
independent if u = u; = vy, v = uy(G) = vy(G), and
u # v; for every 1 < i < n(G). A set of
Hamiltonian paths, {Py, P,, ---, P}, of G from u
to v, are mutually independent if any two distinct
paths in the set are independent from u to v
[12,17]. It is noted that at least two “mutually
independent Hamiltonian paths” (MIHP) can be
considered for parallel, pact wireless information
transmission, diagnosing, and offering additional
ciphered information, which is considered
important  for  offering  real-time  private
information to logistic consigner [18]. (Fig. 2)
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Figure 1. Graph generation of the generalized honeycomb torus from the honeycomb torus.

Frequently maintenance inspection (flexibly) through the mutally independent Hamiltonian paths
help comparatively analyze interference ( #), and flexibly offer a dynamic cipher coding mechanism.
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Figure 2. Diagnose interference and assign cipher codes via MIHP.



3 Results

¢ GHT(023, n>10, d=n/2), MIHP, 2 col. 2<l<d-1
=2 if no adaptation needed if R=1 (direction change)} ,
< linear —= helix
extension extension
i

Red (R}, @:___

shown 3

r- | @G

(5) @T—‘:::. . *‘@{.%’2{ O\Q*I o -

A=

22

|:| . potential linear extension X
W : insertion of linear extension 8

03 : purple, highlighted linear extension

=n/2
24 25 26 27 28 29 30

. X shaped helix extension
expansion module (red, upper insertion; blue,
- lower insertion; underline, w. linear extension)

21 22 23 24 25 26 27

14, 15" 25, 24, 09, 08" 18, 19° 29, 28, 03, 04, 05, 30, 217 11, 20" 10, 01, 26, 27* 17, 16" 06, 07, 22, 23* 13, 122 02. Lt.
1404, 03, 28, 29" 19, 20° 10, 09, 24, 25" 15, 16" 06, 054 30, 21" 11, 12, 137 23, 22, 07, 08" 18, 17" 27, 26, 01, 02. Rt.

Figure 3. Exemplary case [GHT(odd, n>10, d=n/2), V 2 col. separation odd, I=2

Note: the linear extension need be consistent with the
definition of the GHT -i.e., the requirement, d=n/2. “{” can
be vertically measured from the left end-node, based with the
horizontally right link, to another end-node.

* GHT(E, nz4, d=n/2), MIHP,
2 col. separation odd, [=d

03, 01° 02, 08, 06" 05, 07 04. Lt.
03%08, 06" 05, 07, 01° 02, 04. Rt.

The red superscript number notes the unit of left embedding, the hlue
one notes, right embedding. ~: x-helix extension. The underline
superscript marks adaptation possibilities (coordinated w. Rt. embed.).

this link can be adapted to a horizontal one

1. one x-helix extension shown, the Lt. embedding direction can be changed.
Figure 4. Exemplary case [GHT(even, n>4, d=n /2), two
end-nodes disconnected w. vertical separation d].

Proof (Fig. 3). The superscripts, colored red or blue, show
node insertion quantity of each embedding in the upper and
lower inserted rows, respectively. Two embedding modes are
given, as B and R according to colors. Lt. 22 keep lagging if
R>1 and is not conflicted if R=0. If R=1, two nodes’
“underline marked” superscripts (in pair “16, 06” and “12,
02” of Lt. pattern, or in pair “20, 10” and “14, 04” of Rt.
pattern, whose insertion can have no conflicts due to
consistent direction and enough separation) need be
exchanged. Comprehensively, nodes “15, 257, 24, 09, “08,
18”7, 01, 26, “27, 17” keep lagging; Lt. “19, 29” (being able
to be supported from linear extension similarly aligned in
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* GHT(E, n>4, d=n/2), MIHP,

. N D * potential linear extension
3
1 g9: (Purple) highlighted linear extension & 1 p10 Jower [Rt.] embedding insertion.)
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Figure 5. Exemplary case [GHT(even, n>4, d=n /2), two
end-node’s vertical separation [=2].

Proof (Fig. 4). The left (Lt.) embedding quantity has only
one location and is 8 nodes for each embedding if the x-helix
extension is not applied. When the x-helix extension is not
applied, the embedding quantity of 8 nodes can be located at
the first or the last x-helix extension according to different
Hamiltonian paths. All embeddings are considered having
consistently same direction. On Lt. pattern, “01, 02” keeps
lagging; 08, “06, 05”, 07 can avoid conflict because their
corresponding separations can not be divided by four.
Similarly, x-helix extension can avoid conflict. The
adaptation in the last or the first step of Rt. embedding can
help maintain the lead or lagging order of each element in
x-helix extension. The Lt embedding in Fig.3 can be omitted
because its direction can be either upward or downward.
Proof (Fig. 5). By symmetry, assume Lt. embed. > Rt.
embed. The content within Lt. “03, 15” can keep lagging to
the same nodes within Rt. “05, 09” and “01, 13”; similarly,
Lt.15, “16, 08”,_ 01, “02, 10”, “09, 05”. keep lagging. Lt.
“04, 127, “11, 07", “06, 14” keep lead.

Proof (Fig. 6). By symmetry, assume Rt. embed. > Lt.
embed. The (purple) X shaped helix extension does not be
considered in the beginning. Lt. “02* 14” is well separated
from Rt. ”4* 02” due to Rt. “4* 02”. Lt. “13, 24, 09, 10, 08,
20” can keep lagging. Lt. “22, 21" can keep lead. Lt. “23®
05”, 07, “06* 18”, “17* 11" can avoid conflicts with Rt. “23*

03% 15, 16* 08, 01, 02* 10, 097 05, 04* 12, 11 07, 06* 14, 13. Lt.
03, 04" 12, 117 07, 08* 16, 15, 14* 06, 05 09, 10* 02, 017 13, Rt



05”, 07, “06* 18”, “17% 11” due to the divisibility by four
with the start separation of two. Lt. “23% 05” keep lagging to
the counter part of Rt. “13% 07”. After Lt. “23% 05", Lt. “04*
16, 15” keep lead. Lt. “15* 09” keep lagging to the counter
part of Rt. “13% 07”. The counter part of Lt. “10®” to Rt. “12*
24" keep lead, but that to Rt. “08® 20” keep lagging. Lt. “20*
08” also keep lagging to counter part of Rt. “08% 20”. Rt.
“20” can have the linear extension separated from that of Lt.
“19”. Those in both Rt. “17% 11” and Lt. “01% 19" are kept
lead/lagging; the other contents of Lt. “01® 19” are in Rt.
beginning “03* 21”.

¢ GHT(E, n>12, d=n/2), MIHP, 2 col. separation odd, d> [ >2

0321, 22,23 05, 04" 16, 15, 14" 02, 01, 12% 24, 13° 07, 06> 18, 175,11, 10, 09, 08° 20, 19. Rt.
01 02 03

04 05 06

07 S 08

0 10 1112
A

163}"4,_{}/.“@’.3)‘\0"
1415 BRLL A e L s 2 R T

. . D . potential linear extension
03,02 14, 13, 24, 23%05, 04 16, 15° 09, 10522, 21, 20° 08, 07, 06* 18, 17411, 12, 01° 19. 1. |g

Then, consider X shaped helix extension. The node coding
can be moved and easily be caused confusing, so such coding
need be noted with reasonable but flexible viewpoints. The
Rt. X shaped helix extension along with affixed linear
extensions is initiated after the Lt. one. The helix extensions
are regular a cyclical, we may check the situation of one
X-helix extension and then guarantee further extensions
without conflicts. It is noted that such movements are along
specific linear alignment, and cannot affect lead/lagging or
divisibility. Therefore, previous discussions cannot be
affected.
expansion module (red, upper [Lt.] embedding :

. blue | lower [Rt.] embedding insertion.); "

) !Furp}c} h'b_'hllghmd '“‘C_“r extension & represents (purple) X-helix extensions. The affixed
+ insertion of linear extension

underline highlights the including of linear extensions,

07 08 09 10 1 12

0r 02 03 04 05 06

13 14

Figure 6. Exemplary case [GHT (even, n>8, d=n /2), two end-node’s vertical separation d> 1>2].

e GHT(023, n26, d=n/2), MIHP, 1 col. [=1
10,03, 06, 09, ]2, 17,14, 17, 18, 15,04, 07, 08, 05,02, 01, 16, 13, L1
10,07, 08, 05,02, I7 Lh’.!iH, 06, 09, 16, 01,04, 15,72, 17,14, 13, Rt

. N I:I . potential linear extension
+ insertion of linear extension

underline higlights

the contents are same v
02

Figure 7. Exemplary case [GHT(odd, n>6, d=n /2), two
end-nodes connected in the same column].

Proof (Fig. 7). Purple digits highlight linear
extensions; the linear extension in Rt. 09, 14 or 08
is located and kept lagging in Lt. 12, 01 or 11; the
linear extension in Rt. 15 or 16 is located and kept
lead in Lt. 02 or 03. Lt. nodes 03, 06, 09, 12, 11,
14, 15, 04 can keep lead. Lt. nodes 17, 18, 07, 08,
05, 02, 01, 16 can keep lagging.
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underline higlights the
contents are same
16, 15709, 08, 07¢ 13, 1402, 03° 21, 20, 194075 124 24, 23, 22° 10, 11717, 18" 06, 05, 04. L,

RE L P P

o GHT(E=2, n=12, d=n/2), MIHP, 2 col. [=0 J
—=

expansion module (red, [Lt.]
g + embedding. hlue, [Rt.]
embedding.)

. N |:| . potential lingar extension
X ¢ insertion of X-helix extension

Figure 8. Exemplary case [GHT(even, n>12, d=n /2), two
end-nodes aligned in a row with odd separation].



Proof (Fig. 8). By symmetry, assume Lt. embeddings > Rt.
embeddings. Rt. “13, 07”, are not in the same sequence as Lt.
“07, 13”; yet they do not collide due to the existing of the
buffer which is not less than “07, 13" in Lt. pattern. Similarly,
Rt. “09, 157, “21, 03” and “01, 19” do not collide with
counter parts in Lt. “15, 09”7, “03, 21”7, “19, 01”. Lt. “11, 17”
contains same nodes, also in the same sequence, in Rt. “09,
15” whose potential separations can not be divided by four.
Similarly, Rt. “05, 23" contains same nodes, also in the same
sequence, in Lt. “03, 21” whose potential separations can not
be divided by four. Lt. 08, 20 keep lagging. Lt. nodes 23, 05
keep lead. Rhythmic X-helix extensions with different start
locations cannot cause collisions.

* GHT(0z3, n26, d=n/2), MIHP, 2 col. (=0

. » D . potential linear extension

10 : (Purple) highlighted linear extension g
W . insertion of linear extension
0l 2

+ affixed underline highlights the
including of linear extensions.

Figure 9. Exemplary case [GHT(odd, n>6, d=n /2), two
end-nodes aligned in a row with odd separation].

Proof (Fig. 9). Separation is designed between end nodes;
underlined 13, 14 affix same embedding possibilities in both
Rt. and Lt. patterns without conflicts. The embedding in both
Lt. “11, 12” and Rt. “05, 06” are in the same sequential order;
the former keep lead. The embedding in both Lt. “11, 12”
and Rt. “12, 11” are not in the same sequential order;
however, with the aid of Rt. “05, 06” the latter keep lead.
The embedding in both Lt. “18, 17” and Rt. “12, 11" are in
the same sequential order; the latter keep lead. Lt. nodes 04,
01, 16, 09, 06, 03, 11, 12 can keep lagging. Lt. nodes 10, 13,
14,15, 18, 17, 02, 05 can keep lead.

Proof (Fig. 10). Lt. nodes “05, 31” have same composition
as that in Rt; besides, they and nodes 38, 28 can have no
conflict with those in Rt. because their original separation
distance is two yet the increasing module is four; i.e.,
dis-divisibility (mod 4+0). Lt. nodes 15, “16, 06”, 21, 11,
12, 13, 14 keep lag. Lt. nodes 04, “03, 37", 36, 26 can keep
leading. The linear extension affixed with Lt. 36, 32, and 22
being same and having same extension direction to that
affixed with Rt. 35, they have no conflict due to
dis-divisibility (mod 4=0). The linear extension affixed
with Lt. 32 and 22 being coordinated with adjacent nodes
(i.e., 31 and 21) and having same extension direction to that
affixed with Rt. 31, and 21 respectively, they have
dis-divisibility (mod 4+0) to avoid conflicts. The inner
embedded nodes in either Lt. “14, 04” or Rt. “12, 02” will
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07, 04, 01, 16,09, 06,03, 10, 13, 14, 11412, 15, 18217, 02, 05, 08. Lt
the contents are same [ o7 Tray3, 74, 17, 02, 05406, 03, 18, 15, 04, 01, 16,09, 124 11, 08. Rt.

expansion module (blue, lower
. [Rt] embedding insertion.). The

have no conflicts between Lt. (“14, 04” or X-helix extension)
and Rt. (“12, 02” or X-helix extension) due to well
separation (keeping lag or leading). Lt. 27, 17, “18, 08", 07,
33 have no conflict, yet the original leading will be changed
to keeping lag if X-helix is added. Lt. 23, 24, “35, 01” can
keep leading.

Whether X-helix extension exists cannot affect above
relations. Both patters’ X-helix extensions have same
direction and start with enough separation even though the
start position being different.

o GHT(E=4, n=8, d=n/2), MIHP, 2 col. d-1= | =3

X X shaped helix extension

4+ expansion module (red, left insertion: blue,
right insertion; the underlined shows potential
adaptability}

. . I:] . potential linear extension
¥ insertion of linear extension

05 :purple, highlighted linear extension

adaptation (1st) 1 2

Figure 10. Exemplary case [GHT(even, n>8, d=n /2), two
end-node’s vertical separation d> [>1].

* GHT(E24, n28, d=n/2), MIHP, 2 col. I=1 . s D + potential linear extension
4 expansion module (red, left insertion; blue,
right insertion; P as 16, L as 12)

¥ insertion of linear extension

()5 : purple, highlighted linear extension

Figure 11. Exemplary case [GHT(even, n>8, d=n /2), two
end-node’s vertical separation 1=1].

Proof (Fig. 11). The right insertion on Fig. 11 is direction
upward for the even ones and downward for the odd ones;
specifically, the expansion module of “07, 33” is L (orl2)
and “35, 01” is 4 for the first Rt insertion; moreover, Lt
nodes 03, 04, 05, 06, 32, 31, 38, 37, 25, 24, 18, 11, 12, 13, 14,
15, can keep lag, and Lt nodes 07, 33, 36, 26, 34, 35, 01, 08,
16, 17, 27, 28, 21, 22 can keep leading. By alternating



downard-upward Rt. insertion, Lt. “07, 33” can be conflict
free with Rt. “37, 03”; strictly, they are fully separated. That
is consdering conflicts beteeen Lt “35, 01” and Rt. “37, 03",
and conflicts between Lt “07, 33” and Rt “07, 33”; because
inserting nodes’ directions are consistent, conflicts can be
prevented. Similarly, Lt. “08, 18” and Rt. “06, 16” have same
contents yet conflicts can avoided.

4 Discussion

In GHT formation, MIHP can probably not be found in
some cases, whose end nodes are  “adjacent” and vertical
dimension is small (i.e., n is 4 or 8). The honeycomb
(hexagonal) torus HT(2) is isomorphic to GHT(2, 12, 6).
Especially from Fig. 8 (n=12) [Jwhose end-nodes are
adjacent in GHT, that the honeycomb torus, HT(m) and m>2,
has fully MIHP performance can be expected.

5 Conclusion

Contemporary  economy  significantly counts on
globalization  activities. Openness or incorporation
participation in knowledge based economy is getting more
attention. Just-in-time economy can push the strategy of
using computational transportation facilities, which naturally
can benefit tourism and business if security-information
services can be synergistically acknowledged.

Just as mankind use two eyes for seeing, two ears for
hearing, two nostrils for smell, to well sense and
communicate the changing environments and related
information, plural surveillance-information networking is
suggested, especially in the era that wireless
telecommunications are naturally prevailed.

The honeycomb (hexagonal) torus HT(m) is isomorphic to
GHT(m, 6m, 3m), m>2. It can be expected that honeycomb
tori, HT(m) have fully MIHP performance.
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T EEE

A A AR Y ¢ ¥ Kurihara % 4 973 ) en
PAESB R A HH L BB AT HhEA
(12 CPU 3+ ¥ % 1) &2 (11 GPU 3§
RA)HET LR E AR MEN C FHY
i Sl T e A

AT EFERPEREAT DR 2 & 48
Kurihara # A #1233 enf 84 0 % 3 &4k
A DRB/RBERIFEE Y 4 8%



£ GPU !} ® (70T (7 fB/jRI5 % 825 5 5
SMIANAPFIENF RS E > T AT

LSRR FES N TR

2. Kurihara % 2 3 4

Kurihara % 4 “74% 31 e % 2 3 4] 8 %
sO{0, 13905 2 & g1 s, s £ n,-1d
e (bit) hFE B on, L Tl n,2nd>
0°50=0" s)da=a> s A 4+ (k=Dn,—1 & {0,
B g, o Ty

s Tyas Tos v s Tyt To s oee s

SRR S AR S L R St

sn],—l ’

=
Wajpy ~ {/Elo rhm,} u Sj-i D

B 0<i<n-1>0<j<n,"2:iw;; *1%%d
e 2 feME w,) HHEFRLEFLHE
| W, np2) 2
O0<i<n-1)-

BRPEF kS EEEERG Dow,
Wy, » P RE
Boo#des - B kn-l) BAEDHZ ~w

Wi = Wi, o) ||

.
D2
b

~~

3
—_

A

K2
Eﬁ\
~E

]

(binary vector) w :

w= (W(ro, 0> Wty 1)> «--

W(,l, 1)s =oes

’W(l‘o, np=2)s =-*> W(Zl, 0)»

Wi, mp=2)s ++ s Wit_1,0) 5
T
Wity 15 =00 Wetgeyo ) 3
M s %ﬁﬁ ;8 MAT > - B k(n,—1)%k(n,~1)
SAdEt M (0% a0 MAT @i &
E) 0 BfstE MOy, %Ebﬁ[ﬁ'@‘hr%z so M@

R ST X E N S Y

3. BRIFER

R

o E R BT R ARRG - AFH

N
(binary data) » F AL d® > ¥ & *  unsigned
char ~ unsigned short int ~ unsigned int ~ unsigned
long long int ¥ w f& F 41 3] % (data type)
B EE 821623264 Ao

Kurihara [2] #7# 2 &% & ;% > s4cit4c™ > El 5 4¢

T d 7 &

A S
’%/ﬁ-ra-r = °
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Encoding
Input: sCI{0, 1}" where m = d(n,~1)

Output: (W, Wi, ... , W,_1)
El
1. s5=0% s=s I's2]l - (1S5,

for (each i, 0 <i<k-2)
{ for (eachj, 0<j<n, —1)
{ "= random({0, 1}%)

}
} // discard r’

ny=1
3. for(eachi,0<i<n-1)
{ for(eachj,0<j<n,2)
U Wy = (0823 M) O
}
wi= w0 | wa o Il - | W n-2
}

4.  return (Wo, Wi, ..., Wy1)

fRAREPE Bl D1 e &2 > M pl & d
;" MAT 2 # -

Decoding
Input: (wy, wy, ...,
Output: s

Wy, 1)

D1
1. for (eachi, 0 <i<k-1)

w0l wa ol -
2. W= (W(,O, 0)» W(,O, 1)s -

W(;l, 1) ooes

” W(fi- np=2) = Wi
7W(1‘0, np=2)s s W(tl, 0)>
Wty np=2)s =+ W(t_1,0) 5

Wiy, 1) =+ 00 Wiy, "1)—2))

3. M = MAT(lo, ll, ey tk—l)
4. (Sl, 852, coey Snp l)T:M *WwW
5. s=sillsal sy

6. returns

EDLY R AHZE M waELif
d 3t a BAEng (0,1} AL T 5 0

RS SRR

o

EF LA F 0 R FRG 1 s

S D2 Y B R

N

D2
1-3. Same as D1
4o Sty 82 ey Sp) =M e W
for (each r, 0 <r<n,-2)
{ for(eachc, 0<c<k(n,~1)
{  iftMIrlle]=1)
s,=s5,0w,

}

5. s=si|sa--- s
6. returns

np=1

M1
k(n,—1)x(kn,~-2) &=

038 MAT awg ki » &> - B
At G L2 H maprE



Ik(np—l) £ H = [G Ik(np—l)] ’
;R A (G

(forward Gaussian elimination) > ¥

3 oar 2
FIpE 5L

Ik(np—l)] '/‘;'3‘ > "

(row echelon form) [G J]' @ [G J] ¥ 4 &
2B RA G e @)

=~ - G, G J

G =G &N @

FReTaBERR G & J 0 27 & [Go
Jo' #FH [Gy Jol &7 BGO &3 chJdL »
4 ,T&L{ré» ¢ B~ (backward substitution) > #-%
FRLEELL, e RS ATE MBS

MAT
Input: ty, 1, t,, ..
Output: M

- T

M1
1. for(eachi,0<i<k-1)
{ for(eachj,0<j<n,-2)
{ vu.)=VECG,))

}
} T
2. G= (V(fov 0) -+ 5 Yty "y - 2))
3. {Gz gl ﬂ < FG([G X)) =G T
4, [Inp— M] = BG([GO JoD
5. returnM

4. T fFEFEZ

Y -

2 4l* GPU ¢
4 AP ST (data) A 2
B E AR R4k GPU G 7 A

(thread) g2 o — B N == % (bytes) * F ko *
=1

WP PEEE T A S R

5 % (cores) T {7 4%

L] & R gk e B

‘- (word size) iz lais A F 4L (binary
data) D> 1 %
maxT> q=N/l> & - &7 tan,~l Bizrle> A=
[gl(n,=1)1> d = A+

4 A B P B (segments) A 27 = [ MmaxT|

fe €~ 3 maxT > #rrd st
ey F- BEHEE G
maxT B % 5B > 4o% A &2 maxT fEE",’T‘ B
- B ERHARME 7 (A mod maxT) B % E -
maxT & 5 & e GPU ° ey fp pFig &
#e- BE

BEFGERL o

i % B (regions) ey, e, ...

7 (run) » #74 eh1 (¥ § al MmaxT]
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R e
Bpdeo - REFECAPFER ((k-Dny-DmaxT
Byl REAELFTE NK-Dn,-1) B oo
EREWP AL PrlhiEd > 7 GPU L 738 Y

& (k-l)n,-1

fampr > &Y 1E;.J'K,ﬁ, B owaEE > B

RIZE A Bo>r#Ha s 7% GPULT A4 o

Parallel Encoding
Input: k, n, secret D, n,

Output: n shares: Y={Y1, 1>, ..., ¥,,}

PE(k, n, D, n,, N, I, maxT)
1. q = Nl(n,-1)
2. A=lqll]
3. n=[NmaxT]
4. Allocate memory of Y; for 1 £j < n in CPU
and GPU
5.  for (eachregione;, 1 <i<n)
{ __paralleldo< <maxT >>__
{3i> Yis - » Jui} = Encode(k, n, e;, n,,)
copy {y1i» Yais - » Yni} back to CPU
__parallelend< <maxT >>__
}
6.  for (each participant i, 1 <i<n)
Yi= O iz 0.0 Jin

7. return Y= {Y1, Y», ..., ¥,,}
__paralleldo< <maxT >> w
__parallelend< <maxT >>__z_ B eh% % > & GPU

S sa s 2
¥ogii o F

P maxT B3GR pFRE
¥ 1 GPU }F e o B A Bk # 0 @ maxT
FAPMAE OREFREE > ANPRET S
+ o maxT iE % 65535%x1024 - ;5 & ;2 PE ¥ i
Encode » ¥ 5 El - @ PDj# %

s 1% 11 Decode > P
T Dl & D22 B » F I daf s emh iz o

S P RATE S M B A

Flb o @ MAT B 3 - % 7 o

Parallel Decoding

Input: T= (Y, Yis oos ¥, } P= {if, i oos i)
Output: secret D (if + = k), or random file
(otherwise)

PD(t, n,, 1, P, N, I, maxT)
1. q = Nl(n,-1)

2. A=lqll]
3. n=[ANmaxT]
4. MAT(@, P)



5. Allocate memory of D in CPU and GPU
6. for (each regione;, 1 i< 1)

{ __paralleldo< <maxT >>__

{d\, &, ..., 4;} = Decode(maxT, t, n,, T,
M, ¢e)
copy {di, &, ... , &; } back to CPU
__parallelend < <maxT >>__

}

7. return D= 404 0 ... 04 //D=D,if =k

5. FEa%

A uh CPU frd 48 GPU T [l
PR AT AR E o CPU EA T L AR
* Windows 7 ¥ % % %t ~17-4790 (3.6 GHz) /e
BEE 8§ GB hi B A F %% (personal
computer) > ** Borland C++ Builder  # 8 %
FeGPU L 7T 0 1 RIEAaApleani 4 Tt o
i€ * GTX 760 &g+ > H 35 1152 B w2 2GB
hA  GPU L 5 2 R * Titan X B+ > #
£ 3 3072 B w22 12GB = fpil; T 7 CUDA
#2.3% % 12 Visual Studio 2015 #38 -

TR S Ey o ® 15.9MB SRR T
Ao Bz 54 4 SEl (SD2) %7 & CPU X
o FHF EL (D2) @ B2 e (f2) Hand g
PR A1 EARTAR (kn) v d=8~16~
32 fr 64 iR T SE1 qr SD2 fpFRF it i o o

A 174, % 64 AP (d=64) T i
Bt BARRPERE LR — (jR) R
I

8 = (d=8) 1 2-5(7-8) & -

£ PElygy (PD2yg) % 7 GTX 760 k7
+#7 EI(D2) BB R4 2 T3 PEly
$ PD2y 23k (kon) frd=8~16+324r 64
BT PR e 1L (6,31) e h b
d=64 v d=8 £ ¥ 48 & jRH s B &
d=8 " d=64 1 T84 o

£ PEly (PD2y) # 7 Titan X &= +#
# E1 (D2) eni@ B PFR 5 4 3 7|5 PEly
$ PD2x 2k (kn) frd=8-16324r64 I
TR od A3V Ao e BpEFESR Y d=16
gt T oA R Py ARG TitanX A d=
16 P engopl @ik~ A 4 foiic... % ermka B v
d 5 FP e gREFL d=64 foo I
Emadi o B d=64 B o

2 4FKE 1237 FNBYLREE
i Ot B BB T 52 GTX 760 T 5
AP ER d=64 fcdp > @ Titan X B2
BT d=16 b R G b RGeS
AR L T AR ER o F A
3% P PR d =64 il o

21 d3 PR BAFEEBE R

(k. n) Encoding SE1 Decoding SD2
’ 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

2,5) 1.22 0.77 0.52 0.39 0.47 0.22 0.11 0.06
(2,11) 2.23 1.26 0.73 0.55 0.89 0.44 0.22 0.12
(2,23) 431 2.26 1.25 0.81 1.98 0.91 0.47 0.25
(2,30 5.65 293 1.61 1.05 2.57 1.28 0.66 0.34
(2,43) 7.82 4.04 2.17 1.15 3.65 1.84 0.94 0.50
“4,5) 2.51 1.68 1.22 1.03 0.87 0.44 0.22 0.11
4,11 4.32 2.51 1.53 1.17 1.73 0.86 0.44 0.23
4,23) 8.05 4.35 2.45 1.72 3.49 1.78 0.87 0.47
(4,31) 10.47 5.59 3.09 2.09 4.96 245 1.25 0.67
(4,43) 14.40 7.53 4.09 2.67 7.13 3.57 1.78 0.94
(6, 11) 6.32 3.65 2.34 1.84 2.48 1.23 0.61 0.34
(6,23) 11.69 6.35 3.62 2.64 6.30 3.28 1.61 0.84
(6, 31) 15.18 8.11 4.52 3.14 11.51 5.85 2.92 1.47
(6,43) 20.86 10.91 5.94 4.09 18.44 9.52 4.81 243
8, 11) 8.44 4.90 3.15 2.51 343 1.70 0.86 0.47
(8,23) 15.26 8.32 4.79 3.48 11.70 6.15 3.11 1.56
(8,31 19.83 10.61 5.98 4.17 18.49 9.44 4.67 243
(8,43) 27.10 14.32 7.85 5.27 30.31 15.30 7.89 3.93
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# 2~ % GTX760 &7 + T (7 pF i ot e

(k. n) Encoding PE1¢ Decoding PD2¢
’ 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

2,5) 1.22 0.77 0.52 0.39 0.47 0.22 0.11 0.06
2, 11) 2.23 1.26 0.73 0.55 0.89 0.44 0.22 0.12
(2, 23) 4.31 2.26 1.25 0.81 1.98 091 0.47 0.25
2,31) 5.65 2.93 1.61 1.05 2.57 1.28 0.66 0.34
(2,43) 7.82 4.04 2.17 1.15 3.65 1.84 0.94 0.50
4,5) 2.51 1.68 1.22 1.03 0.87 0.44 0.22 0.11
“4,11) 4.32 2.51 1.53 1.17 1.73 0.86 0.44 0.23
4, 23) 8.05 4.35 2.45 1.72 3.49 1.78 0.87 0.47
4, 31) 10.47 5.59 3.09 2.09 4.96 2.45 1.25 0.67
4, 43) 14.40 7.53 4.09 2.67 7.13 3.57 1.78 0.94
6, 11) 6.32 3.65 2.34 1.84 2.48 1.23 0.61 0.34
(6, 23) 11.69 6.35 3.62 2.64 6.30 3.28 1.61 0.84
(6, 31) 15.18 8.11 4.52 3.14 11.51 5.85 2.92 1.47
(6, 43) 20.86 1091 5.94 4.09 18.44 9.52 4.81 2.43
(8, 11) 8.44 4.90 3.15 2.51 3.43 1.70 0.86 0.47
(8, 23) 15.26 8.32 4.79 3.48 11.70 6.15 3.11 1.56
(8,31) 19.83 10.61 5.98 4.17 18.49 9.44 4.67 2.43
(8, 43) 27.10 14.32 7.85 5.27 30.31 15.30 7.89 3.93

d 448w F kAT 3§ L CPUR
ZGPU» #e B MEEF n e La
Fladsschn HER DL § FRL F hief3t
EohizsF %Y ¥ i (kn) PElyy &
PElyx A ®]w SEl £ 7 4 26 % 2-15
& o1 (k,n)=(8,11) % ] > SEl +* PElsM
6.14 -1t PElx RIE M7 14.89 5t b PElx
W PElygy -1 9 2.4 13 o 23R R A 5 A
[RECE = C SN T I A kSN
B fH 0 g 0 AR BB
EEEF kHEmH 4o AfERenRH? > 7

Fo(k, n) HiRT 5 PD2y * Xt SD2 #- 29
@ PD2x B Ht SD2 £ % 442 & o
12 (k,n)=(6,43) %3 >SD2  PD2g M 7.33
ot PD2x BIEM T 37.03 ® @ PD2x
PD2 B-7 % 5.1 & o

.

6. \\g“pL‘ ‘%

-

A eE g e FE L G A L %
BT FEPEaRL LAl aEg

RS L7 SR VS L

% 3~ @ % Titan X B o1 + T (7 pF L i

(k. n) Encoding PE1yx Decoding PD2y
’ 8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

(2,5) 0.13 0.06 0.10 0.11 0.02 0.02 0.01 0.01
(2,11) 0.19 0.09 0.15 0.16 0.10 0.06 0.04 0.02
(2,23) 0.39 0.19 0.28 0.21 0.34 0.20 0.10 0.06
(2,30 0.56 0.25 0.39 0.40 0.29 0.18 0.08 0.06
(2,43) 0.87 0.38 0.57 0.59 0.27 0.14 0.08 0.04
“4,5) 0.14 0.07 0.10 0.11 0.04 0.03 0.03 0.02
4,11 0.20 0.09 0.15 0.17 0.17 0.11 0.06 0.04
4,23) 0.38 0.19 0.28 0.30 0.34 0.17 0.11 0.06
4,31 0.56 0.25 0.39 0.41 0.37 0.18 0.12 0.07
(4,43) 0.87 0.39 0.58 0.59 0.28 0.18 0.10 0.06
(6, 11) 0.24 0.11 0.15 0.17 0.25 0.14 0.08 0.05
(6,23) 0.39 0.19 0.28 0.30 0.39 0.23 0.13 0.08
(6,31) 0.59 0.26 0.39 0.41 0.37 0.23 0.14 0.08
(6,43) 0.89 0.38 0.58 0.59 0.30 0.18 0.12 0.07
8, 11) 0.24 0.11 0.15 0.17 0.35 0.20 0.12 0.07
(8,23) 0.48 0.20 0.29 0.30 0.38 0.23 0.15 0.09
(8,30 0.64 0.23 0.39 0.41 0.39 0.22 0.16 0.09
(8,43) 0.93 0.39 0.58 0.59 0.60 0.34 0.22 0.09
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AN ERBT ERE R LR

(k. n) Encoding (64 bits) Decoding (64 bits)
’ S(E1) PEl; PElx S(E4)/PE4;5, S(E4)/PE4y S(D2) PD2,, PD2x S(D2)/PD2.,, S(D2)/PD2y

2,5 0.39 0.21 0.11 1.90 3.42 0.06 0.04 0.01 1.75 4.20
(2,11) 0.55 0.26 0.16 2.08 3.31 0.12 0.04 0.02 3.26 5.06
2,23) 0.81 0.50 0.21 1.62 3.94 0.25 0.05 0.06 5.56 4.47
2,31) 1.05 0.65 0.40 1.60 2.58 0.34  0.06 0.06 5.36 6.10
2,43) 1.15 0.96 0.59 1.19 1.95 0.50 0.09 0.04 5.31 12.09
4,5 1.03 0.21 0.11 4.90 9.17 0.11  0.07 0.02 1.68 4.68
4,11 1.17 0.28 0.17 4.25 6.98 0.23  0.07 0.04 3.39 5.71
4,23) 1.72 0.51 0.30 3.38 5.76 047 0.11 0.06 4.11 7.38
4,31) 2.09 0.66 0.41 3.18 5.13 0.67 0.16 0.07 4.16 9.88
4,43) 2.67 0.97 0.59 2.75 4.51 094 022 0.06 4.22 14.47
6,11) 1.84 0.30 0.17 6.14 10.99 0.34  0.10 0.05 344 6.38
6,23) 2.64 0.53 0.30 4.98 8.83 0.84 0.17 0.08 4.87 11.02
6,31) 3.14 0.74 0.41 4.23 7.67 147 025 0.08 5.94 18.23
(6,43) 4.09 1.05 0.59 391 6.90 243 0.33  0.07 7.33 37.03
8,11) 2.51 0.41 0.17 6.14 14.89 047 0.13 0.07 3.52 6.36
(8,23) 348 0.62 0.30 5.66 11.59 1.56 0.22 0.09 7.09 17.90
8,31) 4.17 0.78 0.41 5.31 10.13 243 032 0.09 7.70 28.50
(8,43) 5.27 1.06 0.59 4.99 8.88 393 044 0.09 8.89 41.52

BT EA T AP EAET Lo 0T
CPU fo (7T 5 & Titan X B+ > B3R
B FhE s bE A rETREE (PC
clusters) ~ 3 I **4g 5§ "% (supercomputers) #p
g RS Sl GTXT60 4 el
(¥ Titan X 4p1t ) 387 & & g0 i7 CPU ek
feeid® Titan X & GTX 760 % 7 f= &30 F
YET PRI BAF T F31E o

FIH R K D7 0 3 gl & B
FARSEE S ARBEEFL ST % £
CUDA *# #t% ¢ blocknum - threadnum * & i@
Hoo BLBF % R M %o R
B

\“?{r

i
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Abstract

The edit distance problem has been studied for
several decades. Given sequences (strings) A and
B with length m and n, respectively, m < n, the
edit distance problem is to find the minimum cost
of operations required to transform A into B. Ac-
cording to different models of cost functions, oper-
ations and input sequences, the problem has sev-
eral variants. The edit distance on run-length en-
coding strings and cyclic strings are the variants
on the input aspect. The edit distance considering
consecutive insertions and deletions is a vartant
on the cost function. The block edit problem is
a variant on the operation aspect. Besides, the
genome rearrangement problem can also be viewed
as a variant, whose operations include inversions,
reversals and transpositions. In this paper, we sur-
vey some algorithms for the edit distance problem,
its variants and the genome rearrangement prob-
lem.

1 Introduction

The sequence similarity has been studied for
several decades and many algorithms have been
developed for various applications. For exam-
ple, in biological area, proteins or genomes can
be represented by a sequence, and the similarities
of sequences can be viewed as the relations be-
tween proteins or genomes. In 1970, Needleman
and Wunsh [49] first proposed the concept of se-
quence similarity computation of two amino acid
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MOST 104-2221-E-110-018-MY3.

fCorresponding author (Chang-Biau Yang).
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sequences, and they presented a primitive algo-
rithm with O(m?n) time for solving the problem.

Following the same concept, in 1974, Seller
[62, 53] presented an improved algorithm with
O(mn) time. In the same year, Wangner and
Fisher [62] defined a simple version of the edit dis-
tance problem, including three operations: charac-
ter insertion, deletion and replacement. They used
the dynamic programming (DP) approach to solve
the problem with O(mn) time, where m and n de-
note the lengths of two input strings (sequences).
Based on the DP approach, many algorithms and
variants of this problem have been proposed later.
Lowrance and Wagner [42] added a new operation,
character exchange, to this problem. Their algo-
rithm is still of O(mn) time. Masek and Peterson
[45] proposed an O(n?/log n)-time algorithm with
the four Russians’ technique.

With mapping to the shortest edit script (SES)
problem on the edit graph, equivalent to the
longest common subsequence (LCS) problem, the
diagonal method with O(nd) time was proposed by
Myers [48] and O(np) time algorithm by Wu et al.
[68], where d denotes the edit distance of the two
input sequences and the value of p is about a half
of d. On the other hand, the variants of the edit
distance problem have been studied, such as edit
distance for cyclic strings [43, 44], edit distance for
run length encoded (RLE) strings [4, 6, 12, 35, 39]
and block edit distance [3, 21, 41, 47, 54, 55, 60].

The edit distance originally defined by Wangner
and Fisher [62] only considers the cost on single
character operations. For example, the cost of two
consecutive deletions is twice of a single deletion.
The edit distances with considering consecutive in-

sertions/deletions have also been studied by sev-
eral researchers [20, 24, 46, 57, 64, 65].

Furthermore, in the genome rearrangement
problem, the operations are performed on a seg-



ment of sequence (substrings), including reversal
(reversing the substring), inverse (reversing the
substring, and then substituting each character
by its complement in DNA), transposition (ex-
changing two consecutive substrings). Since the
problem with overlapping operations is NP-hard,
some approximation algorithms were proposed
[7, 17, 33, 63]. Then, with the non-overlapping
restriction on operations, some polynomial-time
algorithms have also been designed [30, 51, 59].

In this paper, we survey several papers dis-
cussing the edit distance problem and the genome
rearrangement problem. We use some simple ex-
amples to explain the key points or main ideas in
these algorithms. Besides, we discuss the evolu-
tion of these algorithms, and analyze the difference
of these algorithms.

The rest of this paper is organized as follows. In
Section 2, we introduce the background knowledge
and list the time complexities of the algorithms
for a summary of the surveyed papers. In Section
3, we survey some algorithms of the edit distance
problem and its variants. In Section 4, we survey
some genome rearrangement algorithms with op-
erations performed on a substring. In Section 5,
we give the conclusion of this paper.

2 Preliminaries

2.1 Longest Common Subsequence

Given two sequences (strings) A =
ajasaz - -+ ay, and B = bibobs---b,, the longest
common  subsequence (LCS) problem (of two
sequences) is that of finding the longest common
part of A and B by deleting zero or more charac-
ters from A and B. For example, suppose that we
are given A = acaagc and B =atcagtc. The the
answer of the LCS is acagc, whose length is 5.

The LCS problem was first presented by
Needleman and Wunsch in 1970 [49]. Their pur-
pose is to solve the alignment of biological se-
quences, composed of DNA, RNA or amino acids
of proteins. They proposed a brute-force method
to solve the alignment problem with O(mn(m+n))
time.

The well-known dynamic programming (DP)
formula for solving the LCS problem was proposed
by Hirschberg in 1975. He rewrote the DP method
for the edit distance problem, proposed by Wagner
and Fischer [62], in Equation 1 [29], where M]3, j]
denotes the LCS length of A; ; and By ;. Here,
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Figure 1: The DP lattice for LCS with A = acaagc
and B =atcagtc, where the LCS answer is acagc.

A;. ; denotes the substring of A from position in-
dices i to j.

0 if =0 or 7=0
Mi,j) = max{ M- Li—1+1 iai=bys
M[i—1,j] if a; # by;
M[lzjfl] ‘ 7

1

For example, the DP lattice for LCS with A =

acaagc and B =atcagtc is shown in Figure 1.
Obviously, the time complexity is O(mn).

2.2 Edit Distance

The edit distance problem is to find a se-
ries of edit operations with the minimum cost
to transform sequence (string) A into sequence
B. 1t was first defined by Wagner and Fischer
in 1974 [62]. The edit operations include char-
acter insertion, character deletion and character
replacement, with cost INS(b;), DEL(a;) and
REP(a;,b;), respectively. Let My r[i, ] denote
the minimum cost to transform A; ; into Bj_;.
The DP formula proposed by Wagner and Fischer
[62] is presented in Equation 2.

if a; = bj :
Mayysli — 1,5 —1]

if a; 75 b]' :
wa[i—].,j—].]-i-REP(ai,bj)
Mayli — 1,5] + DEL(a:)
Muyli,j — 1] + INS(b;)

wa[lvj] = min

(2)

The time complexity of the above edit distance
algorithm is O(mn). An example of the process for
calculating the edit distance is shown in the DP
lattice of Figure 2, with the cost for each charac-
ter insertion, deletion and replacement being 1, 1
and 2, respectively. The LCS length can be got
by Equation 3 with this cost assignment, where L
denotes the LCS length and d denotes the edit dis-
tance. In the example, the LCS length 5 = %ﬂ

m+n—d
5 .

L= 3)
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Figure 2: The DP lattice for calculating the edit
distance of A = acaagc and B =atcagtc with
cost functions DEL(a;) = 1, INS(b;) = 1 and
REP(ai,bj) =2
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Figure 3: The DP lattice for calculating the edit
distance of A = acaagc and B =atcagtc with
cost functions DEL(a;) = 1, INS(b;) = 1 and
REP(ai,bj) =1.

One may define variously allowed edit opera-
tions and various cost of each operation. For ex-
ample, suppose the cost for each character inser-
tion, deletion and replacement is defined to be 1,
1 and 1, respectively. Then, the DP lattice for cal-
culating the edit distance with the same example
is shown in Figure 3.

In 1974, Sellers [52, 53] also proposed an al-
gorithm for solving the edit distance problem in
O(mn) time. His algorithm is based on the con-
cept given by Needleman and Wunsch [49]. Fur-
thermore, Sellers gave a formal definition of evo-
lutionary distance, in which the cost of each oper-
ation on different characters may be different.

Later on, the edit distance problem with char-
acter operations was extended to allow the block
operation [3, 21, 41, 47, 54, 55, 60], including block
move, block copy, block deletion and block rever-
sal.

2.3 Alignment

Given two sequences (strings) A and B, the
alignment is a way for presenting how to trans-
form A into B. For example, given A = acaagc
and B = atcagtc, one of the possible alignments
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is shown as follows.

a — c a a g — ¢
B: a t ca — g t c

As one can see, the above alignment corre-
sponds to Figures 1 and 2. FEevery two corre-
sponding positions of A and B form an aligned
pair, such as (a1,b1) = (a, a), (—,b2) = (-, t)
and (aq,—) = (a, -). Here, each minus sign —
represents a gap in an alignment. In an aligned
pair (—,b;), the gap in A represents that char-
acter b; is inserted into A at the position. Sim-
ilarly, the gap in (a;, —) represents the deletion
of character a;. The edit distance of each align-
ment can be easily calculated. Note that different
alignments may have the same edit distance. In
some biology applications, the gaps is hoped to
appear consecutively, which means the minimiza-
tion of biological mutations. Some variations with
linear, concave, convex or general cost functions
for finding the best alignment were also studied
[20, 24, 46, 64, 65].

2.4 Run-length Encoding

Run-length encoding (RLE) is a simple method
to compress data in a lossless way. For a string,
RLE compresses the data according to the sym-
bol and the counts of consecutive appearances.
For example, A =aaabbbcc can be represented as
A = a®b3c?. In an RLE string, each substring
formed by an identical symbol is defined as a run,
such as a3, b3 and ¢? in A. The edit distance prob-
lem on RLE strings is a variant of the edit distance
problem. Several algorithms for solving this prob-
lem usually apply DP based on runs, instead of
individual symbols [3, 4, 6, 12, 35, 39].

2.5 Summary of the Surveyed Results

We list the time complexities of the algorithms
for solving the edit distance problem and its vari-
ants in Table 1. The keyword field in the table
contains the key points or techniques for describ-
ing the algorithms or problems abstractly. Most
algorithms are based on the DP lattice and their
time complexities O(mn) depend deeply on the
size of the DP lattice.

As shown in Table 1, when the character inser-
tions or deletions are consecutive, the algorithms
are still efficient. Some variants can be seen in the
table, including cyclic strings, RLE strings, and
block edit operations.



Table 1: The algorithms for the edit distance problem. Notations: R;: cost of each insertion or deletion is
1, each replacement is 4; |S|: number of candidates considered in each DP cell; s: number of alternations
in the mixed cost function of concave or convex; a( ): inverse Ackermann function; mg, ny: numbers of
runs in strings A and B, respectively; p;: number of elements on the bottom boundary of a matched

block.
’ Year \ Author(s) \ Time complexity \ Keywords ‘
Traditional edit distance (INS,DEL,REP)
1974 Wagner and Fischer [62] O(mn) DP
1974 Sellers [52, 53] O(mn) DP
1975 | Lowrance and Wagner [42] O(mn) DP, interchange
1980 Masek and Peterson [45] O(n?/logn) DP, Four Russians
1986 Myers [48] O(nd) shortest edit script, Ra
1990 Wu [68] O(np) shortest edit script, R
2002 Jiang et al. [31] O(mn?) DP, arc, RNA structure
Consecutive Insertions/Deletions
1976 | Waterman and Smith [65] O(mn?) DP
1981 | Smith and Waterman [57] O(mn?) DP, local alignment
1982 Gotoh [24] O(mn) DP, linear cost function
1984 Waterman [64] O(mn|S]),|S| <n DP, concave cost function
1988 Miller and Myers [46] O(mnlogn) DP, concave (?OSt function,
curve line, binary search
. DP, concave, convex and
1990 Eppstein [20] O(n* - aln/s)) mixed functions, monotone
Edit distance for cyclic strings
1990 Maes [43] O(mnlogm) DP, divide and conquer
2000 | Marzal and Barrachina [44] O(mnlogm) branch and bound, R;
Edit distance for RLE strings
1993 | Bunke and Csirik [12, 13] O(npm + mgn) subdivision, DP, Rs
2002 Arbell et al. [6] O(nym + mgn) subdivision, DP, R,
2007 Liu et al. [39] O(min(nym, mgn)) subdivision, DP, Ry
2008 Ann ef al. [4] O(many + p1) ranee rgj/ Log e
Block edit distance
O(mn), O(mnlogn), block edit, cost measure,
2010 Ann et al. [3] ( )O(n§n2) 5 non-overlapping, DP, suffix tree

Table 2 shows the algorithms for genome rear-
rangement. Since the general genome rearrange-
ment problems with overlapping operations are
NP-hard, some restrictions are made, such as non-
overlapping operations.

3 Edit Distance

3.1 Algorithm by Lowrance and Wag-
ner

In 1975, Lowrance and Wagner [42] proposed
an extension to the edit distance problem with
one more operation, interchange, which exchanges
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two adjacent elements in the same sequence. Un-
der some specific cost assignments, the problem
can still be solved in O(mn) time. In the same
year, Wagner [61] further analyzed the complex-
ities of other cost assignments. His conclusion is
that some are NP-Complete, while some are solv-
able with polynomial-time algorithms. Further-
more, in 1992, Schoniger and Waterman [51] pre-
sented an extension to the edit distance problem
with additional operation, inversion (inverting a
substring), which can be viewed as a generaliza-
tion of the interchange operation.



Table 2: The algorithms for genome rearrangement.

Year Author(s) Time complexity Keywords
1992 | Schoniger and Waterman [51] O(n%) inversion, non-overlapping
. 2-approximation reversal, permutation, overlapping,
1993 Keceioglu and Sankoff [33] O(n2) break-point graph, NP-hard
7 . . . .
j-approximation reversal, permutation, overlapping,
1996 Bafna et al. [33] O(n?) break-point graph, NP-hard
) T T e - T
Z-approximation transposition, permutation, overlapping,
2000 Walter et al. [63] O(n?) break-point graph, NP-hard
2016 Ta et al. [59] O(n?) _ inversion, transpgsmon,
non-overlapping, mutation fragment
017 o ot al. (30 ot imversion, iransposiiion
pping, repetition, run

3.2 Time Bounds by Wong and Chan-
dra

In 1976, Wong and Chandra [67] proved the
bounds on the time complexity for the edit dis-
tance problem. Suppose that the cost of each
character insertion, deletion and replacement is
denoted INS, DEL and REP, respectively. The
only decision is equal or unequal between two sym-
bols from A or B. Let v = REP/(INS + DEL).
The lower bound of the number of required com-
parisons is m(n—m)+wvm?—1/v+1. When v = 1,
which is equivalent to the LCS problem, the lower
bound becomes mn. This is the same as the re-
sult of Aho et al. [2]. When INS = DEL = REP
and v = 0.5, the lower bound is mn — m?/2 — 1.
The upper bound for the number of comparisons
ismn—|m(l—v)|] x |m(l—v)+1]. Whenv =1,
which is equivalent to the LCS problem, the upper
bound becomes mn. When INS = DEL = REP
and v = 0.5, the upper bound is mn—(m?2—4m) /4.

As aresult, when INS = DEL = REP, it may
be solved with a more efficient algorithm than that
with INS = DEL =1 and REP = 2 (equivalent
to LCS).

3.3 Four Russians’ Technique by
Masek and Paterson

In 1980, Masek and Paterson [45] proposed an
improved algorithm for solving the edit distance
problem. The algorithm applies the four Russians’
technique to split the lattice matrix into several
k x k submatrices and to store some of the step
values to speed up the computation. The step,
computed according to Theorem 1, means the dif-
ference between two adjacent cells in the same row
or column.
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Theorem 1. [45] Let M,,, be the edit lattice
matriz. The step (the difference between two
adjacent entries) can be computed by
Mmp[ia.ﬂ - Mm [7' - 17.7] =

REP(ai,bj)
- (Mmp[i - ]-a.ﬂ - Mmp[i - 17.7 - 1]),
. DFEL(a;),
Y INS(b,)
+ (Mmp[ivj - 1} - Mmz)[i - 1,j - 1])
= (Mippli — 1, 5] = Mpp[i — 1,5 — 1]),
Mmp[iaﬂ - Mmp[iaj - 1] =
RE (a“bj)
= (Mppli, j — 1] = Mppli — 1,5 — 1]),
min DEL(a;)
+ (Mppli — 1, 5] = Mimp[i — 1,5 — 1])
_(Mmz)[ivj 1} - Mp, [i—l,j—l]),
INS(b)),

where INS, DEL and REP denote the cost of
each character insertion, deletion and replace-
ment, respectively.

For example, consider A = acaagc and B =
atcagtc with & = 4. Figure 4 shows the con-
cept of computation process. Only the cells on
the lower boundary and the right boundary of each
k x k submatrix are calculated. And the values of
one submatrix boundary can be obtained from its
left submatrix and upper submatrix by the table
lookup scheme with the two corresponding sub-
strings as the searching index.

To reduce the amount of precomputed lookup
tables, the step concept (Theorem 1) is applied to
build the step table Sp, as shown in Figure 5. The
left of each cell records My, [i, 5] — Mpmpli — 1, j]
and the right records My,p[i, j] — Mppli,j — 1].
For example, Sp[1, 4] stores the value M,,,[1,4] —
Mp,p[0,4] = —1, and Sp[4,2] stores Mp,[4,2] —
Mpp[4,1] = 0. The edit distance of each cell on




- a t ¢c a g t c ¢
-0 112(3|4]|5|6|7]8
a |l 3 7
c |2 2 6
a |3 1 5
a|4(3[4]|3[2|3|4|5|6
g|b 3 5
c|6 4 4
o |7 5 3
|8 |7|8|7|6|5]6|5]|4

Figure 4: An example of edit matrix M,,, for com-
puting the edit distance, where A = acaagc, B =
atcagtc, k = 4 and ¢ denotes the dummy char-
acter to make m and n be multiples of k. Here,
DEL(a;) =1, INS(b;) =1 and REP(a;,b;) = 2.

the rightmost column and the bottom row can be
reconstruced with the step table.

For a submatrix, given the two substrings of
length k& with steps in the leftmost column and
top row, the algorithm builds the resulting steps
of the rightmost column and the bottom row. All
possible k& x k submatrices can be precomputed
and the resulting steps are stored. As a result,
after O(|X|*k2 log k)-time preprocessing, the algo-
rithm needs only O((m/k) x (n/k) x (logn)) time
to split the m x n edit matrix into mn/k? subma-
trices and needs O(k+logn) time to fetch the pre-
computed steps to compute the edit distance. In
addition to the preprocessing time O(|X|*k2 log k),
the algorithm requires O(mn/logn) time when
k = |logn], and requires O(n) time when k > m.

3.4 The Diagonal Method by Myers

In 1986, Myers [48] proposed a diagonal method
for solving the edit distance problem with time
complexity O(nd), where d denotes the edit dis-
tance between the two input sequences and m < n.
Here, the costs of each insertion, deletion and re-
placement are assumed to be 1, 1, and 2, respec-
tively. It is very efficient if the distance is very
small, that is, the two input sequences are very
similar.

The main concept is to calculate the furthest
contours of distance 0, 1,2, - - - , d, sequentially. On
each diagonal line k, consisting of all cells (7, j) in
the DP lattice with k = j — 4, the furthest cell
achieving distance d’, 0 < d’ < d, is maintained.

An example of the calculated lattice is shown
in Table 3. For round 0, the cells with distance
0 are computed. For round 1, the cells of dis-
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Table 3: The -calculation lattice for My-
ers’ algorithm with A cadaadaccb and
B =cdaddcabccbd. Here, the numbers with un-
derlines are the furthest (lowest right) cells on each
diagonal k with the same distance and the cells
with Italic and bold are really traced in the algo-
rithm.

0123456 789 1011 12
- cdaddocabc c b d
0 -[o]1]2[3T4]5

1 cl1]ol1]2]3]4]5

2 al2]1(2(1[2]3]4]5

3 d[3]2[1]2[1[2[3[4]5

4 a|4|3|2|1|2|3|4|3|4|5

5 al5|4(3(2[3[4[5]4|5

6 d|6[5[4|3]2/3/4|5]6

7 al |6|5]4]38[4]5]4]5/6

8 ¢ 6/5(4|/5]4]5/6]5]|6

9 ¢ 6|5/6|/5(6] (656

10 b 6| |6 6 6|56

tance 0 are extended to compute distance 1. The
furthest contour with distance 1 consists of (3,4)
on diagonal line 1 and (4,3) on diagonal line —1.
For round 2, only (3,4) and (4, 3) are extended to
compute distance 2. Some cells with distance 2
are not calculated, such as (2,0),(3,1) and (4, 2).
For round 3, when diagonal —1 is to be extended,
there are two possible starting cells, (6,5) from
(6,4) on diagonal —2, or (5,4) from (4, 4) on diag-
onal 0. (6,5) is selected as the starting cell, since
(6,5) is further than (5,4).

Since the minimum distance on diagonal k is
|k|, the range of diagonals required to be searched
is {-d,—d+1,---,d — 1,d}. When the calcu-
lation process touches cell (m,n), the algorithm
terminates and the edit distance is obtained.

3.5 The Diagonal Method by Wu et al.

In 1990, Wu et al. [68] proposed another diago-
nal method with time complexity O(np), where p
is the number of deletions in the edit operations.
Their algorithm is nearly twice as fast as Myers’
algorithm [48].

Table 4 shows the p values in the calculation
lattice of Wu et al. with the same inputs of Table
3. Let A denote the diagonal passing through cell
(m,n), where A = n—m and it is assumed m < n.
Wu et al. found the following equality

d=A+2p. (4)



- a t c g t c 10}
N S S S S N T S |
a | 1,- -1,- -1,-
c | 1,- -1,- -1,-
a | 1- -1,- -1,-
a|l-|--1[-1]--1]1-1]-1]-1|-11]11
g | 1- 1,- -1,-
c | 1- 1,- -1,-
o | 1- 1,- -1,-
¢ | 1| -1 -1 |--1]1-1|--1]-1]--1]1-1

Figure 5: The step table Sp, where in each cell, the left is M,,,[i, j] — Myp[i — 1, j] and the right is
Mpli, j] = Moyppli, j — 1]. The symbol '—’ means that it is not calculated.

Table 4: The p values (numbers of deletions) for
the algorithm of Wu et al. with A = cadaadaccb
and B = cdaddcabccbd. Here, the numbers with
underline are the furthest (lowest right) cells on
each diagonal with the same p value and the cells
with Italic and bold are really traced in the algo-
rithm.

0123456738 9 1011 12
- cdaddcabdbc c b d

0 -{0({0|0|1(2

1 ¢|1|0|0|0]|1|2

2 a|l2(1(1|0|0]1|2

3 d 2|1(1|0|0|1]|2

4 a 211|1|1]1]|1]2

5 a 2212|212

6 d 212|222

7 a 222

8 ¢ 2|2

9 ¢ 2|2

10 b 212

For example, in Table 4, p = 2 and A = n —
m = 12 — 10 = 2. In Table 3, d = 6. Therfore,
d=A+2p=6=242x2. In other words, d can
be calculated from p.

When the algorithm is executed, only diagonals
{=p,—p+1,-- A A+1,--- [ A+p} (totally A+
2p+1 diagonals) are searched, instead of {—d, —d+
1,---,d —1,d} (totally 2d + 1 diagonals). Thus,
the required time of Wu et al. is about a half of
of Myers asymptotically.

The main spirit of the algorithm of Wu et al.
is to count only character deletions (p values), not
character insertions. The DP formula for the al-
gorithm of Wu et al. can be rewritten as follows
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when (i,7) is on diagonal k = j —i < A — 1.
Myt — 1,5 — 1]

Mwu[i7j - 1}7
Myt —1,7] + 1.

if a; = bj,
// insertion
// deletion
(5)
When (z,7) is on diagonal k = j —i > A, the
DP formula is rewritten as follows.

Myuli — 1,5 — 1] if a; = b;,
Muyuli,j — 1]+ 1, // insertion,

// but need one more deletion
Myuli — 1,4]. // deletion,

// number of deletion has

// been counted on insertion

(6)

Applying the concept of Myers’ algorithm, the
algorithm incrementally test the p value by find-
ing the furthest reaching cell on diagonal k. For
round p, diagonals —p,—p+1,--- , /A — 1 are first
updated sequentially. Then diagonals A + p, A +
p—1,--- /A are updated sequentially. The algo-
rithm stops when cell (m, n) is reached.

See Table 4. For example, in round p = 2, the
starting cell on diagonal —2 is (5,3). Then, it
can be extended to (6,4) on the same diagonal.
However it cannot be extended any more. Thus,
it is directed to (6,5) on diagonal —1, and then to
(6,6), (7,7) on diagonal 0. Finally, it reaches the
furthest cell (10, 11) on diagonal 1.

Myuli, j] = min {

Myt j] = min

3.6 Comnsecutive Insertions and Dele-
tions by Waterman et al.

In 1976, Waterman et al. [65] presented a more
general form for edit distance. They not only con-
sidered the number of used operations but also the
state of alignment. For example, given A = aacc
and B = ac, the edit distance of the alignment of
A = aacc to B = -ac- is different from that of
A = aacc to B = a--c. The former alignment



- a c - a c
- 0 1 2 - 0 1 1.1
a 1 0 1 a 1 0 1
a 2 1 1 a 1.1 )1 1
c 3 2 1 c 21|11 1
c 4 3 2 c 2212111

—~
—
o -
~—|

a)

Figure 6: An example of the DP lattice M,,, for
the edit distance with two different cost functions,
where A = aacc and B = ac. (a) The lattice
that the cost of each single insertion, deletion or
replacement is 1. (b) The lattice that the cost of
each single insertion, deletion or replacement is 1,
and the cost of each double-insertion or double-
deletion is 1.1.

contains two deletions of length 1, while the latter
involves only a deletion of length 2.

They considered the length of consecutive inser-
tions/deletions as a factor of cost. For example,
see Figures 6. In the first cost function, the cost
of each single insertion, deletion or replacement is
1; in the second cost function, the cost of each sin-
gle insertion, deletion or replacement is 1, and the
cost of each double-insertion (two consecutive in-
sertions) or each double-deletion (two consecutive
deletions) is 1.1.

Different cost functions of insertions/deletions
with different lengths may be more accurate to get
the desired alignment. If we want to get more con-
secutive insertions/deletions, we can decrease the
cost per insertion/deletion as the length increases.
The DP formula for considering consecutive inser-
tions/deletions is given in Equation 7 [65], where
d(k) is the cost of a consecutive insertion/deletion
of length k.

Mwa[i - la] - 1] + REP(aZ7bJ)
Muyali, 7] = min {  Insli, j]
Del[i, 5],
where
Insli, j] = lrSnkuSlj{Mwa[z,j — k] +4(k)},
Del[la]} = 12’%21{]\4@0‘[2 - ka]} + 5(k)}

(7)

The time complexity of the above algorithm
is O(mn?), since each cell should considers O(n)
cases of consecutive insertions and consecutive
deletions, and the size of the DP lattice is O(mn).
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3.7 Relation between Edit Distance
and Similarity by Smith et al.

In 1981, Smith et al. [56-58] formally de-
fined the equation for the similarity and dis-
tance of two given sequences. An align-
ment A can be represented by recording the
aligned pairs.  For example, suppose A
aias...ag and B = biby...bg. An alignment
A = {(a1,b1), (az,bs), (as,bs), (a7, bs)} mean that
As 5, ag and B, 3 are unmatched. The un-
matched substrings are called gaps in an align-
ment. The unmatched substrings of A are called
deletions and the unmatched substrings of B are
called insertions.

Let s(a;,b;) be the score of aligning a; with
bj, REP(a;,b;) be the distance between a; and
bj, 6(k) be the cost for a consecutive inser-
tion/deletion of length k. The total score of an
alignment A is the sum of s(a;,b;), (a;,b;) € A,
minus the sum of the gap penalties. The similar-
ity between two given sequences is the maximum
score among all possible alignments. On the other
hand, the distance measure of an alignment was
proposed by Sellers [52] and generalized by Wa-
terman et al. [65]. The cost of an alignment A
is the sum of REP(a;,b;), (ai,b;) € A, plus the
sum of the gap penalties. The distance between
two given sequences is the minimum cost among
all possible alignments.

Smith et al. analyzed the relation of the dis-
tance measured by Sellers [53] and the similarity
measured by Needleman and Wunsch [49]. Let
d5etters(k) and dneedieman (k) be the gap penalty
with length k by Sellers and Needleman et al., re-
spectively. If we set 0seiiers(k) = INeedieman (k) +
k/2, the two measurements become equivalent.
They also proposed an algorithm for the mazimum
similarity segment, also called local alignment. In-
stead of finding the similarity of the two whole
given sequences (strings), this problem tries to find
the maximum similarity pair of substrings in the
two given sequences. Their algorithm is given in
Equation 8 [57].

Mawi[i,0] = 0

Mw1[0,7] =0

Mswl[i - 13] - 1] + S(G‘i?bj)7
maxi<p<i{ Msuw1 [t — k, j] — 0(k)},
Il’laX1§}g<j{Msw1[iy.j - k} - 6(k)}7

0.
(8)

Mw1[i, j] = max



3.8 Consecutive Insertions and Dele-
tions with the Linear Cost Func-
tion by Gotoh

In 1982, Gotoh [24] presented an algorithm for
calculating the edit distance in O(mn) time with a
linear cost function é(k) = o+ Sk, where o, 5 > 0,
for a consecutive insertion/deletion of length k.
Observing the original DP formula of Waterman
et al. [65] in Equation 7 with §(k), Gotoh pre-
sented a more efficient way to calculate the cost of
consecutive insertions as follows.
= mini<p<j{Muwali,j — k] + 6(k)}
= min{Muwali,j — 1] + (1),
ming<p<;j{Muwali, j — k] + d(k)}}
= min{Muwa[i,j — 1] + 5(1),
ming < /<1 {Muwali,j — 1 = k'] + 5(K')} + B}
= min{Mwa[i,j — 1] + (1), Ins[i,j — 1]
+3}.

Ins[i, j]

9)
In other words, each Insli,j] needs only to
check two possible candidates, M, [¢, 7 — 1] 4+ (1)
and Ins[i,j — 1] + B, instead of the original
mini <p<;{Muwali,j — k] + 6(k)}. The formula for
the deletion case can be derived similarly.
Based upon the above observation, Gotoh gave
a DP formula, shown in Equation 10 [24], for the
linear cost function. As a result, with the linear
cost function for consecutive insertions and con-
secutive deletions, the time complexity can be re-
duced to O(mn).

Mgoli —
Insli, j]
Del[i7j}7

l,j - 1] + REP(CLZ',I)]')
Mgo[i,j] = min

where

Insli, j] = min{Mgyo[i,j — 1] 4+ 6(1), Ins[i, 5 — 1] + B},
Dell[i, j] = min{Mgo[i — 1, 5] + 6(1), Del[i — 1, j] + B}

(10)

3.9 Comnsecutive Insertions and Dele-
tions with the Concave Cost Func-
tion by Waterman

In 1984, Waterman presented an algorithm for
edit distance by considering consecutive inser-
tions and deletions with the concave cost func-

tion [64]. A concave function, such as §(k) =
a+Blog(k),a, 8 > 0, satisfies the general inequal-
ity

§(€a + Eb) S 6(&1) + 6(&7)7 ‘gaugb Z 17

(11)

or equivalently,

((1—-—a)r+ay) > (1—a)b(z)+ad(y), 0<a<l

(12)
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The inequality in Equation 11 shows that
the cost of a consecutive insertion/deletion with
length ¢, + ¢, is less than or equal to that of
two consecutive insertions/deletions with lengths
£, and ¢,. By combining the two inequalities in
Equation 11 with 6(¢, + &, + £.) and §(¢, + £.),
Waterman got the inequality

0l + Ly +0c) — 6(Ly + o) < 6(Ly + Ly) — 6(Ly),
Eauglngc > 1.
(13)

Equation 13 is the key of Waterman’s algorithm.
First, Waterman analyzed the insertion case of the
general formula in Equation 7

Insli,j] = min {Mua[i, k] +0(j —K)}. (14)

Assume Insli,j] = Myali,l] + 6(j — 1) for some
0 <1 < 7 has the minimum value, we have
Mwa[

U+ —1) < Myali, k] +6( — k),

0<k<jy.

(15)

If | < k, Equation 13 can be applied by letting
bo=37—kly=1,0.=k—1, we get

6 —1+1)=6(j—1) <o(j —k+1)=6(j — k),
0<i<k<y.
(16)

Combining Equations 15 with 16, we have

Myali,2 ] +6(j — 1+ 1) < Myali, k] +6(j — k+ 1),
0<i<k<y.
(17)
Thus,
Insli,j 4+ 1] = min{ Myq[i, 5] + 6( )

(18)

ming<p <i{Muali, k'] +8(j +1 — k')}

In other words, M,,,[i, k], k > [, can be ignored
since it is dominated by My4[i,1] when comput-
ing Ins[i,j + 1. When Ins[i,j + 2], Ins[i,j +
3], ,Ins[i,n] are computed, it is still true that
Myali, k] < Myali,l] for & > 1. This concept is
illustrated in Figure 7.

Waterman constructed the candidate set
Sins(i) = {U[Ins[i,1 + 1] = Mya[i,1] + 6(1)} to
record all positions of M,,[i, 1] used in row i. The
deletion case can be derived similarly. The DP
formula is shown in Equation 19 [64] .



Minimum value

—

M,,q[r][1] [M,alr]2] M, [r][1] Mo rIU | Myalr]l Ins[rllj
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Figure 7: An illustration of computing Ins[r,j] with the concave function in Waterman’s algorithm.
Assume that M,q[r,1]+0(j—1) is the value selected for computing Ins[r, j]. When computing Ins[r, j+1]
and Ins[r,j + 2], we have Myq[r,l] < Myq[r, k] for | < k < j. This situation can be extended to the

computation of Ins[i,n].

{ Muwali — 1,5 — 1] + REP(a;, b;)
Muyali,j] = min{  Ins[i, j]
Delli, 5],
where
Insli, j] = min{Mwa[i,j — k] + (5 — k),
k € Srns(d)},
Delli, j] = min{Muwa[i — k, j] + 6(j — k),
ke Spea(h)}-
(19)
The time complexity depends on the sizes of
Stns(?) and Spei(j). Waterman conjectured that
this size does not grow faster than logn. In sum-
mary, Waterman’s algorithm reduces the number
of candidates for consecutive insertions/deletions
in each cell of the DP lattice for concave cost func-
tions. The time complexity is O(|S(¢)|mn), where
|S(i)] is the maximum size of all candidate sets
Sins(i) and Spei(j), and it was conjectured that
|S(7)] = O(logn) [64].

3.10 Consecutive Insertions and Dele-
tions with the Concave Cost
Function by Miller and Myers

Based on the candidate set of Waterman [64],
in 1988, Miller and Myers [46] presented two

edit distance algorithms for consecutive inser-
tions/deletions with the concave cost function.
The size of candidate set Sp,s(7) and Spei(j) in
Waterman’s algorithm [64] may become larger and
larger, when calculating Ins[i,j] and Delli, j| in
the same row or column. In other words, once
a candidate cell (i,7) is put into the candidate
set Stns(7) or Spei(j), the candidate will never
be eliminated.

The candidate set Sr,s(i) can be arranged
into a decreasing list Sr,s(4,2), where i is the
row index, x is the index of the candidate list.
For example, suppose Sr,s(7) = (2,4,5). Then,
Sins(7,1) = 2, S1ns(7,2) = 4 and S1ns(7,3) = 5.
Note that Sr,s(i,1) is always the minimum candi-
date of S,,5(%) according to the property presented
by Waterman [64], as shown in Figure 7.

Here, we present the case of consecutive in-
sertions to illustrate their algorithm, because the
deletion case is similar to the insertion case.
Their algorithm eliminates the dominated candi-
dates in the candidate list by the idea of p-curve.
The p-curve consists of all values calculated from
M m i, p] in row 4, as shown in Figure 8.

The example in Figure 8 shows that all possi-
ble candidates for calculating Ins[i, 3] are the in-
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Ins[i][3] = min{min, gee My [11[3 — k] + 6(k)}

A

M [1][1] + 8(py=-> .
' 2-curve

Mo [11[2] + S (L) /===~

>
>

j

_
o
100 [=rmmimemimmm

Figure 8: An example of p-curve used to calcu-
late Insli, 3]. The p-curve consists of My, [i,p] +
5(k),1 <k <n—p. The candidates for calculat-
ing Ins[i, 3] will choose one from 1-curve and one
from 2-curve.

tersections between the p-curves and the vertical
line 5 = 3. The candidate list records the p-curves
which will be used in the future. These curves
have two properties. First, all curves have the
same shape, since they are of the same concave
function. Second, the number of intersections be-
tween two curves is at most 1.

Figure 9 illustrates how to eliminate these
dominated candidates. Once the minimum can-
didate for calculating Ins[i, k] is determined
to be Mpmli,p], we can eliminate the candi-
dates Mmli,q], where Mymli,q] + 6(n — q) >
Mymli,p] + 6(n — p). As shown in Figure 9, 1-
curve is always lower than 2-curve after vertical
line k. Thus, 2-curve is dominated and it can be
eliminated after Ins[i, k] has been calculated.

Furthermore, the algorithm records the lifetime
of each candidate in the candidate list. To calcu-
late the lifetime, each candidate needs to find the
nearest intersection with other curves in the fu-
ture. Since the binary search is invoked to find
the intersection of two curves, the time required
for the candidate list is O(log n) in each cell. Thus,
the total time complexity of their algorithm is
O(mnlogn).

Consecutive Insertions and Dele-
tions with the Mixed Convex and
Concave Cost Functions by Epp-
stein

3.11

In 1990, Eppstein [20] considered consecutive
insertions/deletions with a mixed convex and con-
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Sms() =< 21>,
when calculating Ins[i][k]

Mo i1[1] 4 8k = [y === === —— 0> M2 +5(n-2)
, O by (1] + 62— D)

1-curve
2-curve

1 2 3 -k noj

Figure 9: An example for eliminating the candi-
dates of p-curve. Sr,s(r) =< 2,1 >. Suppose that
M, i, 1] is the minimum candidate for calculat-
ing Insfi,k]. In other words, M,,.,[i,2] + d(n —
2) > Mpmli, 1] + d(n — 1). So the value from
Mymli,1] (1-curve) should be smaller than the
value from M, [i,2] (2-curve) when calculating
Insli, jl,k < j <n.

cave cost function, composed of interleaving con-
vex and concave segments. For example, a mixed
cost function §(k) can be split into several seg-
ments with index ¢;,1 < ¢ < s, where d; (k) is con-
vex (concave in his paper) when 0 < k < ¢1, d2(k)
is concave (convex in his paper) when ¢; < k < ¢g,
d3(k) is convex (concave in his paper) when ¢ <
k < ¢3 and so on.

A concave function satisfies the quadrangle in-
equality,

-/

i<i'<j<ygl
(20)

In the above inequality, w(i,j) = 6(j — i) de-
notes the cost of a consecutive insertion/deletion
with length j — 4. Similarly, a convex function
satisfies the inverse quadrangle inequality by re-
placing > with < in Equation 20.

It should be noted that there is some inconsis-
tency in the definition of a concave function in the
previous studies. The definition of a concave func-
tion by Waterman [64] follows the standard math-
ematical definition, that is, f(z+y) < f(x)+ f(y).
Miller and Myers [46] also follows this definition.
However, starting from Yao [69], she interchanged
the definitions of a concave function and a convex
function (She called the inequality in Equation 20
a convez quadrangle inequality.). Then, some sub-
sequent studies follow the definition of Yao, such
as Wilber [66], Galil and Giancarlo [22], Klawe
and Kleitman [36], Eppstein [20].

Eppstein’s algorithm utilizes Wilber’s algo-
rithm [66] to deal with the convex (concave in
the original paper) segments, and uses Klawe and
Kleitman’s algorithm [36] to deal with the concave

w(i, §) +w(i', ") > w(@, ) +w(i,j),
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Figure 10: An example for computing the inser-
tion case with the convex cost function by Wilber’s
algorithm [66]. (a) The DP lattice M,. (b) A
convex cost function d(k), where k is the length
of a consecutive insertion. (c) The matrix T3 for
calculating Me,[2][j]. (d) The curve of §(k) in (b).

(convex in the original paper) segments. Wilber’s
algorithm [66] can find the minimum of each col-
umn of an n X n matrix in O(n) time when the
cells in the matrix satisfy the convex quadrangle
inequality (convex segment).

An example of the insertion case is shown in
Figure 10. 6(k) shown in Figure 10 (b) is a convex
segment, whose visual curve is shown in Figure 10
(d).

In Figure 10 (c), each column j of T5 records
all possible costs of consecutive insertions at
M.,[2][j]. For example, M.,|[2,5] is obtained from
T5[4,5] = Mp[2,4] + §(5 — 4) = 2+ 1, which is
the minimum of column 5 of 75. It means that
the distance at M,,[2,5] is formed by Me,[2,4]
plus one consecutive insertion of length 1, i.e.
5(1). Another possible source for M,,[2,5] is
= Mc[2,3] + 6(5 — 3) = 1+ 3 = 4, which means
M,,[2, 3] plus one consecutive insertion of length
2, i.e. 6(2), but it is not the minimum.

T5 is a matrix satisfying the convex quadrangle
inequality, such as T»[1][3] + T2[2][5] < T2[2][3] +
T5[1][5]. Since T5 satisfies the convex quadrangle
inequality, Wilber’s algorithm calculates the mini-
mum of column j, for all j, in O(n) time. That is,
the calculation of M,,[2][j] can be done in O(n)
time.

Klawe and Kleitman’s algorithm can calculate
the minimum of all candidates in the concave
case with a similar way as Wilber’s algorithm in
O(na(n)) time, where o ) is the inverse Acker-
mann function, because both of their algorithms
use the algorithm presented by Aggarwal et al. [1].
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Eppstein’s algorithm is shown in Equation 21
[20], whose time complexity is O(n?sa(n/s)).
Mep[i —1,5— 1] + REP(ai,bj)
Mep[i, j] = min Ins[i, j]
Dellz, 7],
where

Ins[ivj] = 1r<n;gslnsp[i,j],

Inspli, j] = min{Mep[i,j — k] + 0p(j — k), 1 < k < j},
Delli, j] = lglpigS{Delp[i,j]},
Delpli, §] = min{Mep[i — k, 1] + 0p(i — k), 1 < k < i}.
(21)
In 1989, Galil and Giancarlo [22] presented two
algorithms for consecutive insertions/deletions
with the concave and convex cost functions. Both
of their algorithms run in O(nmlogn) or O(n?)
time when the cost function satisfies the closest
zero property. Their algorithm for the concave
function is similar to the algorithm presented by
Miller and Myers [46].

3.12 Cyclic Strings by Maes

In 1990, Maes [43] proposed the cyclic string-
to-string correction problem, a variant of the edit
distance problem, which requires to transform the
rotations of A into B. A k-rotation of A is to
remove its prefix with length k& and to concate-
nate the removed prefix to the end. For example,
tatgagatca is a 4-rotation of A = atcatatgag.

The naive method is to find the edit distance of
all k-rotations, 0 < k < m — 1, of A versus B by
applying the algorithm of Wagner and Fischer [62]
m times, whose total time complexity is O(m?n).

The algorithm of Maes constructs the edit lat-
tice of AA , the concatenation of A with itself,
versus B. Maes found that the minimal cost edit
paths between AA and B in the lattice may not
cross, but may intersect. So the search area is lim-
ited, instead of mn cells. The algorithm is shown
in Algorithm 1. As the search area in each loop
in line 6 is a subdivision of the area between the
minimal cost path from (0,0) to (m,n) and the
minimal cost path from (m,0) to (2m,n) (inclu-
sive), the total time required for each loop in line 3
is sum up to O(mn). So the total time complexity
is O(mnlogm) and the required space is O(mn).

3.13 Cyclic Strings with Divide-and-
conquer by Marzal and Bar-
rachina

In 2000, Marzal and Barrachina [44] proposed
an improved algorithm over the algorithm of Maes



Algorithm 1 The algorithm for the cyclic string-
to-string correction problem by Maes [43].
1: g = [logm]
2: Find the minimal cost paths from (0,0) to
(m,n) and from (m,0) to (2m,n)

3: for i = g — 1 down to 0 do

4: j= 2t

5: while j < m do

6: Find the minimal cost path from (j,0)
o (j+m,n) between the path from (j — 2, 0)
o (j —2°+m,n) and the path from (min(j +
2t,m),0) to (min(j + 2%, m) + m, n)

7: j=j+2

8: end while

9: end for

[43] and the algorithm of Gregor and Thomason
[25]. Their algorithm is based on the divide and
conquer strategy of Maes and applies a branch and
bound strategy inspired from Gregor and Thoma-
son [25]. The cost function is restricted that the
cost of each insertion, deletion or replacement is
1.

The algorithm of Marzal and Barrachina calcu-
lates all minimal edit distance paths for {M,;,;[0, 0]
to Mpp[m,n], Myp[1,0] to Myp[m + 1,n], -,
Mp[m — 1,0] to Myp[2m — 1,n], Myp[m,0] to
Mp[2m,n]}, where M,,,;, denotes the DP lattice
of AA and B. The algorithm utilizes the lower
bound ¢(i,j) of all edit paths starting between
Mpli, 0] and M,,p[7,0] to eliminate the calcula-
tion of some edit paths.

Let o®(A) denote the k-rotation of A. The
edit distance d(c%(A), B) is the minimum edit
path from M,,;[k,0] to M,.p[k + m,n]. For ex-
ample, suppose m = 16. The algorithm calcu-
lates dpin, = min{d(c°(A), B), d(c%(A), B) and
d(c1%(A), B)}, which divides the interval [0, 16]
into [0, 8] and [8,16]. Recursively apply to [0, 8]
if 9(0,8) < dumin and [8,16] if g(8,16) < dpmin.
No edit distance d(c*(A), B), k € [i,j], will be
the minimum edit distance, if the lower bound
9(i,7) > dmin, where dp,;, means the minimum
edit distance of all computed d(a*(A), B) before.
The lower bound formulas are shown in Theorems
2 and 3. The time complexity of their algorithm
is O(mnlogm), which is the same as Maes’ algo-
rithm.

Theorem 2. [44] The lower bound of d(c*(A), B)

for allk € [i,j], 0 <i<j<m, is given by

maX(O |'d(o' A) B +d(0'] (A) B)‘l
i)) < d(o*(4). B).

914, 7) = (-
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Theorem 3. [44] The lower bound of d(c*(A), B)
forallk € i, j], 0 <i<j<mis given by

92(i, j) = max(g1{i, j}, min;<pr < pr (4, B)) <
d(o*(4), B),
where py (A, B) = ming<g<n (p(A1..x7, Bgg1..m))+
(p(Ak/Jrl--*mvBlmq))% p(A,B) = max(mvn) - |E|
and |X| is the alphabet set of A and B.

3.14 Run-length Encoding Strings by
Bunke and Csirik

In 1993, Bunke and Csirik [12] proposed an al-
gorithm for calculating the edit distance on run-
length encoding (RLE) strings (sequences). Sup-
pose that two RLE strings A and B are of lengths
mg and nyp, respectively, and the lengths of the
extracted plain text are m and n, respectively.
For example, if A = aaaacccccbb, then the RLE
string is encoded as A = a*c®v?, m, = 3 and
m = 11.

A pair of matched or unmatched symbols in the
RLE format represents a block in the plain text.
The DP lattice is divided into two kinds of blocks.
A dark block corresponds to a matched pair and a
light block corresponds to an unmatched pair. In
each block, only the cells on the right and bottom
boundaries need to be calculated. Each cell can be
calculated in constant time. Thus, the total time
complexity is O(nym + mgn) if the lengths of all
runs in both sequences are the same.

In 1995, Bunke and Csirik proposed an im-
proved algorithm [13] for the same problem. The
problem is restricted on the cost function that the
costs of each insertion, deletion and replacement
are 1, 1, and 2, respectively. There is no restriction
on the length of each run.

Table 5 shows an example for the block division
of the DP lattice. As examples, the dark block
D11 corresponds to the matched pair of a® in A
and a? in B, the light block D5 corresponds to
the unmatched pair of ¢ in A and the run a2 in B.
Only the cells on the bottom row and rightmost
column of each block needs to be calculated. An
example is shown in Table 6. By Lemmas 1 and
2, the computation time of each cell is constant.
Thus, the total time complexity is O(nym+mgn).

Lemma 1. [13] Let x be a symbol, and A and B
be two strings. Then d(Ax*, Bx*) = d(A, B) for
any k > 0.

Lemma 2. [15] Let x and y, x # y be two
symbols, and A and B be two strings. Then
d(Az*, By") = min{d(Az*, B)+h,d(A, By")+k}
for any k,h > 0.



Table 5: The block division of the DP lattice for
RLE strings with A = a®c®b? and B = a®c? by
Bunke and Csirik [13].

- a alc c
- | Doo | Doa1 | Doy
a
a Dl,o D1,1 D1,2
a
c
¢ | Dag | Dai | Dap
c
b
b Dso | D31 | D3o

Table 6: The DP lattice for A = a®c3b? and B =
a%c? by Bunke and Csirik [13].

-la alc ¢
-10]1]12|3]|4
a |l 1 3
a |2 0 2
a3 |2]1]2]3
c |4 2 4
c|b 3 5
c|6|5[4]|5|6
b |7 5 7
b|8|7|6]7]|8

3.15 Run-length Encoding Strings by
Arbell et al.

In 2002, Arbell et al. [6] proposed an algorithm
for calculating the edit distance of two run-length
encoding RLE strings (sequences). In their algo-
rithm, on the cost of each insertion, deletion or
substitution is assumed to be 1.

The DP lattice of two RLE strings is divided
into several blocks, as shown in the example of
Figure 11. In a dark block, the value of each cell
M [i, j] is equal to Mg,[i — 1,7 — 1]. In a light
block, the top row and the leftmost column are
separated into three zones (zone I, zone II, zone
IIT) according to the position of the calculated cell
and the form of block (horizontal block or vertical
block), as shown in the example of Figure 12.

The algorithm chooses the minimum of each cell
from two possible candidates, one from zone I and
the other from zone II, because the value from
zone III must be larger. For a horizontal block
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Figure 11: The DP lattice for RLE strings A =
av? and B = b3a® by Arbell et al. [6], where
the arrow lines mean where the values of the cells
come from (not unique).

[e]e]e bvlolv]e [a]a]x
1 a I 1 b 11
a | ok | P
a N | b |mm
o () b
a JDBDE LS
a a I it 1>
. 1 b
(@) ] @

©

Figure 12: The zones in a light block of the DP
lattice for RLE strings by Arbell et al. [6]. (a) An
example for the rightmost column. (b) Another
example for the rightmost column. (c) An example
for the bottom row. (d) Another example for the
bottom row.



Table 7: An example for computing the edit
distance between an RLE string and an uncom-
pressed string by Liu et al. [39], where A = a%b?
and B = bbbaaaaa.

‘ - b b b a a a a a
-/0 1 2 3 4 5 6 7 8
a®*!6 6 6 6 5 5 5 5 5
¥|l9 8 7 8 8 9 9 8 8

, the calculation of M,,[7,j] in the rightmost col-
umn considers only two positions: M,,.[i—1, j] and
Mr[itops Jdiagonal] (the intersection point of zone
I and the diagonal line through M,,.[4, j]) in zone
I. Other cases can be done similarly.

The calculation of each cell in both dark and
light blocks can be done in O(1) time, and the
number of calculated cells is O(nym+mgn). Thus,
the total time complexity of the algorithm is
O(nym + mgn).

3.16 A Run-length Encoding String
and an Uncompressed String by
Liu et al.

In 2007, Liu et al. [39] proposed an algorithm
for the edit distance between an RLE string (se-
quence) A and an uncompressed string (sequence)
B. Here, the cost of each insertion, deletion or
replacement is 1.

In the DP lattice Dy;[i, j], the index i represents
A;, the ith run in A. An example in shown in Ta-
ble 7. Note that Dy;[4, j] is different from M;;[i, j].
For example, Dy;[1,1] = M;[6,1] is the edit dis-
tance of the first run of A (a%) and B = b, while
M;i;[1,1] is the edit distance of A = a and B = b.
The main idea is to check how the value of Dy;4, j]
is calculated from Dy;[i, j — 1] with Lemma 3.

Lemma 3. [60] My;[i, j]—My;[i,5—1] € {-1,0,1}.

The DP formula for calculating Dyli,j] is
shown as follows [39].

Duili, j] = oiniréj{D“[i —1,u] + eDu[Ai, Buti..5]}-
(22)
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Table 8: The tables used in the algorithm of Liu
et al. [39], where Ty-[Ta[u]] = u, Tp-[Tr[u]] = u
and To- [To[u]] = u.

Name | Value Restriction
Dyt — 1, u]+ max{j — [4;],0
Talul Bi..(r <u<j
Dli[l -1 u]+
Tplu) ’ and Bj...,(7) <
Bi.yu(t)—u 14|
. 0<u<jand
Telu] Dyli = 1,u] —u 14| < Blj...u(T)
Ty [on] max{u|Ts[u] = vy —n < v —
A=l for 0 <u < j} T4[0] < 2n
Ty [v3] max{u|Tp[u] = va —2n < vy—
B2 for0<u < j— A} | Tsl0] < n
o [v3] min{u|Te[u] = v —2n < vg—
Ul for 0 < u < 4} Te[0] <0
eDyi[Ai, By...j] = max{|A;],j —u}—

min{|A;|, But1...;(7)}
‘A,| — Bu+1...j(7')
if |A;] >j—u,
j —Uu— Bu+1“‘j(’r)
if Bug1...5(7) <Al <j—u,
J—u—]A
(23)
Combing Lemma 3 with Equation 22, Dy, j]
comes from three possible candidates Dy;[i, j—1]—
1, Dy;li, j—1] or Dy;[i,j—1]+1. Accordingly, their
algorithm uses three tables T4, Tg, and T¢ to
store the value of left-hand side of the three equa-
tions in Equation 22. To make their algorithm
more efficient, they also build three inverted ta-
bles Ty-, Tg- and To- for Ta, T, and Tc. The
definition and restriction of these tables are shown
in Table 8. The time complexity of the algorithm
is O(mgn).

3.17 LCS of Run-length Encoding
Strings by Liu et al. and Ann et
al.

In 2008, Liu et al. also proposed an algorithm
for calculating the LCS between an RLE string
and an uncompressed string [40]. The time com-
plexity is O(mgn).

As mentioned in Section 2.2, the LCS problem
is equivalent to calculate the edit distance with
costs of insertion, deletion and replacement being
1, 1, and 2, respectively. The conversion formula
is L = %”*d, as shown in Equation 3.

In 2008, Ann et al. [4] presented an algorithm



Figure 13: The comparison of three algorithms
for calculating the LCS of RLE strings by Ann
et al. [4], where only small cells are required to
be calculated. (a) O(nym + mgn) by Bunke and
Csirik [13]. (b) O(mgn) by Liu et al. [40]. (c)
O(npmg + p1) by Ann et al. [4], where p; denotes
the number of cells in the bottom boundaries of
all black blocks.

for calculating the LCS of two RLE strings [4] with
O(npmg + min{py, p2}) time, where p; and py de-
note the number of cells in the bottom and right
boundaries of all black blocks. They also illus-
trated the comparison of the time complexities of
three algorithms, as shown in Figure 13.

In 2012, Ann et al. [5] presented an algorithm
for computing the constrained LCS of RLE strings
with O(mgnpr + r X min{q1, g2} + g3), where r
denotes the length of constrained sequence P, ¢;
and ¢ denote the numbers of cells in the south
and east faces of cuboids blocks on the first layer
of the DP lattice, and g3 denotes the number of
face cells of black cuboids of the DP lattice. Note
that a black cuboid corresponds to a strong match,
meaning that three runs in A, B and P have the
same symbol.

3.18 The Block Edit Problem by Ann
et al.

In 2010, Ann et al. [3] proposed an algorithm
for the block edit problem. The block edit prob-
lem not only involves the character-edit opera-
tions, but also the block-edit operations. Three
problems P(EIS,C), P(EI,L) and P(EI, N) are
presented with some restrictions that the block op-
erations cannot overlap and they should be per-
formed from left to right on the parts which have
not been edited before.

These edit problems are formulated as P(o,c),
where o is the block copy operation and c is the
cost measurement. The definition of allowed oper-
ations and cost measurement are given in Table 9.
An example of the operations is shown in Figure
14. For the problem P(EIS,C), the block oper-
ations include block deletion, internal block copy,
external block copy and shift block copy, whose
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Table 9: The allowed block operations and cost
measurements by Ann et al. [3], with the example
shown in Figure 14.

Block Operations
Name Description Example
External | Copy a substring of X | W; — W»
Copy and insert it into a
(E) valid position of the ac-
tive part of W;.
Internal | Copy a substring of the | W4 — Y
Copy inactive part of W; and
(I) insert it into a valid po-
sition of the active part
of Wl
Shift Copy a shifted string, | W3 — Wy
Copy which is a substring | Wo — W3
(S) of X or a substring
of the inactive part of
W;, and insert it into a
valid position of the ac-
tive part of Wj.
Deletion | Delete a valid substring | X — Wy
from the active part of
W;.
Cost Measurement
Name Description
Constant| Costs of all block operations with
cost (C) | different lengths are the same.
Linear Cost of one block operation is ps +
cost (L) | ipe, where ps and pe are constants
and ¢ is the length of the copied or
deleted substring.
Nested Cost of block deletions is constant.
cost(N) Cost of a block copy is DPeopy +
den(s1,82) where s1 is the copied
string, so is the string after editing,
and d.p (s1, s2) is the edit distance
from s1 to so with character edit
operations.

costs are constant.

The P(EIS,C) problem is solved with a DP
formula as shown in Figure 15. The straightfor-
ward DP algorithm requires O(nm?(n + m)|X|)
time. By some processing techniques with O(n +
m?) time, the time complexity can be reduced to
O(mn).

For more details in P(EIS,C), the traditional
edit distance dq(X;,Y;) with character edit op-
erations can be calculated in O(1) time. Block
deletion distance da(X;,Y;) can also be calculated
in O(1) time by preserving the current minimum
value of {d(Xx—_1,Y;)|0 < k < i} in each iteration.
To compute the costs of the external block copy
ds, internal block copy dy4, external block shifted
copy ds and internal block shifted copy dg, a pre-
process for building a suffix tree and a minimum
query structure is needed.

P(EI,L)and P(EI, N) problems can be solved
by the DP algorithm with a similar strategy except



Block Delete
w,C
External Copy

Shift Copy(internal)
w.ic B c[e[e[p C D]
Internal copy
[v: [c[8|c|e|e[p|c[p]c’e c|

Figure 14: An example of the block edit operation
by Ann et al. [3].

the cost calculation. As a result, P(EI,L) can
be solved in O(mnlogm) time with O(n + m?)
preprocessing time and P(EI, N) can be solved in
O(nm?) time with O((n + m)m?) preprocessing
time.

In 2014, Peng and Yang [50] applied the incre-
mental suffix maximum query with the set union
and find technique to improve the algorithm for
P(EI,L), whose time complexity is further re-
duced to O(nm + m?).

4 Genome Rearrangement

The genome rearrangement involves a group
of block edit operations, originally used to com-
pare the genomes of different species. The oper-
ations include reversal, transposition, transloca-
tion, block move and duplication [3, 7-11, 14—
19, 26-28, 32, 34, 37, 47, 54, 55, 63]. Since the
problems involving overlapping operations are NP-
hard, some restrictions on the operations were pro-
posed, such as non-overlapping operations. With
such restrictions, the problems become solvable
with polynomial time.

4.1 Overlapping Reversals on Permu-
tations by Keceioglu and Sankoff

In the reversal distance on permutation prob-
lem, the reversal operation is used to transform
permutation 7 into permutation v [33], and the
operated intervals may overlap. To simplify this
problem, we can regard the target permutation ~
as a sorted sequence from 1 to n. A reversal p(i, j)
reverses the order of 7 in the interval [i, j]. Let «’
be the result after applying a reversal p(i,j) on
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0, ifi<Oorj<o
0, ifi=35=0
dl(Xi7}G)7
TR I e
min ds(X;,Y), , otherwise
da(X4,Y5),
ds(X;,Y5),
de(X;,Y5)
d(Xi—1,Y;-1), if X; =Y;
di(Xi,Y;) = (X Y0, X LY
min d(Xi 1Y) +1, if X;#Y;
dQ(Xz}}/j) :min{d(—xkz—h}/j) + Pdetetelt < k < i}

d3(Xi7 Y}) = min{d(Xia Yk—l) + pcopy|
Yj...; is a substring of X'}
d4(Xi) Y]) = min{d(Xi7 Yieo1)+ pcopy|
Yj...; is a substring of Y31}
ds (Xi, X/J) = min{d(Xi, kal) —+ pcopy'
Y}...; is a shifted substring of X'}
d6(Xi, )/]) = min{d(Xi, kal) —+ pcopy|
Yk...; is a shifted substring of Y31}
(29)

Figure 15: The DP formula for solving P(EIS, C)
by Ann et al. [3].

a sequence w. The formal definition is given as

follows.
0= {
T =

For example, if 7 = 4213, - p(1,3) = 1243. An
example for transforming from 7 to - is shown in
Figure 16.

The straightforward method is to apply one re-
versal to bring one element into its correct place.
So the reversal distance is at most n— 1. In a per-
mutation 7, a break point is a pair of neighboring
positions (7, j) such means that |m;41 —m;| # 1. In
other words, m; and 7;41 are not consecutively in-
creasing or decreasing. For example, suppose that
m = 4213. Then, (1,2), and (3,4) are break points.
Whenever there exists a breakpoint in 7, 7 is not
sorted completely.

In 1993, Keceioglu and Sankoff [33, 34] pre-
sented a greedy approximation algorithm based on
the concept of breakpoints. They apply a rever-
sal operation between two breakpoints which can
eliminate at least one breakpoint until there is no
breakpoint in 7. An example of their algorithm is
shown in Figure 16. Their greedy algorithm is of
2-approximation, whose time complexity is O(n?)
and space complexity is O(n).

Keceioglu and Sankoff [33, 34] also presented a
branch and bound method with linear program-
ing for getting the exact solution. A reversal can

it i <t<j,
otherwise.

Titj—t
Tt

(25)



[ [O[M[2] [ [B]]5]]
I p(1,3)

(7 [O[ 1 [R[4][B][5]
| P2(374)

[ [O0[1[2[3[4]5]

Figure 16: An example of the greedy algorithm for
calculating the reversal distance on a permutation.
The first and last elements are the pseudo bound-
aries 0 and n + 1. [m;, m;41] means a breakpoint
between positions ¢ and ¢ + 1 in 7.

remove at most two breakpoints. A series of i re-
versals can remove at most ¢+ 1 breakpoints, since
only the ith reversal can removes two breakpoints.
For example, given m=42315, applying a reversal
p(2,3) and then applying a reversal p(1,4) on =
can remove three breakpoints.

Keceioglu and Sankoff [33, 34] showed that a

lower bound of the required reversals is (%gr) —

%ﬂ)l, where bo(m) is the number of reversals
which can remove two breakpoints at the same
time and b(w) is the number of breakpoints in 7.
To find a dynamic upper bound, they performed
the greedy algorithm which always tries to apply
a reversal to remove two breakpoints one time.
Then, the exact algorithm is a branch and bound
approach by eliminating some paths in the search
tree with the upper bounds and lower bounds.
The required time and space are O(tL(n,n)) and
O(n?), respectively, where t is the size of the
branch and bound search tree and L(n,n) is the
time required for solving a linear programming
with n variables and n constraints.

4.2 Lower Bounds for Overlapping Re-
versals on Permutations by Bafna
and Pevzner

Bafna and Pevzner [7] proved a tighter lower
bound @ — aln , where ¢4 is the number of
4-cycles (a cycle with 4 edges) in the breakpoint
graph [33]. They also proposed some efficient al-
gorithms based on the breakpoint graph.

In the breakpoint graph G(r) of a permutation
m, each breakpoint contributes two edges, a solid
eage and a dashed edge, as an example shown in
Figure 17. A solid edge connects vertices m; and
mjif |i —j| =1 and |m; — ;| > 1. A dashed edge
connects m; and ; if |m; — ;| =1 and |i — j| > 1.
For example, there is a solid edge between 73 = 1
and m4 = 4 and a dashed edge between 75 = 6 and
T10 — 7.
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Figure 17: An example of the breakpoint graph.
(a) A permutation 03146952(10)78(11),
where 0 and 11 are dummies used as bounaries.
(b) The breakpoint graph G(7) with ¢(7r) = 3 and
b(m) = 10. (c¢) Crossing cycles C, and Cj, in G(7).
(d) A maximal cycle decomposition of G().

In G(7), the solid edge and dashed edge must
be interleaved to form a cycle, such as C, and CY in
Figure 17. Let ¢(m) denote the number of cycles
in the maximal cycle decomposition of G(m). A
tighter lower bound of the reversal distance d(m)
is given in Theorem 4.

Theorem 4. [7] For any permutation 7,
—c(m) =

d(m) > b(r)
b(m) = ea(m) = (e(m) — ea(m)) = 257 — 47
b(m)
5
Clearly, d(m) > b(Q—”). A property for ¢4 is described
in Lemma 4. Two cycles are crossing means that
their solid edge are interleaved. For example, in
Figure 17, solid edges (1, 4), (5, 2) in C, are in-
terleaved with solid edges (6, 9), (10, 7) in C}.

When all the ¢(m) are ¢4, we have ¢(m) =

Lemma 4. [7] Suppose that a 4-cycle C has no
reversal which can remove at least one breakpoint
in C. If C has a crossing cycle C’', doing a reversal
on C' will make C have a reversal removing at
least one breakpoint.

x-reversal, © € {—2,-1,0,1,2}, is a reversal
which removes x breakpoints if x > 0, or adds =
breakpoints if otherwise. With such an observa-
tion, Algorithm 2 sorts a signed permutation by
at most b(m) — M steps with 2 5 approximation
ratio. Furthermore with the propertles of ¢4, they



presented another algorithm with b(7)— # steps

and % approximation ratio. Overall, the time com-
plexities of these algorithms are O(n?).

Algorithm 2 Sorting a signed permutation 7 [7],
where Reversal(r) is presented in [33].

1: while 7 contains a breakpoints do

2 if 7 has no decreasing strips then

3 if any 4-cycle C remains in G(7) then
4 Find a cycle C” which crosses C.

5: Do a 0O-reversal on C’.

6 Do a 2-reversal on the 4-cycle C.

7 else

8 Do a 0O-reversal on an arbitrary cy-

cle.

9: end if
10: else
11: p = Reversal(m)
12: T=T-p
13: end if
14: end while

4.3 An Approximation Algorithm for
Overlapping Transpositions on
Permutations by Walter et al.

The transposition distance is defined to be the
minimum number of transposition operations to
transform an input sequence 7 into the target se-
quence v [63]. A transposition 7(i, j, k) exchanges
two substrings m; ;1 and m; 5—1, 1 < i < j <
k < n+4 1. For example, Figure 18 illustrates the
transposition operations. Let 7’ be the resulting
sequence after applying a transposition 7(i,j, k)
on a sequence 7. The formal definition is given by
Walter et al. as follows [63].

Tt j—i 1f7,§t<7¢+k'7],
7T£ = Tt—k+j if i+ k —j S t < k, (26)
e otherwise.

Walter et al. [63] presented an approximation
algorithm with approximation ratio 2.25 for com-
puting the transposition distance. Here, we still
regard target sequence 7y as a sorted sequence from
1 to n. The algorithm is also based on the break-
point graph. We add two dummy elements 7y = 0
to the front and 7,41 = n + 1 to the rear of 7.
A breakpoint for transposition on permutation 7
exists between two adjacent elements 7;_1 and 7,
when m; —m;_1 # 1, 1 <1 < n+ 1. For example,
given m = 41235687 as shown in Figure 18, (4, 1),
(3,5), (6,8) and (8,7) are the breakpoints. Note
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[~ [0]4][1[2][3]5][6[8]7]9]
1 7(1,2,5)

[~ [O0]1[2[3[4]5[6[8]7]9]
| 7(7,8,9)

[y [o]1[2[3[4]5[6[7][8]9]

Figure 18: An example of transforming permuta-
tion m = 41235687 into v = 12345678 by transpo-
sitions. The first and last elements are the dummy
boundaries mg = 0 and mg = 9.

RS ERERERERERER
TN N

04 4.1 3.5 6.8 8.7 79
< N Ay AN £

‘‘‘‘‘‘‘‘

P1 P2 Ps p7 Ps Py
Double-edge(—)
Solid-edge( =)
Dot-edge( ===>)

Figure 19: An example of the transposition break-
point graph D(r) for m = 41235687.

that (8,7) is not a breakpoint for calculating the
reversal distance.

In the transposition breakpoint graph D(r),
node p; corresponds to a breakpoint between m;_1
and m;. There are three kinds of edges, a solid-
edge from p; to p; when m; —m_y = 1,1 < j
and 7; # n + 1; a double-edge from p; to p; when
m; —mi—1 = 1,1 < j and m;_1 # 0; a dot-edge
from p; to p; when m; — w1 =1l and ¢ < j. An
example of the transposition breakpoint graph is
shown in Figure 19.

An a-transposition, z € {-3,-2,-1,0,1,2,3}
removes x breakpoints if x > 0, or adds = break-
points if otherwise. Note, to keep the consistency
of this paper, we have reversed the definition from
the original one defined by Walter et al. [63]. In
D(), if there are p; — p;, pj = p and p; --» px,
then there exists a 3-transposition. As the result,
algorithm 3 is presented to find the transposition
distance of a permutation. The approximation ra-
tio of the algorithm is 2.25, provided by Lemma
5.

Lemma 5. [63] Given a permutation m and its
transposition breakpoint graph D(w) with more
than 5 nodes, if there is no 2-transposition nor 3-
transposition, it is possible to remove at least four
nodes in three transpositions.



Algorithm 3 The approximation algorithm for
finding the transposition distance of a permuta-
tion m by Walter et al. [63].
1: Construct the transposition breakpoint graph
D(n)
1:=0
while |V|#0do
1:=14+1
if there is a 3-transposition then
T; = 3-transposition
else
if there is a 2-transposition then
T; := 2-transposition
else there is a 1-transposition
T; := l-transposition
end if
end if
14: MTI=T"-T;
15: Construct D(7)
16: end while
17: return i, (71,79, - ,7;)
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4.4 Upper and Lower Bounds for Re-
versals and Transpositions on Bi-
nary Strings by Christie and Irv-

ing

Christie and Irving [17] proved the upper and
lower bounds for the reversal distance and the
transposition distance between two binary strings
with the concept of breakpoints. They also proved
that the decision version of the reversal distance
problem on two binary strings is NP-Hard, by
transforming from the 3-partition problem, which
is NP-complete [23].

The reversal breakpoint they defined for the re-
versal distance of two binary strings S and T is
different from two permutations. In their new def-
inition, a breakpoint exists in a length-2 common
substring & of S and T" when the number of occur-
rences of k in S is greater than the number of oc-
currences of k in T'. For example, if S has two sub-
strings ”00” and T has one, one of 700" in S has to
be broken when transforming from S into 7', which
means a breakpoint in S. Furthermore, substrings
”01” and ”10” are counted together since rever-
sals can convert 01”7 into 710" and vice versa.
The number of breakpoints b,.(S,T') of two binary
strings S and T can be calculated by Equation
27, which calculates the occurrence difference of
all length-2 substrings in S and T'.
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be(S,T) =Y 0(fan(S) + foa(S) = far(T)—

a<a<b<lw

fba(T))+ Z 5(faa(S)7faa(T))a

0<a<1
where 6(z) = max{x, 0}, fop(S) is the number
of substring ”ab” in S and, a and w
are the dummy elements added to the

front and the rear of S and T.
(27)
Consequently, the lower bound of the reversal
distance, provided in Theorem 5, can be obtained,
because a reversal can remove at most two break-
points.

Theorem 5. [17] Given two binary strings S and
T, let d(S,T) be the reversal distance. Then,

[0r(5,T)/2] <dr(S,T) < [n/2].

For the transposition distance d;(S,T) of two
binary strings, the number of occurrences of ”01”
and ”10” have to be counted separately. Then the
proof technique of the reversal distance can be ap-
plied to the transposition distance similarly. The
lower bound and upper bound of d¢(S,T") can be
obtained with the number of transposition break-
points b (S, T).

Theorem 6. [17] Given two binary strings S and
T, we have

[b:(S,T)/3] < do(S,T) < |n/2].

4.5 Non-overlapping Inversions
Schoniger and Waterman

by

Because the problem with overlapping reversals
and transpositions is NP-hard, in 1992, Schoniger
and Waterman [51] made some restrictions on
the operations of the sequence alignment prob-
lem. Their operations include character insertion,
deletion and replacement, and non-overlapping in-
versions. They presented a DP algorithm for the
sequence alignment on DNA sequence with O(n°)
time [51].

An inversion 6(i, j) on a sequence A is to reverse
the substring A, ; and to replace each element of
A;.; with its complement. Note that a DNA se-
quence consists of four characters a, ¢, ¢ and g.
Besides, a is complementary to ¢ with each other,
and c¢ is complementary to g with each other.
For example, suppose A = taccgtca. Then,
B =A-0(4,7) = tacgacga. Let A = ajaz---a,



Table 10: An example for the algorithm of
Schoniger and Waterman [51] with A = taccgtca
and B = gatcacgga.

- g a t ¢ a ¢ g g a
-]00 0 0 0 0 0 0 0 0
t{0 0 0 1.0 0 0 0 0 0
a0 O0[1]0O 0 1 0 0 0 1
¢c|0 0 0[0 1 0 2 1 0]0
¢c|0 0 0[]0 1 0 1 2 1]0
g0 1 0[0 0 0 0 2 3|2
t]0 0 1(1 0 0 0 1 3|3
¢c|0 0 1[0 2 0 1 0 2|2
a0 0 1|1 1 3 2 1[3]3

and B = biby---b, be the resulting sequence of
6(i,7) on A. The formal transformation is given
as follows.

The operation of non-overlapping inversions
means that the intervals of two inversions cannot
overlap. For example, 6(3,5) and 6(5,7) have an
overlap on as. They defined Z(g, h;i,j) to repre-
sent the local alignment score of Ay ; and By, ;
after applying an inversion 6(h,j) on B. They
defined two matching functions d;(a;,b;) and
da(a;, b;), and two gap functions wy (k) = aq + 1k
and wy (k) = ag+ Bk, where k is the length of con-
secutive gaps. The cost function ws (k)(insertion
and deletion) and d; (a;, b;)(replacement) are used
to calculate Z(g,h;i,j)(local alignment), and
wa(k) and da(a;,b;) are used for the entire algo-
rithm. The cost of one inversion is . Their al-
gorithm calculates mn cells, each of which takes
O(m?n?) time to find the best inversion of By, j to
align with A, ;. Thus, the total time complexity
of their algorithm is O(n%) when m = n.

if i1 <t<y,
otherwise.

Aj45—t
ag

by (28)

An example is shown in Table 10, where v =
—1, wl(k:) = IUQ(]C) =0- ]{3, and dl(ai,bj) =
dao(ai,b;) = 1 if a; = bj, otherwise —2. Let
Mswoli, j] denote the best alignment score of
Ay ; and By j. Mg,2[8,8] involves a score from
an inversion of As g = ccgtca versus Bs g =
tcacgg, In more detail, Ms,2[8,8] = Myy2(2, 2]
+7(3,3;8,8)+vy =14+3—1 = 3, where Z(3,3;8,8)
is the alignment score of Ajs g ccgtca and
B3 g = ccgtga.
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4.6 Non-overlapping Inversions and

Transpositions by Ta et al.

The operations involved in the problem solved
by Schoniger and Waterman [51] are charac-
ter insertions, deletions, replacements and non-
overlapping inversions. Since the algorithm of
Schoniger and Waterman [51] needs O(n®) time,
in 2016, Ta et al. [59] made more restrictions on
the operations, including only non-overlapping in-
versions and non-overlapping transpositions, but
without character insertions, deletions and re-
placements. In this situation, the two input
strings should of the same length, that is |A| =
|B|. They presented an algorithm for solving the
non-overlapping inversion and transposition dis-
tance problem with O(n?) time and O(n?) space
[59].

For the non-overlapping meaning here, for ex-
ample, if an inversion 6(3,5) (applied on interval
[3,5]) is applied to sequence A, no operations can
be applied on a part of interval [3,5] of A, such as
inversion 6(1, 3) or transposition 7(5,7,10) (swap-
plng A5”6 and A7”9).

Their algorithm uses two mutation tables Myqq
and M;,o as tools to calculate all possible inver-
sions and transpositions, respectively. Mq1 i, j] =
a; and My,2[i, j] = a;. Table 11 shows an exam-
ple of the two mutation tables. As one can see, an
inversion #(1,3) on A;_ 3 is equal to By, 3 = gat.
Mia1[1, 3], Mia1(2,2] and Miq1[3,1] form a slash
line whose content is equal to Bj. 3. An in-
version 6(5,6) on As ¢ is equal to Bs. g = ct.
7(5,7,10) on As o (swapping As ¢ and A7 g) is
equal to Bs g = ctagg. M;a2[7,5], Mia2[8, 6], and
Mi42[9, 7] forms a backslash line whose content is
equal to Bs.7 = agg, M.2[5,8] and My,2[6,9]
forms a backslash line whose content is equal to
Bs.9 = ct. Note that a4 is not covered by any
mutation operation because a4 =t = by.

With the mutation table M;,1, whether the in-
version of a substring A; ;, forall1 <i<j<nis
equal to B;_;j can be checked in O(n?) time. How-
ever, to check all possible transpositions with the
mutation table M;,s needs O(n?) time, since there
are O(n) pairs of slash lines may form a trans-
position on the same substring. Thus, the total
time complexity is O(n3) and space complexity is
O(n?).

In 2017, Hsu [30] proposed a more efficient al-
gorithm to solve the same problem as Ta et al.
solved. His algorithm is based on the run structure
of a string, proposed by Kolpakov and Kucherov
[38]. The time complexiy of his algorithm is re-



Table 11: An example of mutation tables M;,; and
Myq2, where A = atctagget and B = gatactagg.

Mia1 [Z7 ]]

2 3 4 5 6 7 8 9
1/t a g a t ¢ ¢ g a
2|1t a g a t ¢ ¢ g a
3|t a g a t c ¢ g a
41t a g a t ¢ ¢ g a
5|t a g a t ¢ c g a
6|t a g a t ¢ c g a
7|t a g a t ¢ c g a
8|t a g a t ¢ ¢ g a
91t a g a t c¢c ¢ g a

(a)

Mta?[iv .7]

1 2 3 4 5 6 7 8 9
lja t ¢ t a g g c ¢t
2|la t ¢ t a g g ¢ ¢t
3la t ¢c t a g g c t
4la t ¢ t a g g ¢ ¢t
5la t ¢c t a g g ¢ ¢t
6la t ¢ t a g g ¢ ¢t
7|la t ¢c t a g g ¢ t
8la t ¢c t a g g c¢c t
9la t ¢ t a g g ¢ t

—~
o
~

duced to O(n?).

5 Conclusions and Future Work

The traditional edit distance problem is to find
the minimum edit distance between two input
sequences (strings) with the edit operations, in-
cluding character insertions, deletions and replace-
ments. We use the traditional edit distance prob-
lem as the baseline to compare with other vari-
ants in three aspects: input, allowed operations
and output. First, from the input aspect, the edit
distance for cyclic strings is different because one
of the input strings is viewed as a set of strings by
rotation. The edit distance of RLE strings can be
seen as a special case that the same characters are
usually consecutive. Thus, the edit distance for
RLE strings and genome rearrangement are the
same as the traditional problem in the input as-
pect.
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Second, from the allowed operations aspect,
the block edit distance and genome rearrangement
problems are different from the traditional edit
distance problem as operations can be performed
on substrings in the former problems. However,
the operations on cyclic strings are the same as
the traditional problem.

Third, from the output aspect, all of these prob-
lems desire to find the minimum cost required for
transforming a string into another string. Thus,
these problems are the same in the output aspect.

With these three aspects, we give the compari-
son of the variants to the traditional edit distance
problem, as shown in Table 12. Furthermore, the
characteristics of these variants lead them to be
useful in different applications. For example, the
edit distance for cyclic strings can be applied to
pattern recognition, because the string which rep-
resents patterns like a polygon can be viewed as
the same after rotation. The edit distance for RLE
strings can be applied to compare the compressed
information directly. The block edit distance can
simulate human editing behaviors to compare two
documents. And the block edit distance can also
be used to compare DNA sequences.

The genome rearrangement problem simulates
the mutation of genomes and finds the relations
between genomes. With the same idea, we can
use different operations to simulate human behav-
iors or possible operations to transform or destroy
the data and then to recover the original informa-
tion. For example, we can simulate how humans
modify articles by string copies and deletions. We
could also find out how the data in some special
formation, such as images and compressed files,
were destroyed in transmission.

We hope that this paper is useful for those who
study or do not study in this field. Especially, it
is helpful to understand the key points of these al-
gorithms. In the future, we will survey the related
longest common subsequence (LCS) problem and
its variants.
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A Study on Modeling and Classification of the Student Opinion
Survey with Word2vec
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ABSTRACT

The Student Opinion Survey corpus is appealing to researchers
because it represents a rich temporal record of impression of
professors and courses. This paper attempts to conduct collection
and analysis for the comments from the website Rate My
Professor (http://www.ratemyprofessors.com) and builds the
model to quantify the level of other comments, which means each
comment is labeled scores from 1.0 to 5.0. We try to figure out the
differences of positive comments and negative comments. For
example, if the comments with some positive words are probable
5 scores, and on the other hand, the comments with negative
words are about 1 score. Building the model to explore the terms
used by the students is important to predict and distinguish the use
of words.

CCS CONCEPTS

*The Establishment of the Corpus Database — Preprocessor
— Modeling and Statistics — the Student Opinion Survey
Analysis System

KEYWORDS
document classification, text-mining, word2vector, corpus
modeling

1 INTRODUCTION

In a mere eighteen years, the university students in the USA try
to share their comments and their idea about school through the
Internet with the approach of rapid infrastructure of the
communication. Base on the convenience of spreading
information on the Internet, John Swapceinski founded the
website called RateMyProfessors.com (RMP) to allow college and
university students to assign ratings to professors and campuses of
American, Canadian and United Kingdom institutions [1]. The
website was originally launched as TeacherRatings.com and
converted to RateMyProfessors in 2001. Nowadays,
RateMyProfessors.com is the largest online destination for
professor ratings. The site has 8,000+ schools, 1.7 million
professors and over 19 million ratings. We collect the data from
the website and insert the comments into database. In addition, we
design the website and API for researchers to access this corpus
database. Not only collecting data to preserve the corpus, we also
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extract some data to shape the dataset to a model, which means it
can predict the rating of other incoming comments from users. In
order to predict the most fit rating, we design a formula to
calculate the similarity of the incoming comment between other
comments, which enhances the precision of similarity of the
comment. It would fit the dataset more accurately. After the
modeling, we will design the student opinion survey analysis
system for school to figure out the comments from students. With
that system, it is easy for Academic Affairs Office to figure out
the scenario of Teacher-student relationship and the quality of
courses.

This paper is organized in four sections. The first section will
introduce the collection of the corpus dataset. In the next two
sections would introduce the corpus training model and the
formula applied for achieving the accuracy of the predictions.
Finally, the demonstration of the Student Opinion Survey
Analysis System and the conclusion will be given.

2 EXPERIMENTAL AND COMPUTATIONAL
DETAILS

2.1

We choose the website RateMyProfessors.com as our dataset. In
order to collect the data in consistency, we use relational database
to implement based on the relational model of data, as proposed
by E. F. Codd in 1970 [2]. We first assume the website data is
presented by html, thus collecting the data by Python and the
famous package Beautiful Soup by installing it via pip. However,
the website presentation is not as we think. We peep into the
source code of that website. Finally, finding the website
presentation of the comments data developed by Ajax is
extremely important. We figure out another code designed by
Node.js and simulate the user clicking the “load more” button.
After clicking all buttons and conditions by the code of Node.js
via headless explorer simulation, we catch the attributions as well
as comments. Consequently, we output them as JSON

(JavaScript Object Notation) files and insert them into MySQL
database simultaneously. In prevention of data loss and instability,
we choose Google Cloud Platform [3] as our first hosting server.
Nevertheless, owing to the price of operation and maintenance,
we change the host to Kinghood Technology CO. LTD [4].

The Establishment of the Corpus Database

2.2 The Corpus Training Model with Word2vec



2.2.1 Introduction of Word2vec. Language modeling is used in
speech recognition, machine translation, part-of-speech tagging,
parsing, handwriting recognition, information retrieval and other
applications [5]. Word2vec is based on a statistical language
model, which is a probability distribution over sequences of
words. Given such a sequence, say of length m, it assigns a
probability P(ws,wz,....wm) to the whole sequence. It tries to
maximize classification of a word based on another word in the
same sentence. More precisely, it uses each current word as an
input to a log-linear classifier with continuous projection layer,
and predicts words within a certain range before and after the
current word [7]. Having a way to estimate the relative likelihood
of different phrases is useful in many natural language processing
applications, especially ones that generate text as an output. All in
all, we use that concept to estimate the words between words and
the sentences between sentences. This paper is based on the
complete theory and technology proposed by Tomas Mikolov, Kai
Chen, Greg Corrado, Jeffrey Dean on arXiv [6]. According to that
paper, we use their implemented source code of continuous bag-
of-words (CBOW) to apply on our dataset.

INPUT PROJECTION OUTPUT
w(t-2)
w(t-1)
\SUM
/ T Wm
wi(t+1) /
w(t+2)

CBOW

Figure 1: The concept of CBOW. It illustrates that the vector
considers the relationship between words and words.

2.2.2  The correctness of using Word2vec. In the field of
machine learning, the precision is the indicator that the most
people are concerned about. In the case of Word2Vec, if the
dataset is imbalanced, in other words, one kind of dataset occupies
the most weight, it probably exists a bias to lean on the high
weight of the dataset [7]. However, in our case, there are
comments and labeled score bound. Thus, we just want to use the
similarity analysis to distinguish the differences of each comment
and find the labeled score. When getting the labeled score of the
most similar comment or the rank 10 similar comments, we could
deal with that labeled scores and point out the possible score of
the inputted comment from the user. The formula of getting the
possible score will be mentioned on the section 2.3.
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2.2.3  Data choosing and modeling. For the purpose of training
data in effectiveness, we choose the 20 universities from the top
200 universities at random.

Table 1: List of the chosen universities

Numb Name
cr
1. Johns Hopkins University
2. Missouri University of Science and Technology
3. San Francisco State University
4. George Mason University
5. Florida Agricultural and Mechanical University
6. University of Southern California
7. Regent University
8. University of Washington
9. Benedictine University
10. Virginia Tech
11. Georgia Institute of Technology
12. Nova Southeastern University
13. Biola University
14. University of Alabama Huntsville
15. California State University Fresno
16. Pepperdine University
17. Temple University
18. University of Wisconsin - Milwaukee
19. Boise State University
20. University of Illinois Urbana Champaign Law School

We choose the comments from the above universities, setting the
time from 2014/01/01 to 2017/12/31. On the ground of separating
positive and negative comments as well as preparing for the
adjustment of accuracy, we divide the comments of score from 1.0
to 2.0 and from 4.0 to 5.0 into two groups. So, there are three
groups to train three models. One is the group of scores from 1.0
to 2.0 in the 20 universities. Another is the group of scores from
4.0 to 5.0. And the other is the mix of the two groups. We use
three datasets to train three models by ignoring 5 noise words, the
maximum 3 distances between the current and predicted word and
neglecting all words with total frequency lower than 1 word for
cach sentence. The next section will explain the use of three
models and adjustment of accuracy.

2.3 The Formula of Adjusting Accuracy

In order to get the scores of the comment more precisely, we
design a formula for counting the probable scores. If a user input a
comment, we will use the model of all comments to get the top 10
similar comments, acquiring each score of that 10 comments.
Calculating the average of the scores from top 10, it is the main
score for that inputted comment. Suppose that the user inputs an
unknown comment. After inputting that into the mix model, we
will get the top n scores So, Si, S2, ..., S»bounded with the most #
similar comments. Assume the main score for the unknown
comment is N. Thus, the first step for the predicted main scores is




_SESe
n

N ()

After gaining the main scores, we need to adjust it based on itself.
We put N into the lower scores (1.0 to 2.0 scores) model, getting
the absolute cosine value of the first similarity called L. Also, we
put N into the higher scores (4.0 to 5.0 scores) model, getting the
absolute cosine value of the first similarity called H. We design
the second step for the adjustment. We classify N into three
conditions, one is N <= 2.0 called Xo, another is 2.0 <N <= 3.9
called X1, the other is N >= 4.0 called X>. If the N in the range of
X1, we express the adjustment formula as below.

N=aN+(1-a)(L—H) ?2)
o is the coefficient to control the weight between the unadjusted
main score and the adjustment value. In this case (L-H) means
the model of lower scores is more important that the model of
higher scores.

On the other hand, there is also the second step for N in the range
of X3.

N=aN+ (1 —-a)(H-L) 3)
The meaning of a, H, L, N is the same as above. In this case (H-
L) means the model of higher scores is more important that the
model of lower scores.

In addition, we need to take N in the range of X> into
consideration.

(H+L)

5 “)

N=aN+(1-a)

In the case Xz, it means N is in the middle, which implies the
comment is neutral. So, the adjustment of the main scores is
required to modify in the smooth way. In brief, we separate N
into 3 cases, and each of them is manipulated by (2) (3) (4). In
addition, we will take some examples in the next section to

illustrate our prediction models and adjustment to be sensible.

3 RESULTS AND DISCUSSION

3.1

We consider the unknown comment “I used to love math and I
was straight A student before her class, She is good but she will
take away all your confidence and she wont take it easy on
students. I love challenge but she is more than that. You are going
to have Quiz every day and with only one misstake she will take
away many points, how ever she give many extra credit.No Eassy

Standard Positive Comments
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A”, labeled as 4 scores, putting it into three models. After
calculation, we get the data in the below table.

Table 2: The Data of the positive comment

The Content:

I used to love math and I was straight A
student before her class, She is good but she
will take away all your confidence and she
wont take it easy on students. I love challenge
but she is more than that. You are going to
have Quiz every day and with only one
misstake she will take away many points, how
ever she give many extra credit.No Eassy A

The Labeled Scores: | 4.0
The Main Scores: 4.5
a: 0.9
The Lower Scores Model: | (0.43594351410865784
The Higher Scores Model: | (0.45307379961013794
After Adjusting Scores: 4.05171

According the table 2, the result of the adjusted scores is almost
close to the labeled scores, which means the models and
adjustments are authentic.

32

Standard Negative Comments

We take the unknown comment “Worst class I have ever taken
and biggest waste of money. Completely not helpful at all. Even
after going to him several times with questions, he either never
responded or it was months later!”, labeled as 4 scores, for
example. We put it into three models. After calculation, we get the
data in the below table.

Table 3: The Data of the negative comment

The Content:

Worst class I have ever taken and biggest
waste of money. Completely not helpful at all.
Even after going to him several times with
questions, he either never responded or it was
months later!

The Labeled Scores: 1.0
The Main Scores: 4.2
a: 0.3
The Lower Scores Model: | 0.636993765830993
The Higher Scores Model: | 0.5076644420623779
After Adjusting Scores: 1.350529992

According the table 3, the result of the adjusted scores is not as
close as to the labeled scores. In this case, a is vital for the

adjustment.




4 CONCLUSIONS

We have described how the student opinion survey corpus
database was enhanced and refined for this study, and how to
extract data from the website Rate My Professor, leading to model
and classify for that corpus. In summary, we have performed both
an experimental and theoretical study of the algorithm Word2Vec.
In addition, we also design a formula to decrease the divergence
between the predicted scores and actual scores. We attempt to
minimize the noise originating from the natural language. Based
on this corpus and concept, we would implement a system for
academic institutions to predict and evaluate the teaching of one
professor approximately. It would provide a roughly basic
appearance of a professor to urge the positive relationships
between teaching and learning. We believe that our research will
help the other researchers to recognize and know the thinking
from students. We also expect that this paper will bring other
corpus analysis based on NLP applications.
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Abstract

A one-to-many routing algorithm has appli-
cations in fault-tolerant broadcasting and secure
message distribution in networks. Two spanning
trees of a network are independent if they are
rooted at the same node 7, and for every other
node v # r, the two paths from r to v, one path in
each tree, are internally disjoint. It is obvious that
constructing multiple independent spanning trees
(ISTs for short) rooted at one node can guarantee
a one-to-many routing from the node.

A generalized honeycomb torus (GHT for short)

is constructed by adding wraparound edges on a
honeycomb mesh. A GHT is 3-reqular and node-
transitive. Without loss of generality, the algo-
rithm can choose any node as the root of the ISTs.
In this paper, we proposed an algorithm to con-
struct three 1STs based on the decision of individ-
ual node in a given GHT. As a result, the algo-
rithm can parallelize the construction of the ISTs
efficiently.
Keyword: interconnection networks, generalized
honeycomb torus, fault-tolerant broadcasting, in-
dependent spanning trees, one-to-many parallel
routing, internally disjoint paths.

1 Introduction

For a < b, let [a,b] = {a,a+1,...,b} be the set
of consecutive integers from a to b. Based on the
definition in [3], a generalized honeycomb torus
(GHT for short), denoted by H(m,n,d), consists of
N(=m x n) nodes and 3N/2 edges, where m > 2
,n > 4iseven, and d € [1,n—1] is odd if m is odd
and d € [0,n—2] is even otherwise. For i € [0, m—
1] and j € [0,n — 1], a node z = (i,j) of a GHT

*This research is supported by the Ministry of Science
and Techonology of Taiwan under the Grant MOST104—
2221-E-141-002-MY 3.

has three neighbors, denoted by three related skips
from x: (U), (D) and (R/L) (the latter depends
on i+ j being odd/even), where (U) and (D) stand
for neighbors (i,j 4+ 1) and (i,j — 1), respectively,
(R) stands for either neighbor (i+1,7) ifi <m—1
or (0,j—d)ifi=m—1, and (L) stands for either
neighbor (i—1,j) ifi > 0or (m—1,j+d) if i = 0.
Notice that both j &1 and j £ d take modulo n.
For example, H(5,8,3) and H(6,8,4) are shown in
Fig. 1(a) and 1(b), respectively.

In 1997, Stojmenovié [16] proposed several vari-
ations of honeycomb tori. Cho and Hsu [3] then
proved that all honeycomb tori can be character-
ized in a unified way. Many research results on
GHT which is recognized as an alternative archi-
tecture of two-dimensional torus are proposed in
the passed two decades [2, 6, 7, 8, 12, 13, 15, 20,
21]. In particular, some researchers contributed
their efforts to the topic of ring embedding in a
faulty GHT [2, 6, 8, 13].

Two different paths connecting two nodes in a
network is said to be internally disjoint if they
have no common node except two end nodes. The
one-to-many parallel routing of a network is to
construct internally disjoint paths from one given
node to other nodes. According to the routing, one
node can send copies of a message along different
internally disjoint paths to achieve fault-tolerant
broadcasting. Besides, a message can be separated
into k parts and send them to other nodes through
k internally disjoint paths to ensure secure mes-
sage distribution.

Two spanning trees of a graph are independent
if they are rooted at the same node r, and for ev-
ery other node v(# r), two different paths from
v to r, one path in each tree, are internally dis-
joint. A set of spanning trees of a graph is said to
be independent if they are pairwise independent.
In 1989, Zehavi and Itai [25] conjecture that, for
any node r in a k-connected graph G, there exist
k independent spanning trees (ISTs for short) of
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Figure 1: Two GHT examples, (a) H(5,8,3) and
(b) H(6,8,4).

G rooted at r. Although the conjecture has been
proved to be affirmative for k-connected graphs
with k < 4 (see [9] for k = 2, [4, 25] for k = 3,
and [5] for k = 4), it is still open for & > 4. Since
the construction of ISTs guarantees the one-to-
many routing in a network, lots of research re-
sults are presented for solving the IST problem in
special graph classes, especially in interconnection
networks [10, 11, 14, 17, 18, 19, 23, 22, 24].

In this paper, we propose an algorithm for con-
structing three ISTs rooted at an arbitrary node of
a GHT. Particularly, the proposed algorithm is de-
signed for every individual node, based only on the
label of a node, and thus make the construction
parallelized. Although the IST problem of gen-
eral 3-connected graphs was solved in linear time

by Cheriyan and Maheshwari [4], the proposed al-
gorithm still has its contribution on parallelized
implementation.

The remaining part of this paper is organized
as follows. Sect. 2 gives essential notations of the
algorithm. Sect. 3 presents the algorithm. Sect. 4
proves the correctness of the algorithm. The last
section contains our concluding remarks.

2 Notations

To explicitly represent the adjacency of nodes
in a GHT H(m,n,d), we say that node (i, j) takes
a skip to reach one of three neighbors. If ¢ + j is
odd, the three skips are (U) (up), (D) (down) and
(R) (right), while if ¢ 4 j is even, the three skips
are (U) (up), (D) (down) and (L) (left). The skip
representation is helpful to express our construc-
tion algorithm.

Since a GHT is node-transitive [1], without loss
of generality, we only need to consider all ISTs
rooted at node (0,0). Because of the requirement
of internally disjoint paths in ISTs, it is obvious
that the root has only one child in each of the trees.
If A is the skip taken by the only child for reaching
the root, the tree is denoted by 7. Hence, for the
ISTs of a GHT, the root-reaching skips of every
tree must be distinct. In Fig. 2(a), 2(b) and 2(c),
for example, each IST of H(5,8,3) is named after
the unique skip taken by the child to reach the
root.

Furthermore, for every non-root node, the
parent-reaching skips are also distinct in three
ISTs. Accordingly, our construction algorithm is
simply to determine the skips taken in different
trees for every non-root node in parallel. We adopt

the notation = — y to mean that x takes the skip
A to reach its parent y in a tree. Also, for a node
x = (i,7) in a tree Ty, the unique path from z to
the root (0,0) is denoted by P[s, j].

For example, in Fig. 2, we consider node = =
(4,7), and we have the following three paths,
one path in each tree, from = to the root (0,0):

Poya7 - 47 2 e E @36 B

3,75 2,7 2 2,6) 2 (1,6) D, 1) B

©0,7) ‘% (0,0):

<

Pyt - (41 o0, 20,3 &
0,2) 24 (0,1) 24 (0,0);
Pt @7 B @o & @1 B
(4,2) % (4,3) % (0,0).
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Figure 2: Three ISTs rooted at node (0,0) on
H(5,8,3), (a) Tiv), (b) Tipy and (c) T(g)-

It is easy to check that these paths are inter-
nally disjoint. For notational convenience, some-
times we write Py [4,7] = ((D)(L)(U)(L))*(U),
Pipy[4,7] = (R)(D)* and Pipy[4,7] = (UY*(R) in-
stead, where A? denotes that a skip (or a skip se-
quence) A consecutively occurs ¢ times for ¢ > 1.

3 Parallel construction of indepen-
dent spanning trees

The following algorithm constructs three ISTs
rooted at node (0,0) in GHT (m,n,d), where m > 2
and n > 4 (n is even). In this algorithm, called
Algorithm PARENT-DETERMINING, for every non-
root node (7,7) the skip reaching its parent in every
tree is determined only according to the node label
i and j. For the sake of brevity, two procedures
PARENT-R and PARENT-L are used to assign the
parent-reaching skips of the node (i,j) for i + j
being odd and even, respectively. That is, the
three parameters of PARENT-R (resp. PARENT-
L) assign sequentially the skips for a node to get
its parents in rf([])7 T(D) and T(R) (resp. T(U)7 T(D}
and T(L)).

The proposed algorithm looks very complicated
due to the processing of some special cases. In case
of m = 2 and d = 0, the parent-reaching skips
of nodes (m — 1,5) (0 < j < n — 1) are differ-
ent from other cases. Further, in all other cases,
the parent-reaching skips of nodes (m — 1,0) (at
bottom right corner) and (m — 1,n — 1) (at top
right corner) also varies according to different m
and d. We summarized the GHTs to six types
which are listed in Table 1. Fortunately, Algo-
rithm PARENT-DETERMINING can solve the IST
problem of GHTs for all of the six types.

Let us explain with an example. Table 2 shows
the parent-reaching skips of all nodes in H(5,8,3)
by using Algorithm PARENT-DETERMINING. In
Table 2, all the nodes with odd ¢ + j which ap-
ply procedure PARENT-R are put on the left side;
while nodes with even i+ j which apply procedure
PARENT-L are put on the right side.

4 Correctness Proof

To show the correctness of Algorithm PARENT-
DETERMINING, we have to prove firstly that the
output of the algorithm are spanning trees of the
input GHT network, or equivalently, every node
has a unique path to connect the root. Secondly,
we should prove that for every non-root node (i, 5),
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Algorithm 1: PARENT-DETERMINING

Table 1: Summary of six different types of GHTs

case i =0 : do
if j is odd then PARENT-R((U),(D
| else PARENT-L((U),(D),(L)) ;

case i € [1,m —2] and m > 3 : do
middle columns

case

// the left-most column

1(R)) ;
// the

case j =0 :do

[¢]

[¢]

i=m—1:do
case j =0 :do

if i 4+ 7 is odd then
PARENT-R((D),(U),(R)) ;

| else PARENT-L((D),(L),(U)) ;

case j =1 :do

if i 4+ 7 is odd then
PARENT-R((U),(D),(R)) ;

| else PARENT-L((U),(L),(D)) ;
ase j € [2,n—2] : do

if 1 4+ j is odd then
PARENT-R((U),(D),(R)) ;

| else ParnT-L((L),(D),(U)) ;

case j =n—1:do

if ¢ is odd then PARENT-R((D),(U),(R)) ;

| else PARENT-L((L),(D),(U)) ;

// the right-most column

case d = 0 : do PARENT-R((D),(U),(R)) ;
case d =n—1:do PARENT-L((U),(L),(D))

cased=n—2:do
PARENT-R((R),(U),(D)) ;
cased ¢ {0,n—1,n—2} : do
if i+j is odd then
PARENT-L((D),(L),{U)) ;
else PARENT-R((R),(D),(U)) ;

ase j € [1,n—2] : do

case m =2 and d=0 : do
PARENT-R((U),(R),(D)) ;

case m# 2 ord#0 :do

if i 4+ j is odd then

case j > d : do
PARENT-R((U),(R),(D)) ;

case j =d : do
PARENT-R((U),(D),(R)) ;

case j < d:do
PARENT-R((R),(D),(U)) ;

else

if j>d then
PARENT-L((L),(U),(D)) ;

else PARENT-L((D),(L),(U)) ;

case j=n—1:do

case d =0 : do PARENT-L({(L),(D),(U)) ;

cased=n—1:do
PARENT-R((D),(U),(R)) ;

case d =n —2: do PARENT-L((L),(U),(D))

cased ¢ {O,n—1,n—2} : do

if i+j is odd then
PARENT-R((D),(R),(U)) ;

else PARENT-L((L),(D),(U)) ;

type m d example
1 m>3,0dd | 1<d<n-—3,odd | GHT(5,8,3
2 m > 3, odd d=n—1, odd GHT(5,8,7
3 m 22 even | 2<d<n—4,even | GHT(6,8,4
4 m > 2, even d=mn—2, even GHT(6,8,6
5 m > 4, even d=0 GHT(6,8,0
6 m=2 d=0 GHT(2,8,0
Table 2: The parent skips of node (i,j) in three

ISTs on H(5,8,3)

node node

Tiyy Tip) Tig Tvy Tip)  Tir
(0,1 | (U) (D) (R) 0,2) | {U) (D) (L)
(0,3) | (U) (D) (R) (04) | (U) (D) (L)
(0,5) | (U) (D) (R) (0,6) | (U) (D) (L)
0,7) | (U) (D) (R) (LY | (U) (L) (D)
(1,0) | (D) (U) (R) (1,3) | (L) (D) (U)
(1,2) | (U) (D) (R) (1,5) | (L) (D) (U)
(1,4) | (U) (D) (R) (L7 | (L) (D) (U)
(1,6) | (U) (D) (R) (2,0) | (D) (L) (U)
(2,1) | (U) (D) (R) (2,2) | (L) (D) (U)
(2,3) | (U) (D) (R) (2,4) | (L) (D) (U)
(2,5) | (U) (D) (R) (2,6) | (L) (D) (U)
(2,7) | (D) (U) (R) (3,1) | ({U) (L) (D)
(3,0) | (D) (U) (R (3,3) | (L) (D) (U)
(3,2) | (U) (D) (R) (3,5) | (L) (D) (U)
(34) | (U) (D) (R) (3,7) | (Ly (D) (U)
(3,6) | (U) (D) (R) (4,0) | (D) (L) (U)
(41) | (R) (D) (U) (4,2) | (D) (L) (U)
(4,3) | (U) (D) (R) (44) | (L) (U) (D)
(4,5) | (U) (R) (D) (4,6) | (L) (U) (D)
47 | (D) (rR) (U)

three paths from (i, j) to the root (0,0) in different
spanning trees must be internally disjoint. In the
following proof, we will be focusing on the type 1
GHT networks for concise sake.

Lemma 1. Algorithm PARENT-DETERMINING

can generate three spanning trees rooted at node
(0,0) in Him,n,d).

Proof : In H(m,n,d), node (i, j) can take one path
to reach the root. We consider Py, j], Pipy[i, j]
and Pgy[i, j] separately, which are shown in Ta-
ble 3, 4 and 5, respectively.

In any case, a skip sequence from (i, j) to (0,0)
in the output spanning subgraph forms a unique
path. O

The following lemma shows the independency
of the output spanning trees.
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Table 3: Analysis of the path Py [i, j]

case skip sequence length
i=0 (Uyn=J n—j
i=m—1,o0dd j
M1<j<d-2 (RY(U )~ ‘ d—j+1
@ d<j<n-3 (U) (L))"~ 2(LYDWLYU) = +)/2(Ly(U) | 2m — 1
(3)j=n-1 (D)LY (U (L) (D) (L))" =H/2(0) (L) () 2m — 1
i=m—1, even j
(1)j=0 (DYX(L)(UWLYDY(LY) "=/2(U) (L) () 2m
(2)2<j<d-1 (D)Y(R)(U)*—7+! d—j+3
(3)d+1<j<n-2 (L) U)" I (LYDNLY(U)) =D (U) | 2m — 2
1<i<m-—2,o0dd1
(Hj=0 (D)((L) (D)LY U) E—D>(L)(U) 2i+1
(2)j=1 (U)(UNL) Uy i—j+n
(3)2<j<n—2evenj | ((UNL)U)" i—j+n
(4)3<j<n-—1,0ddj | ((LYU))(U)" "I i—j+n
1<i1<m—2,event
(Hj=0 (D)((DY(L){U)(L))*{U) 2i+1
(2)1<j<n—1o0ddj | (UNL)HU) i—j+n
(3)2<ji<n—2evenj | ((LYU))(U)" "I i—j+n
Table 4: Analysis of the path Ppy[i, j]
case skip sequence length
1=0 (D)7 j
i=m—1,o0dd j
1)i=1 (D)((L) (U){L) (D)) =)/ 2m 1
(2)3<j<d DYLY(DY=2(LY(D) (LWUNLIDY) =372 | j+ 2m — 4
(3)d+2<j<n-—1| (R)(D) j—d+1
t=m—1, even j
(1) 5= (LY(UNL)DY) =112 2m — 2
(2)2<j<d-1 (L)(D) =LY (D)((LYU){L)(D)) =/ j+2m—4
(B3)d+1<j<n—2 | (UYR)(D)I~4+! j—d+3
1<i<m-—2,0ddi
(1)j=0 (UNWEN(D)(L)) /2 (U)LY (D) 2i+1
(2)j=1 (LY (DNLYU))~D/2(L)(D) 2
(B)2<j<n-2 (DY~ (L)(D)(L)(U))=D72(L)(D) jH+2i-1
4)j=n-1 (D)~ (LUDNL)(U))“~D/2(L) (D) 2i+j-1
1<i1<m—2 even 1
(1)j=0 (LU )(LY(D)) 1/ 2
(2)j=1 (DNLYUY (L)) /(D) 2i + 1
(B)2<j<n-2 (D) ((L){U)(L)(D))""* J+2i
(4)j=n—-1 {U)(LYU){L){D))"/? 2i+1
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Table 5: Analysis of the path Pgy[i, j]

case skip sequence length

1 =0, 0dd j

(1)j=1 (RYD)(R){U)(R)(D))"=32(R)(U)X(R) | 2m +d —2

(2)3<j<n-1

(2a) j+m—2>d ((RY(U))™~2(R)(D)ITm—2=4(R) j+3m—d—4

(2b) j+m—2<d (R)U))™=2(R) (D)= —m+2(R) m+d—j

1 =0, even j

(12<j<n—-d-3 (L)(D)'(R) j+2

2)n—-d—1<j<n-2 LY({U)" 7 (R) n—j+2

i=m-—1

(1)j<d (U)4~1(R) d—j+1

(2)j=d (R) 1

(3)j>d (D)iI~4(R) j—d+1

1<i<m-—2,0dd1

(1)j=0 ((RYU)R)(D))m= =2 2(R)(U)* 2m —2i—3+d

(2)j=1 ((DY(R)(U)(R))™==2/2(D)(R)(U)* 2m —2i—2+d

(8)j=n—1 (U) ((R)(L)(R)(D)) ™ =i=2/2 (R ()" 2m — 2 +d -2

1<i1<m—2,event

(1)j=0 ({U)(R)(D)(R)) ==/ 2m —2i—2+d

(2) =1 (RYD)(R)(U)m==/2(7)d-! 2m — 2% —3+d

(8)j=n-1 (R) (U)(RY(LY(RYD) ™= =D/2(R)(U)? | 2m —2i+d 3

2<i<m-—2,oddi+j

(j#0,1,n—1) | |

(1) 2<m—z—2+j<d ((RY(U))™ 1 =2(R)(U)I~™+(R) m—1i+d

(2)d<m—i—2+7<n—2| ((R{U))™=2(RY(D)™ ~4(R) 3m—3i—d—2

B)yn—2<m-—i—2+j (RY(U))m—n=iti(U)d 2m — 2n — 2i
+2j+d

2<1<m-—2,eveni+j

(] 7&0711’”’_ 1) ) . )

(H2<m—-i—-2+4+j<d ((UY(R))m—i=L(U)d—m+it2=i(R) m—i+d

2)d<m—i—2+j<n—2| (U(R))™—YD)ym—i=2+i—d(R) 3Im—3i—d—2

B)n—2<m-—i—2+j (UY(R))m—n=Hi(RY(U)? 2m — 2n — 2i
+2j+d+1
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Lemma 2. Three paths from a non-root node
(i,4) to the root in the output spanning trees on
H(m,n,d) are internally disjoint.

Proof : Let (u,v) be a non-root ancestor of node
(i,4) in one spanning tree. We consider the fol-
lowing six cases:

Case 1: i = 0. In Pyyli,j], w=0and v > j. In
Ppy[i,jl, w=0and v < j. In Ppli,j], u > 0.
Thus the three paths are internally disjoint.
Case2: i =m—1and j = 0. In Py[i, j], v =n—1
orn—2. In Ppy[i,j],v=00r 1 and u < m—1. In
Pipyli, jl, v<d<n—3and u=m—1. Thus the
three paths are internally disjoint.

Case3: i=m—1and 1 < j <n—2. There are
five subcases:

Case 3.1: j = d. In Pyyli,
In Pypyli,
u+v=0.
Case 3.2: j > d and i+ j is odd. In Py i, j],
0<u<m~—1andv>j. InPpli,j], u=0and
0<u+4wv <i+j InPplijl, u=m—1and
v < j.

Case 3.3: j < d and i+ j is odd. In Puyli, j],
u=0. In P<D>[i7j], u+v<t+j. In P(R)[i,j],
utv<i+j.

Case 3.4: j > d and i + j is even. In Py li, j],
u<m—1and v >j. In Pplij], either u =
and v <joru—m land v = j+1. In Py, j,
u=m—1and v < j.

Case 3.5: j < dandi+jiseven. In Pyyli,jl,
eitheru=0andv>joru=m—landv=j—1.
In Pipyli, g, w <m—1and v < j. In Pgli, j],
u=m—1and v > j.

In all of the five cases, the three paths are inter-
nally disjoint.

Case 4: 2 <i<m—2and j <1. In Pyyli,jl,
u <14 and either v =n—1orn—2. In P<D i, 7],
u < i and either v=0 or 1. In Pgy[i,j], u > i.
The three paths are internally disjoint.

Case5: 2 <i<m-2and2<j<n-3 In
Punli, jl, w <iand v > j. In Pipy[i, j], u < i and
Jj >wv. In Ppli,j], w>iand j < v. The three
paths must be internally disjoint.

Case6: 2<i<m—2andj>n—2 InPyli,jl,
u<iand j=n—-2orn—1 In Pp[ij], u<i
and v < j. In Ppyli,j], v > i and v > j. The
three paths are internally disjoint.

i, 0<u+4v>i+j.
j], O<u+v<i+j. In P<R>[i,j],

It turns out that every node can route three
internally disjoint paths to the root node in the
network. ]

According to Lemmas 1 and 2, we give the fol-
lowing theorem.

Theorem 3. For a single node, Algorithm PAR-
ENT_DETERMINE can be used to determine its par-
ents in three IST on a GHT network in O(1) time.

5 Concluding Remarks

In this paper, a parallel algorithm is proposed
to construct three ISTs on a GHT network. Based
on the algorithm, each non-root node can deter-
mine its parents in different IST's in constant time.
The algorithm is easy to implement and has con-
tribution in the one-to-many parallel routing of
GHT networks. Our future work is to design par-
allel construction algorithms for other classes of
node-transitive interconnection networks.
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Abstract

Consider the following graph process on a
vertex-weighted undirected graph G = (V.E).
Initially, a set of vertices are open. Whenever the
total weight of a vertex v s open neighbors
exceeds that of v closed neighbors, v will be
opened. The whole process continues until no
more vertices can be opened. We show how to
open [Iv]/2] vertices so that all vertices are
eventually open. Our proofs modify those of
Khoshkhah et al. [2].

1 Introduction

All  graphs in this paper are simple,
vertex-weighted and undirected. Each vertex of a
graph ¢ =(V,E) can be open or closed. All
weights are positive. We denote the set of
neighborsof v e ¥ in G by N.{v).

At the beginning, we open some vertices of .
Whenever the total weight of a vertex 1’s open
neighbors exceeds that of 1’s closed neighbors, v
will be opened. The whole process continues until
no more vertices can be opened. A perfect target
set refers to a set of vertices whose opening will
open all vertices at the end[1]. We show how to
open [l¥]/21 vertices so that all vertices are
eventually open. Our proofs modify those of
Khoshkhah et al.[2].

2 Opening the vertices

Theorem 1. Given any graph ¢ = (V,E} with
positive vertex weights, a perfect target set of size
at most [|¥1/2] can be found in polynomial time.

Proof. Run the DFS algorithm on & to get a DFS
tree T. For all v eV, denote by depthi{r) the
depth of 1 in T and let T, be the subtree of T
rooted at v. Paint the leaves of T black or white
arbitrarily. Inductively, having colored the vertices
deeper in T than a vertex v € ¥, color v white
if the black vertices contribute more than half of
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the total weight of the neighbors (in &) of v in
T, and black otherwise.

Claim 1. For each v & ¥, opening the following
vertices will open 1+ at the end:

e The vertices shallower than 1 in T.
e All black vertices.

e Therootof T.

Proof of Claim 1.

e Case 1. v isblack or is the root of T.

Clearly, v is directly opened.

e Case 2. v is white and is not the root of T.

Let
a = {u € N;(1v)|depth(u) < depth(v)},
g =N;(v)\ a

The vertices in « are already opened
because they are shallower in T than v. &
contains at least one vertex because v has a
parent in T. So the total weight of the
vertices in a« is positive. Because all
vertices in N.(v) that are no shallower
than v in T must be in T,, g is the set of
neighbors (in ¢) of v in T,. So by
construction, the total weight of the black
neighbors (in &) of v in T, is at least that
of the white neighbors (in G) of v in T,. In
summary, the total weight of w’s open
neighbors exceeds that of v ’s closed
neighbors. Fig. 1 illustrates this case.


mailto:s1056017@mail.yzu.edu.tw
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Opened
already

Figure 1. A simple illustration.

Figure 1. In Case 2, the vertices shallower than
v in T are already open. All neighbors (in &) of
v must be in T, because a DFS tree cannot have
a cross edge, i.e., the red dashed edge cannot exist.
In this illustration, + has four neighbors (in &)
deeper than v in T (note that those four
neighbors are connected to v either by a tree
edge or a back edge, but not by a cross edge). By
our method of coloring, v is colored white
because at least half of the total weight of w’s
neighbors (in &) deeper than v are contributed
by black vertices—In this figure, the white
neighbors of v deeper than v have a total
weight of 3+ 2 =73, and the black counterpart
has a greater total weight of 2 + 4 = & Now in
Case 2, at least half of the total weight of w’s
neighbors (in &) deeper than v are contributed
by black vertices, and all of 1’s neighbors (in &)
shallower than 1 are already open; hence w
would be opened according to our graph process.

Let B be the set of non-root black vertices and
W be the set of non-root white vertices.
According to Claim 1, opening the root and all
black vertices will open all vertices at the end. By
symmetry, opening the root and all white vertices
will open all vertices at the end. So there exist
perfect target sets of sizes at most 1 + |E| and at
most 1+ [W|. Because BUW is the set of
non-root vertices, |B| +|W| = ¥| — 1, implying

vl
min{l + [Bl.1 + Wi} = I? -
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