
1 -1

Chapter 1

Introduction

1 -2

Why to study algorithms?
 Sorting problem:

To sort a set of elements into increasing or
decreasing order.
11, 7, 14, 1, 5, 9, 10
↓sort
1, 5, 7, 9, 10, 11, 14

 Insertion sort
 Quick sort

1 -3

 Comparison of two algorithms implemented on
two computers

0

5

10

15

20

25

30

35

200 600 1000 1400 1800
numer of data items

Seconds

Insertion
sort by
VAX8800
Quicksort
by PC/XT

1 -4

Analysis of algorithms
 Measure the goodness of algorithms

 efficiency
 asymptotic notations: e.g. O(n2)
 worst case
 average case
 amortized

 Measure the difficulty of problems
 NP-complete
 undecidable
 lower bound

 Is the algorithm optimal?

1 -5

0/1 Knapsack problem

M(weight limit)=14
best solution: P1, P2, P3, P5(optimal)
This problem is NP-complete.

P1 P2 P3 P4 P5 P6 P7 P8

Value 10 5 1 9 3 4 11 17
Weight 7 3 3 10 1 9 22 15

1 -6

Traveling salesperson problem
 Given: A set of n planar points

Find: A closed tour which includes all
points exactly once such that its total
length is minimized.

 This problem is NP-complete.

1 -7

Partition problem
 Given: A set of positive integers S

Find: S1 and S2 such that S1S2=, S1S2=S,

(partition into S1 and S2 such that the sum of S1
is equal to that of S2)

 e.g. S={1, 7, 10, 4, 6, 8, 3, 13}
 S1={1, 10, 4, 8, 3}
 S2={7, 6, 13}

 This problem is NP-complete.





21 SiSi
ii

1 -8

 Given: an art gallery
Determine: min # of guards and their
placements such that the entire art gallery
can be monitored.

 NP-complete

Art gallery problem

1 -9

Minimum spanning tree
 graph: greedy method
 geometry(on a plane): divide-and-

conquer
 # of possible spanning trees for n

points: nn-2

 n=10→108, n=100→10196

1 -10

Convex hull

 Given a set of planar points, find a smallest
convex polygon which contains all points.

 It is not obvious to find a convex hull by
examining all possible solutions

 divide-and-conquer

1 -11

One-center problem

 Given a set of planar points, find a smallest
circle which contains all points.

 Prune-and-search

2 -1

Chapter 2

The Complexity of Algorithms
and the Lower Bounds of

Problems

2 -2

The goodness of an algorithm
 Time complexity (more important)
 Space complexity
 For a parallel algorithm :

 time-processor product
 For a VLSI circuit :

 area-time (AT, AT2)

2 -3

Measure the goodness of an
algorithm

 Time complexity of an algorithm
 efficient (algorithm)
 worst-case
 average-case
 amortized

2 -4

 NP-complete ?
 Undecidable ?
 Is the algorithm best ?

 optimal (algorithm)

 We can use the number of comparisons
to measure a sorting algorithm.

Measure the difficulty of a problem

2 -5

Asymptotic notations
 Def: f(n) = O(g(n)) "at most"
 c, n0  |f(n)|  c|g(n)|  n  n0

 e.g. f(n) = 3n2 + 2
g(n) = n2

 n0=2, c=4
 f(n) = O(n2)

 e.g. f(n) = n3 + n = O(n3)
 e. g. f(n) = 3n2 + 2 = O(n3) or O(n100)

2 -6

 Def : f(n) = (g(n)) “at least“, “lower bound"
 c, and n0,  |f(n)|  c|g(n)|  n  n0

e. g. f(n) = 3n2 + 2 = (n2) or  (n)

 Def : f(n) = (g(n))
 c1, c2, and n0,  c1|g(n)|  |f(n)|  c2|g(n)|  n  n0

e. g. f(n) = 3n2 + 2 =  (n2)

 Def : f(n)  o(g(n))

 1

e.g. f(n) = 3n2+n = o(3n2)
n

f n
g n

lim
()
()

2 -7

Problem size

Time Complexity Functions

10 102 103 104

log2n 3.3 6.6 10 13.3

n 10 102 103 104

nlog2n 0.33x102 0.7x103 104 1.3x105

n2 102 104 106 108

2n 1024 1.3x1030 >10100 >10100

n! 3x106 >10100 >10100 >10100

2 -8

Common computing time functions
 O(1)  O(log n)  O(n)  O(n log n)  O(n2)  O(n3) 

O(2n)  O(n!)  O(nn)
 Exponential algorithm: O(2n)
 Polynomial algorithm: e.g. O(n2), O(nlogn)

 Algorithm A : O(n3), Algorithm B : O(n)
 Should Algorithm B run faster than A?

NO !
 It is true only when n is large enough!

2 -9

Analysis of algorithms
 Best case: easiest
 Worst case
 Average case: hardest

2 -10

Straight insertion sort
input: 7,5,1,4,3

7,5,1,4,3
5,7,1,4,3
1,5,7,4,3
1,4,5,7,3
1,3,4,5,7

2 -11

Algorithm 2.1 Straight Insertion Sort
Input: x1,x2,...,xn
Output: The sorted sequence of x1,x2,...,xn

For j := 2 to n do
Begin

i := j-1
x := xj
While x<xi and i > 0 do
Begin

xi+1 := xi
i := i-1

End
xi+1 := x

End
2 -12

Inversion table
 (a1,a2,...,an) : a permutation of {1,2,...,n}
 (d1,d2,...,dn): the inversion table of (a1,a2,...an)
 dj: the number of elements to the left of j that

are greater than j
 e.g. permutation (7 5 1 4 3 2 6)

inversion table 2 4 3 2 1 1 0

 e.g. permutation (7 6 5 4 3 2 1)
inversion table 6 5 4 3 2 1 0

2 -13

 M: # of data movements in straight
insertion sort

1 5 7 4 3

temporary
e.g. d3=2









1

1
)2(

n

i
idM

Analysis of # of movements

2 -14

 best case: already sorted
di = 0 for 1  i  n
M = 2(n  1) = O(n)

 worst case: reversely sorted
d1 = n  1
d2 = n  2
:

di = n  i
dn = 0

Analysis by inversion table

)O(
2

)1()1(2)2(2
1

1
nnnndM

n

i
i 


 





2 -15

 average case:
xj is being inserted into the sorted sequence
x1 x2 ... x j-1

 the probability that xj is the largest: 1/j
 takes 2 data movements

 the probability that xj is the second largest : 1/j
 takes 3 data movements

:
 # of movements for inserting xj:


















n

j
nnnjM

j
j

j
jj

2

2)O(
4

)1)(8(
2

3
2

3132 

1 4 7 5

2 -16

Analysis of # of exchanges
 Method 1 (straightforward)
 xj is being inserted into the sorted sequence

x1 x2 xj-1
 If xj is the kth (1kj) largest, it takes (k1)

exchanges.
 e.g. 1 5 74

1 54 7
1 4 5 7

 # of exchanges required for xj to be inserted:

2
1110 





j

j
j

jj


2 -17

 # of exchanges for sorting:

4
)1(

2
1

2
)2)(1(

2
1

2
1

2

2
1

22

2






















nn

nnn

j

j

n

j

n

j

n

j

2 -18

Method 2: with inversion table
and generating function

n\k 0 1 2 3 4 5 6
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 2 1 0 0 0
4 1 3 5 6 5 3 1

In(k): # of permutations in n nmbers which
have exactly k inversions

2 -19

 Assume we have I3(k), 0  k  3. We will
calculate I4(k).
(1) a1 a2 a3 a4 (2) a1 a2 a3 a4

 
largest second largest
G3(Z) ZG3(Z)

(3) a1 a2 a3 a4 (4) a1 a2 a3 a4
 

third largest smallest
)(3

2 ZGZ)(3
3 ZGZ

2 -20

case I4(0) I4(1) I4(2) I4(3) I4(4) I4(5) I4(6)
1 I3(0) I3(1) I3(2) I3(3)
2 I3(0) I3(1) I3(2) I3(3)
3 I3(0) I3(1) I3(2) I3(3)
4 I3(0) I3(1) I3(2) I3(3)

case I4(0) I4(1) I4(2) I4(3) I4(4) I4(5) I4(6)
1 1 2 2 1
2 1 2 2 1
3 1 2 2 1
4 1 2 2 1

total 1 3 5 6 5 3 1

2 -21

 generating function for In(k)

 for n = 4

 in general,





m

k

k
nn ZkIZG

0
)()(

)()1(
)356531()(

3
32

65432
4

ZGZZZ
ZZZZZZZG





)()1()(1
12 ZGZZZZG n

n
n 

 

2 -22

 generating function for Pn(k):

)1(
0

0

)1(')(

1
)(

)()(

4
1

2
1

2
2

2
1

2
1

1
)2(21)1(21

0

2
1

1
11

!
1

0
!

)(

0

2212


































nn

gkkP

ZG

ZZkPZg

nn
n

n
n

n

m

k
nn

Z
n

ZZZ
n

ZZZ

nn

m

k

k
n

kIn
m

k

k
nn

nn











Pn(k): probability that a given permutation
of n numbers has k inversions

2 -23

Binary search

 sorted sequence : (search 9)
1 4 5 7 9 10 12 15

step 1 
step 2 
step 3 
 best case: 1 step = O(1)
 worst case: (log2 n+1) steps = O(log n)
 average case: O(log n) steps

2 -24

n cases for successful search
n+1 cases for unsuccessful search

Average # of comparisons done in the binary tree:

A(n) = , where k = log n+1
1

2 1
11

1
2n

i k ni

i

k


 








 ()

2 -25

Assume n=2k

i ki k

i

k



   1

1
2 2 1 1()

proved by induction
on k

A(n) =

 k as n is very large
= log n
= O(log n)

1
2 1

1 1 12 2n
k kk k


   (() ())

2 -26

Straight selection sort
 7 5 1 4 3

1 5 7 4 3
1 3 7 4 5
1 3 4 7 5
1 3 4 5 7

 Only consider # of changes in the flag which is used
for selecting the smallest number in each iteration.
 best case: O(1)
 worst case: O(n2)
 average case: O(n log n)

2 -27

Quicksort

 Recursively apply the same procedure.

11 5 24 2 31 7 8 26 10 15
 ↑ ↑

11 5 10 2 31 7 8 26 24 15
 ↑ ↑

11 5 10 2 8 7 31 26 24 15
△ △
7 5 10 2 8 11 31 26 24 15

|← <11 →| |← > 11 →|

2 -28

Best case of quicksort
 Best case: O(nlogn)
 A list is split into two sublists with almost

equal size.

 log n rounds are needed
 In each round, n comparisons (ignoring the

element used to split) are required.

2 -29

Worst case of quicksort
 Worst case: O(n2)
 In each round, the number used to split is

either the smallest or the largest.

)O(
2

)1(1)1(2nnnnn 


 

2 -30

Average case of quicksort
 Average case: O(n log n)

 s n-s
 include the splitter

T(n) =
1 

  
s n

Avg T s T n s cn(() ()) , c is a constant

= 1
1n

T s T(n s cn
s

n
(()))  




= 1
n

(T(1)+T(n1)+T(2)+T(n2)+…+T(n)+T(0))+cn, T(0)=0

= 1
n

(2T(1)+2T(2)+…+2T(n1)+T(n))+cn

2 -31

(n1)T(n) = 2T(1)+2T(2)+…+2T(n1) + cn2……(1)
(n2)T(n-1)=2T(1)+2T(2)+…+2T(n2)+c(n1)2…(2)

(1)  (2)

(n1)T(n) (n2)T(n1) = 2T(n1)+c(2n1)
(n1)T(n) nT(n1) = c(2n1)

T(n

n
) = T(n

n
c

n n



 


1
1

1 1
1

) ()

=c(1 1
1n n




)+c(1
1

1
2n n




)+…+c(1
2

1)+T(1), T(1) = 0

=c(1 1
1

1
2n n




 ...)+c(1
1

1
2

1
n n




 ...)

2 -32

Harmonic number[Knuth 1986]
Hn = 1+ 1

2
+ 1

3
+…+ 1

n

=ln n +  + 1
2n
 1

12 2n
+ 1

120 4n
, where 0<< 1

252 6n

 = 0.5772156649….
Hn = O(log n)

T n
n
() = c(Hn1) + cHn-1

 = c(2Hn 1
n
1)

T(n) = 2 c n Hn  c(n+1)
 =O(n log n)

2 -33

2-D ranking finding
 Def: Let A = (x1,y1), B = (x2,y2). B dominates A iff

x2 > x1 and y2 > y1
 Def: Given a set S of n points, the rank of a point x

is the number of points dominated by x.

B

A C

D

E

rank(A)= 0 rank(B) = 1 rank(C) = 1
rank(D) = 3 rank(E) = 0

2 -34

L

1+3=4

 More efficient algorithm (divide-and-conquer)

A B

0+1=1
0+2=2

2+3=5

2+4=6
1

1

0
0

 Straightforward algorithm:
compare all pairs of points : O(n2)

2 -35

Step 1: Split the points along the median line L
into A and B.

Step 2: Find ranks of points in A and ranks of
points in B, recursively.

Step 3: Sort points in A and B according to their
y-values. Update the ranks of points in B.

Divide-and-conquer 2-D
ranking finding

2 -36

 time complexity : step 1 : O(n) (finding median)
 step 3 : O(n log n) (sorting)

 total time complexity :

 T(n)  2T(n
2

) + c1 n log n + c2 n, c1, c2 are constants

  2T(n
2

) + c n log n , let c= c1 + c2

  4T(n
4

) + c n log n
2

 + c n log n

  nT(1) + c(n log n + n log n
2

+n log n
4

+…+n log 2)

 = nT(1) + cn n nlog (log log) 2
2

 = O(n log2n)

2 -37

Lower bound
 Def : A lower bound of a problem is the least time

complexity required for any algorithm which can
be used to solve this problem.

 ☆ worst case lower bound
☆ average case lower bound

 The lower bound for a problem is not unique.
 e.g. (1), (n), (n log n) are all lower bounds

for sorting.
 ((1), (n) are trivial)

2 -38

 At present, if the highest lower bound of a
problem is (n log n) and the time complexity
of the best algorithm is O(n2).
 We may try to find a higher lower bound.
 We may try to find a better algorithm.
 Both of the lower bound and the algorithm may be

improved.
 If the present lower bound is (n log n) and

there is an algorithm with time complexity O(n
log n), then the algorithm is optimal.

2 -39

The worst case lower bound of sorting

6 permutations for 3 data elements
a1 a2 a3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

2 -40

Straight insertion sort:
 input data: (2, 3, 1)

(1) a1:a2
(2) a2:a3, a2a3
(3) a1:a2, a1a2

 input data: (2, 1, 3)
(1)a1:a2, a1a2
(2)a2:a3

2 -41

Decision tree for straight
insertion sort

2 -42

Decision tree for bubble sort

2 -43

Lower bound of sorting
 Every sorting algorithm (based on comparisons)

corresponds to a decision tree.
 To find the lower bound, we have to find the

depth of a binary tree with the smallest depth.
 n! distinct permutations

n! leaf nodes in the binary decision tree.
 balanced tree has the smallest depth:
log(n!) = (n log n)
lower bound for sorting: (n log n)

(See the next page.)
2 -44

Method 1:
log(n!) = log(n(n1)…1)
 = log2 + log3 +…+ log n
  log xdxn

1

 = log e ln xdxn
1

 = log e[ln]x x x n 1
 = log e(n ln n  n + 1)
 = n log n  n log e + 1.44
  n log n  1.44n
 =(n log n)

2 -45

Method 2:
 Stirling approximation:

)log(logloglog
2
12log!log nnnn

e
nnnn  

n n! Sn
1 1 0.922
2 2 1.919
3 6 5.825
4 24 23.447
5 120 118.02
6 720 707.39

10 3,628,800 3,598,600
20 2.433x1018 2.423x1018
100 9.333x10157 9.328x10157

n
n e

nnSn)(2! 

2 -46

Heapsort—An optimal sorting algorithm

 A heap : parent  son

2 -47

 output the maximum and restore:

 Heapsort:
 Phase 1: Construction
 Phase 2: Output

2 -48

Phase 1: construction

 input data: 4, 37, 26, 15, 48  restore the subtree rooted
at A(2):

 restore the tree rooted at
A(1):

2 -49

Phase 2: output

2 -50

Implementation
 using a linear array

not a binary tree.
 The sons of A(h) are A(2h) and A(2h+1).

 time complexity: O(n log n)

2 -51

Time complexity
Phase 1: construction

d = log n : depth
of comparisons is at most:

L

d






0

1
2(dL)2L

=2d
L

d






0

1
2L  4

L

d






0

1
L2L-1

(
L

k




0
L2L-1 = 2k(k1)+1)

=2d(2d1)  4(2d-1(d  1  1) + 1)
 :
= cn  2log n  4, 2  c  4

d

L

d-L

2 -52

Time complexity
Phase 2: output

2
i

n






1

1
log i

= :
=2nlog n  4cn + 4, 2  c  4
=O(n log n)

log i
i nodes

max

2 -53

Average case lower bound of sorting
 By binary decision tree
 The average time complexity of a sorting

algorithm:
the external path length of the binary tree

n!
 The external path length is minimized if the

tree is balanced.
(all leaf nodes on level d or level d1)

2 -54

unbalanced
external path length
= 43 + 1 = 13

balanced
external path length
= 23+32 = 12

2 -55

Compute the min external path length

1. Depth of balanced binary tree with c leaf nodes:
d = log c
Leaf nodes can appear only on level d or d1.

2. x1 leaf nodes on level d1
x2 leaf nodes on level d

x1 + x2 = c

x1 + = 2d-1

 x1 = 2d c
x2 = 2(c  2d-1)

x2
2

2 -56

3. External path length:
M= x1(d  1) + x2d
= (2d  c)(d  1) + 2(c  2d-1)d
= c+cd - 2d, log c  d < log c+1
 c+c log c  2*2log c

= c log c  c
4. c = n!

M = n! log n!  n!
M/n! = log n!  1

= (n log n)
Average case lower bound of sorting: (n log n)

2 -57

Quicksort & Heapsort
 Quicksort is optimal in the average case.

(O(n log n) in average)
 (i)worst case time complexity of heapsort is

O(n log n)
(ii)average case lower bound: (n log n)
 average case time complexity of heapsort is

O(n log n)
 Heapsort is optimal in the average case.

2 -58

Improving a lower bound
through oracles

 Problem P: merge two sorted sequences A
and B with lengths m and n.

 Conventional 2-way merging:
2 3 5 6
1 4 7 8

 Complexity: at most m+n-1 comparisons

2 -59

 (1) Binary decision tree:
There are ways !

leaf nodes in the decision tree.
 The lower bound for merging:

log   m + n  1
(conventional merging)








 
n

nm








 
n

nm








 
n

nm

2 -60

 When m = n

Using Stirling approximation

!log2))!2log((
)!(
)!2(loglog 2 mm

m
m

n
nm








 

n

e
nnn)(2! 

12)1(log
2
12

)loglog2(log 2

)2log22log2(loglog












 

mOmm

e
mmm

e
mmm

n
nm





 Optimal algorithm: conventional merging needs
2m-1 comparisons

2 -61

(2) Oracle:
 The oracle tries its best to cause the

algorithm to work as hard as it might. (to
give a very hard data set)

 Two sorted sequences:
 A: a1 < a2 < … < am
 B: b1 < b2 < … < bm

 The very hard case:
 a1 < b1 < a2 < b2 < … < am < bm

2 -62

 We must compare:
a1 : b1
b1 : a2
a2 : b2
:
bm-1 : am-1
am : bm

 Otherwise, we may get a wrong result for some input data.
e.g. If b1 and a2 are not compared, we can not distinguish

a1 < b1 < a2 < b2 < … < am < bm and
a1 < a2 < b1 < b2 < … < am < bm

 Thus, at least 2m1 comparisons are required.
 The conventional merging algorithm is optimal for m = n.

2 -63

Finding lower bound by
problem transformation

 Problem A reduces to problem B (AB)
 iff A can be solved by using any algorithm which

solves B.
 If AB, B is more difficult.

 Note: T(tr1) + T(tr2) < T(B)
T(A)  T(tr1) + T(tr2) + T(B)  O(T(B))

instance
of A

 transformation
 T(tr1)

 instance of B

T(A) T(B) solver of B
answer

of A transformation
T(tr2)

answer of B

2 -64

The lower bound of the
convex hull problem

 sorting  convex hull
A B

 an instance of A: (x1, x2,…, xn)
↓transformation

an instance of B: {(x1, x1
2), (x2,

x2
2),…, (xn, xn

2)}
assume: x1 < x2 < …< xn

2 -65

 If the convex hull problem can be
solved, we can also solve the sorting
problem.
 The lower bound of sorting: (n log n)

 The lower bound of the convex hull
problem: (n log n)

2 -66

The lower bound of the Euclidean
minimal spanning tree (MST) problem

 sorting  Euclidean MST
A B

 an instance of A: (x1, x2,…, xn)
↓transformation

an instance of B: {(x1, 0), (x2, 0),…, (xn, 0)}
 Assume x1 < x2 < x3 <…< xn
 there is an edge between (xi, 0) and (xi+1, 0)

in the MST, where 1  i  n1

2 -67

 If the Euclidean MST problem can be
solved, we can also solve the sorting
problem.
 The lower bound of sorting: (n log n)

 The lower bound of the Euclidean MST
problem: (n log n)

3 -1

Chapter 3

The Greedy Method

3 -2

A simple example
 Problem: Pick k numbers out of n

numbers such that the sum of these k
numbers is the largest.

 Algorithm:
FOR i = 1 to k

pick out the largest number and
delete this number from the input.

ENDFOR

3 -3

The greedy method

 Suppose that a problem can be solved by a
sequence of decisions. The greedy method
has that each decision is locally optimal.
These locally optimal solutions will finally add
up to a globally optimal solution.

 <戰國策.秦策>范睢對秦昭襄王說：「王不如
遠交而近攻，得寸，王之寸；得尺，亦王之尺
也。」

 Only a few optimization problems can be
solved by the greedy method.

3 -4

Shortest paths on a special graph
 Problem: Find a shortest path from v0 to v3.
 The greedy method can solve this problem.
 The shortest path: 1 + 2 + 4 = 7.

3 -5

Shortest paths on a multi-stage graph
 Problem: Find a shortest path from v0 to v3

in the multi-stage graph.

 Greedy method: v0v1,2v2,1v3 = 23
 Optimal: v0v1,1v2,2v3 = 7
 The greedy method does not work.

3 -6

Solution of the above problem
 dmin(i,j): minimum distance between i

and j.

 This problem can be solved by the
dynamic programming method.

dmin(v0,v3)=min







3+dmin(v1,1,v3)
1+dmin(v1,2,v3)
5+dmin(v1,3,v3)
7+dmin(v1,4,v3)

3 -7

Minimum spanning trees (MST)
 It may be defined on Euclidean space

points or on a graph.
 G = (V, E): weighted connected

undirected graph
 Spanning tree : S = (V, T), T  E,

undirected tree
 Minimum spanning tree(MST) : a

spanning tree with the smallest total
weight.

3 -8

An example of MST
 A graph and one of its minimum costs

spanning tree

3 -9

Kruskal’s algorithm for
finding MST

Step 1: Sort all edges into nondecreasing order.
Step 2: Add the next smallest weight edge to the

forest if it will not cause a cycle.
Step 3: Stop if n-1 edges. Otherwise, go to Step2.

3 -10

An example of Kruskal’s algorithm

3 -11

The details for constructing MST
 How do we check if a cycle is formed

when a new edge is added?
 By the SET and UNION method.

 Each tree in the spanning forest is
represented by a SET.
 If (u, v)  E and u, v are in the same set,

then the addition of (u, v) will form a cycle.
 If (u, v)  E and uS1 , vS2 , then

perform UNION of S1 and S2 .

3 -12

Time complexity
 Time complexity: O(|E| log|E|)

 Step 1: O(|E| log|E|)

 Step 2 & Step 3:
Where  is the inverse of Ackermann’s function.

|))||,(| |(|O VEE 

3 -13

Ackermann’s function



 A(p, q+1) > A(p, q), A(p+1, q) > A(p, q)

A(,)3 4 222
2


 




65536 two’s

2,for))1,(,1(),(
2for)2,1()1,(
1for 2),1(





jijiAiAjiA
iiAiA
jjA j

3 -14

Inverse of Ackermann’s function

 (m, n) = min{i1|A(i, m/n) > log2n}
Practically, A(3,4) > log2n
(m, n)  3
(m, n) is almost a constant.

3 -15

Prim’s algorithm for finding
MST

Step 1: x  V, Let A = {x}, B = V - {x}.
Step 2: Select (u, v)  E, u  A, v  B

such that (u, v) has the smallest weight
between A and B.

Step 3: Put (u, v) in the tree. A = A  {v},
B = B - {v}

Step 4: If B = , stop; otherwise, go to
Step 2.

 Time complexity : O(n2), n = |V|.
(see the example on the next page)

3 -16

An example for Prim’s algorithm

3 -17

The single-source shortest
path problem

 shortest paths from v0 to all destinations

3 -18

Dijkstra’s algorithm

 1 2 3 4 5 6 7 8
1 0
2 300 0

3 1000 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0

In the cost adjacency
matrix, all entries not
shown are +.

3 -19 Time complexity : O(n2), n = |V|.

 Vertex
Iteration S Selected (1) (2) (3) (4) (5) (6) (7) (8)

Initial ----
1 5 6 + + + 1500 0 250 + +
2 5,6 7 + + + 1250 0 250 1150 1650
3 5,6,7 4 + + + 1250 0 250 1150 1650
4 5,6,7,4 8 + + 2450 1250 0 250 1150 1650
5 5,6,7,4,8 3 3350 + 2450 1250 0 250 1150 1650
6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650
 5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 1650

3 -20

 Can we use Dijkstra’s algorithm to find the
longest path from a starting vertex to an
ending vertex in an acyclic directed graph?

 There are 3 possible ways to apply Dijkstra’s
algorithm:
 Directly use “max” operations instead of “min”

operations.
 Convert all positive weights to be negative. Then

find the shortest path.
 Give a very large positive number M. If the

weight of an edge is w, now M-w is used to
replace w. Then find the shortest path.

 All these 3 possible ways would not work!

The longest path problem

3 -21

 The longest path(critical path) problem
can be solved by the critical path
method(CPM) :

Step 1:Find a topological ordering.
Step 2: Find the critical path.
(see [Horiwitz 1995].)
 [[Horowitz 1995] E. Howowitz, S. Sahni and D.

Metha, Fundamentals of Data Structures in C++,
Computer Science Press, New York, 1995

CPM for the longest path
problem

3 -22

The 2-way merging problem
 # of comparisons required for the linear 2-

way merge algorithm is m1+ m2 -1 where m1
and m2 are the lengths of the two sorted lists
respectively.
 2-way merging example

2 3 5 6
1 4 7 8

 The problem: There are n sorted lists, each of
length mi. What is the optimal sequence of
merging process to merge these n lists into
one sorted list ?

3 -23

 An extended binary tree representing a 2-way
merge

Extended binary trees

3 -24

An example of 2-way merging
 Example: 6 sorted lists with lengths 2,

3, 5, 7, 11 and 13.

3 -25

 Time complexity for
generating an optimal
extended binary
tree:O(n log n)

3 -26

Huffman codes
 In telecommunication, how do we represent a

set of messages, each with an access
frequency, by a sequence of 0’s and 1’s?

 To minimize the transmission and decoding
costs, we may use short strings to represent
more frequently used messages.

 This problem can by solved by using an
extended binary tree which is used in the 2-
way merging problem.

3 -27

An example of Huffman algorithm
 Symbols: A, B, C, D, E, F, G

freq. : 2, 3, 5, 8, 13, 15, 18

 Huffman codes:
A: 10100 B: 10101 C: 1011
D: 100 E: 00 F: 01
G: 11

A Huffman code Tree

3 -28

The minimal cycle basis
problem

 3 cycles:
A1 = {ab, bc, ca}
A2 = {ac, cd, da}
A3 = {ab, bc, cd, da}
where A3 = A1  A2
(A  B = (AB)-(AB))
A2 = A1  A3
A1 = A2  A3
Cycle basis : {A1, A2} or {A1, A3} or {A2, A3}

3 -29

 Def : A cycle basis of a graph is a set of
cycles such that every cycle in the
graph can be generated by applying 
on some cycles of this basis.

 Minimal cycle basis : smallest total
weight of all edges in this cycle.

 e.g. {A1, A2}

3 -30

 Algorithm for finding a minimal cycle basis:
Step 1: Determine the size of the minimal cycle

basis, demoted as k.
Step 2: Find all of the cycles. Sort all cycles(by

weight).
Step 3: Add cycles to the cycle basis one by one.

Check if the added cycle is a linear combination of
some cycles already existing in the basis. If it is,
delete this cycle.

Step 4: Stop if the cycle basis has k cycles.

3 -31

Detailed steps for the minimal
cycle basis problem

 Step 1 :
A cycle basis corresponds to the fundamental set of
cycles with respect to a spanning tree.

a graph a spanning tree

of cycles in a
cycle basis :
= k
= |E| - (|V|- 1)
= |E| - |V| + 1

a fundamental set
of cycles

3 -32

 Step 2:
How to find all cycles in a graph?
[Reingold, Nievergelt and Deo 1977]
How many cycles in a graph in the worst case?

In a complete digraph of n vertices and n(n-1) edges:

 Step 3:
How to check if a cycle is a linear combination of some

cycles?
Using Gaussian elimination.

1)!-(n)!1(
2




n

i

n
i iC

3 -33

 E.g. e1 e2 e3 e4 e5
C1 1 1 1
C2 1 1 1

 2 cycles C1 and C2 are
represented by a 0/1 matrix

 e1 e2 e3 e4 e5
C1 1 1 1
C2 1 1 1
C3 1 1 1 1

 Add C3

 e1 e2 e3 e4 e5
C1 1 1 1
C2 1 1 1
C3 1 1 1

  on rows 1 and 3

 on rows 2 and 3 : empty
∵C3 = C1  C2

Gaussian elimination

3 -34

The 2-terminal one to any special
channel routing problem

 Def: Given two sets of terminals on the upper and
lower rows, respectively, we have to connect each
upper terminal to the lower row in a one to one
fashion. This connection requires that # of tracks
used is minimized.

3 -35

2 feasible solutions
v ia

3 -36

Redrawing solutions
(a) Optimal solution

(b) Another solution

3 -37

 At each point, the local density of the solution
is # of lines the vertical line intersects.

 The problem: to minimize the density. The
density is a lower bound of # of tracks.

 Upper row terminals: P1 ,P2 ,…, Pn from left
to right

 Lower row terminals: Q1 ,Q2 ,…, Qm from left
to right m > n.

 It would never have a crossing connection:

3 -38

 Suppose that we have a method to
determine the minimum density, d, of a
problem instance.

 The greedy algorithm:
Step 1 : P1 is connected Q1.
Step 2 : After Pi is connected to Qj, we check

whether Pi+1 can be connected to Qj+1. If the
density is increased to d+1, try to connect
Pi+1 to Qj+2.

Step 3 : Repeat Step2 until all Pi’s are
connected.

3 -39

The knapsack problem
 n objects, each with a weight wi > 0

a profit pi > 0
capacity of knapsack: M

Maximize
Subject to

0  xi  1, 1  i  n

p xi i
i n1 


w x Mi i
i n1 
 

3 -40

The knapsack algorithm
 The greedy algorithm:

Step 1: Sort pi/wi into nonincreasing order.
Step 2: Put the objects into the knapsack according

to the sorted sequence as possible as we can.
 e. g.

n = 3, M = 20, (p1, p2, p3) = (25, 24, 15)
(w1, w2, w3) = (18, 15, 10)
Sol: p1/w1 = 25/18 = 1.39

p2/w2 = 24/15 = 1.6
p3/w3 = 15/10 = 1.5

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

4 -1

Chapter 4

The Divide-and-Conquer Strategy

4 -2

A simple example
 finding the maximum of a set S of n numbers

4 -3

 Time complexity:

 Calculation of T(n):
Assume n = 2k,

T(n) = 2T(n/2)+1
= 2(2T(n/4)+1)+1
= 4T(n/4)+2+1

:
=2k-1T(2)+2k-2+…+4+2+1
=2k-1+2k-2+…+4+2+1
=2k-1 = n-1

T(n)=




 2T(n/2)+1
1

, n>2
, n2

Time complexity

4 -4

 文選自 <史記.李斯列傳>，是李斯上呈
秦王政的一篇奏疏。

 「惠王用張儀之計，拔三川之地，西并
巴、蜀，北收上郡，南取漢中，包九夷，
制鄢(一ㄢ)、郢(ㄧㄥˇ)，東據成皋之險，
割膏腴之壤，遂散六國之從(縱)，使之
西面事秦，功施(一ˋ)到今。」

 註：秦滅六國順序：韓、趙、魏、楚、
燕、齊

諫逐客書—李斯

4 -5

A general divide-and-conquer
algorithm

Step 1: If the problem size is small, solve this
problem directly; otherwise, split the
original problem into 2 sub-problems
with equal sizes.

Step 2: Recursively solve these 2 sub-problems
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-
problems into a solution of the original
problem.

4 -6

Time complexity of the
general algorithm

 Time complexity:

where S(n) : time for splitting
M(n) : time for merging

b : a constant
c : a constant

 e.g. Binary search
 e.g. quick sort
 e.g. merge sort e.g. 2 6 5 3 7 4 8 1

T(n)=




 2T(n/2)+S(n)+M(n)
b

, n  c
, n < c

4 -7

2-D maxima finding problem

 Def : A point (x1, y1) dominates (x2, y2) if x1
> x2 and y1 > y2. A point is called a
maximum if no other point dominates it

 Straightforward method : Compare every pair
of points.

Time complexity:
O(n2)

4 -8

Divide-and-conquer for
maxima finding

The maximal points of SL and SR

4 -9

The algorithm:
 Input: A set S of n planar points.
 Output: The maximal points of S.
Step 1: If S contains only one point, return it as

the maximum. Otherwise, find a line L
perpendicular to the X-axis which separates S
into SLand SR, with equal sizes.

Step 2: Recursively find the maximal points of
SL and SR .

Step 3: Find the largest y-value of SR, denoted
as yR. Discard each of the maximal points of
SL if its y-value is less than or equal to yR.

4 -10

 Time complexity: T(n)
Step 1: O(n)
Step 2: 2T(n/2)
Step 3: O(n)

Assume n = 2k

T(n) = O(n log n)

T(n)=




 2T(n/2)+O(n)+O(n)
1

, n > 1
, n = 1

4 -11

The closest pair problem
 Given a set S of n points, find a pair of points

which are closest together.
 1-D version :

Solved by sorting
Time complexity :

O(n log n)

 2-D version

4 -12

 at most 6 points in area A:

4 -13

The algorithm:
 Input: A set S of n planar points.
 Output: The distance between two closest

points.
Step 1: Sort points in S according to their y-

values.
Step 2: If S contains only one point, return

infinity as its distance.
Step 3: Find a median line L perpendicular to

the X-axis to divide S into SL and SR, with
equal sizes.

Step 4: Recursively apply Steps 2 and 3 to solve
the closest pair problems of SL and SR. Let
dL(dR) denote the distance between the
closest pair in SL (SR). Let d = min(dL, dR). 4 -14

Step 5: For a point P in the half-slab bounded
by L-d and L, let its y-value be denoted as yP .
For each such P, find all points in the half-
slab bounded by L and L+d whose y-value
fall within yP+d and yP-d. If the distance d
between P and a point in the other half-slab
is less than d, let d=d. The final value of d is
the answer.

 Time complexity: O(n log n)
Step 1: O(n log n)
Steps 2~5:

T(n) = O(n log n)

T(n)=




 2T(n/2)+O(n)+O(n)
1

, n > 1
, n = 1

4 -15

The convex hull problem

 The convex hull of a set of planar points is
the smallest convex polygon containing all of
the points.

concave polygon: convex polygon:

4 -16

 The divide-and-conquer strategy to
solve the problem:

4 -17

 The merging procedure:
1. Select an interior point p.
2. There are 3 sequences of points which have

increasing polar angles with respect to p.
(1) g, h, i, j, k
(2) a, b, c, d
(3) f, e

3. Merge these 3 sequences into 1 sequence:
g, h, a, b, f, c, e, d, i, j, k.

4. Apply Graham scan to examine the points
one by one and eliminate the points which
cause reflexive angles.

(See the example on the next page.)
4 -18

 e.g. points b and f need to be deleted.

Final result:

4 -19

Divide-and-conquer for convex hull

 Input : A set S of planar points
 Output : A convex hull for S
Step 1: If S contains no more than five points,

use exhaustive searching to find the convex
hull and return.

Step 2: Find a median line perpendicular to the
X-axis which divides S into SL and SR, with
equal sizes.

Step 3: Recursively construct convex hulls for SL
and SR, denoted as Hull(SL) and Hull(SR),
respectively.

4 -20

 Step 4: Apply the merging procedure to
merge Hull(SL) and Hull(SR) together to form
a convex hull.

 Time complexity:
T(n) = 2T(n/2) + O(n)

= O(n log n)

4 -21

The Voronoi diagram problem
 e.g. The Voronoi diagram for three points

Each Lij is the perpendicular bisector of line
segment . The intersection of three Lij‘s is
the circumcenter (外心) of triangle P1P2P3.

ji PP
4 -22

Definition of Voronoi diagrams
 Def : Given two points Pi, Pj  S, let H(Pi,Pj)

denote the half plane containing Pi. The
Voronoi polygon associated with Pi is defined
as


ji

ji PPHiV


),()(

4 -23

 Given a set of n points, the Voronoi diagram
consists of all the Voronoi polygons of these
points.

 The vertices of the Voronoi diagram are
called Voronoi points and its segments are
called Voronoi edges.

4 -24

Delaunay triangulation

4 -25

臺北捷運站涵蓋區域圖

4 -26

Example for constructing
Voronoi diagrams

 Divide the points into two parts.

4 -27

Merging two Voronoi diagrams
 Merging along the piecewise linear hyperplane

4 -28

 After merging

The final Voronoi diagram

4 -29

Divide-and-conquer for Voronoi
diagram

 Input: A set S of n planar points.
 Output: The Voronoi diagram of S.
Step 1: If S contains only one point, return.
Step 2: Find a median line L perpendicular to

the X-axis which divides S into SL and SR,
with equal sizes.

4 -30

Step 3: Construct Voronoi diagrams of SL and
SR recursively. Denote these Voronoi
diagrams by VD(SL) and VD(SR).

Step 4: Construct a dividing piece-wise linear
hyperplane HP which is the locus of points
simultaneously closest to a point in SL and a
point in SR. Discard all segments of VD(SL)
which lie to the right of HP and all segments
of VD(SR) that lie to the left of HP. The
resulting graph is the Voronoi diagram of S.

(See details on the next page.)

4 -31

Mergeing Two Voronoi Diagrams
into One Voronoi Diagram

 Input: (a) SL and SR where SL and SR are
divided by a perpendicular line L.

(b) VD(SL) and VD(SR).
 Output: VD(S) where S = SL ∩SR

Step 1: Find the convex hulls of SL and SR,
denoted as Hull(SL) and Hull(SR), respectively.
(A special algorithm for finding a convex hull
in this case will by given later.)

4 -32

Step 2: Find segments and which join
HULL(SL) and HULL(SR) into a convex hull (Pa
and Pc belong to SL and Pb and Pd belong to
SR) Assume that lies above . Let x
= a, y = b, SG= and HP =  .

Step 3: Find the perpendicular bisector of SG.
Denote it by BS. Let HP = HP∪{BS}. If SG
= , go to Step 5; otherwise, go to Step 4.

dc PPba PP

ba PP dc PP

yx PP

dc PP

4 -33

Step 4: The ray from VD(SL) and VD(SR) which
BS first intersects with must be a
perpendicular bisector of either or for
some z. If this ray is the perpendicular
bisector of , then let SG = ; otherwise,
let SG = . Go to Step 3.

Step 5: Discard the edges of VD(SL) which
extend to the right of HP and discard the
edges of VD(SR) which extend to the left of
HP. The resulting graph is the Voronoi
diagram of S = SL∪SR.

zx PP zyPP

zyPP zx PP

yzPP

4 -34

Properties of Voronoi Diagrams
 Def : Given a point P and a set S of points,

the distance between P and S is the distance
between P and Pi which is the nearest
neighbor of P in S.

 The HP obtained from the above algorithm is
the locus of points which keep equal
distances to SL and SR .

 The HP is monotonic in y.

4 -35

 # of edges of a Voronoi diagram  3n - 6,
where n is # of points.

 Reasoning:
i. # of edges of a planar graph with n vertices 

3n - 6.
ii. A Delaunay triangulation is a planar graph.
iii. Edges in Delaunay triangulation

edges in Voronoi diagram.1 1 

of Voronoi edges

4 -36

 # of Voronoi vertices  2n - 4.
 Reasoning:

i. Let F, E and V denote # of face, edges and
vertices in a planar graph.
Euler’s relation: F = E - V + 2.

ii. In a Delaunay triangulation,
triangle Voronoi vertex
V = n, E  3n – 6
 F = E - V + 2  3n - 6 - n + 2 = 2n - 4.

of Voronoi vertices

1 1 

4 -37

Construct a convex hull from
a Voronoi diagram

 After a Voronoi diagram is constructed, a
convex hull can by found in O(n) time.

4 -38

Construct a convex hull from
a Voronoi diagram

Step 1: Find an infinite ray by examining all
Voronoi edges.

Step 2: Let Pi be the point to the left of the
infinite ray. Pi is a convex hull vertex.
Examine the Voronoi polygon of Pi to find the
next infinite ray.

Step 3: Repeat Step 2 until we return to the
starting ray.

4 -39

Time complexity
 Time complexity for merging 2 Voronoi

diagrams:
Total: O(n)
 Step 1: O(n)
 Step 2: O(n)
 Step 3 ~ Step 5: O(n)
(at most 3n - 6 edges in VD(SL) and VD(SR)
and at most n segments in HP)

 Time complexity for constructing a Voronoi
diagram: O(n log n)
because T(n) = 2T(n/2) + O(n)=O(n log n)

4 -40

Lower bound
 The lower bound of the Voronoi

diagram problem is (n log n).
sorting  Voronoi diagram problem

The Voronoi diagram for a set
of points on a straight line

4 -41

Applications of Voronoi
diagrams

 The Euclidean nearest neighbor
searching problem.

 The Euclidean all nearest neighbor
problem.

4 -42

Fast Fourier transform (FFT)
 Fourier transform

 Inverse Fourier transform

 Discrete Fourier transform(DFT)
Given a0, a1, …, an-1 , compute

1 where,2  



idta(t)eb(f) πfti






 dtb(f)ea(t) πfti2

2
1


ni
n

k

kj
k

n

k

njki
kj

ea

njeab

/2
1

0

1

0

/2

 where,

10,





 














4 -43

DFT and waveform(1)
 Any periodic waveform can be decomposed

into the linear sum of sinusoid functions (sine
or cosine).

4 -44

DFT and waveform(2)
 Any periodic waveform can be decomposed

into the linear sum of sinusoid functions (sine
or cosine).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4

7 15 48 56
f(頻率)

))56(2cos())48(2cos(3
))15(2cos(3))7(2cos()(
tt

tttf






4 -45

The waveform of a music
signal of 1 second

The frequency spectrum of
the music signal with DFT

DFT and waveform (3)

4 -46

An application of the FFT 
polynomial multiplication

 Polynomial multiplication:

 The straightforward product requires O(n2) time.
 DFT notations:

 
 

 
 

.},,,{ of DFTinverse theis },,,{
 10 ,

...
.},,,{ of DFT theis },,,{

1 ,10 ,Let
...

110110

1

1
1

2
210

110110

1
1

2
210





















nn

k
nk

n
n

nn

nj
j

n
n

bbbaaa
njwha

xbxbxbbxh
aaabbb

wnjwfb
xaxaxaaxf





         xgxfxhxcxgxaxf
n

k

k
k

n

j

j
j  









 ,
1

0

1

0

4 -47

Fast polynomial multiplication
Step 1: Let N be the smallest integer that N=2q and N2n-1.
Step 2: Compute FFT of

Step 3: Compute FFT of

Step 4:
Step 5:

 Time complexity: O(NlogN)=O(nlogn), N<4n.

  Nijj ewNjwgwf /2 ,10),(Compute 

.}0,,0,0,,,,{ 110   


N

naaa 

.}0,,0,0,,,,{ 110   


N

nccc 

 

.)(of tscoefficien the
 are numbers of sequence resulting The

)}.(,),(),({ of DFTinverse Compute
)()(Let

110

xh

whwhwh
wgwfwh

N

jjj







4 -48

 Inverse DFT:



 DFT can be computed in O(n2) time by a
straightforward method.

 DFT can be solved by the divide-and-conquer
strategy (FFT) in O(nlogn) time.

10,1 1

0
 





 nkb
n

a
n

j

jk
jk 

1sincos)(
12sin2cos)(

sincos

2//22/

2/2



















iee
iee

ie

innin

innin

i

FFT algorithm

4 -49

FFT algorithm when n=4
 n=4, w=ei2π/4 , w4=1, w2=-1

b0=a0+a1+a2+a3
b1=a0+a1w+a2w2+a3w3

b2=a0+a1w2+a2w4+a3w6

b3=a0+a1w3+a2w6+a3w9

 another form:
b0=(a0+a2)+(a1+a3)
b2=(a0+a2w4)+(a1w2+a3w6) =(a0+a2)-(a1+a3)

 When we calculate b0, we shall calculate (a0+a2)
and (a1+a3). Later, b2 van be easily calculated.

 Similarly,
b1=(a0+ a2w2)+(a1w+a3w3) =(a0-a2)+w(a1-a3)
b3=(a0+a2w6)+(a1w3+a3w9) =(a0-a2)-w(a1-a3).
















1

0

1

0

/2

n

k

kj
k

n

k

njki
kj

a

eab





4 -50

FFT algorithm when n=8

 n=8, w=ei2π/8, w8=1, w4=-1
b0=a0+a1+a2+a3+a4+a5+a6+a7
b1=a0+a1w+a2w2+a3w3+a4w4+a5w5+a6w6+a7w7

b2=a0+a1w2+a2w4+a3w6+a4w8+a5w10+a6w12+a7w14

b3=a0+a1w3+a2w6+a3w9+a4w12+a5w15+a6w18+a7w21

b4=a0+a1w4+a2w8+a3w12+a4w16+a5w20+a6w24+a7w28

b5=a0+a1w5+a2w10+a3w15+a4w20+a5w25+a6w30+a7w35

b6=a0+a1w6+a2w12+a3w18+a4w24+a5w30+a6w36+a7w42

b7=a0+a1w7+a2w14+a3w21+a4w28+a5w35+a6w42+a7w49











1

0

1

0

/2
n

k

kj
k

n

k

njki
kj aeab 

4 -51

 After reordering, we have
b0=(a0+a2+a4+a6)+(a1+a3+a5+a7)
b1=(a0+a2w2+a4w4+a6w6)+ w(a1+a3w2+a5w4+a7w6)
b2=(a0+a2w4+a4w8+a6w12)+ w2(a1+a3w4+a5w8+a7w12)
b3=(a0+a2w6+a4w12+a6w18)+ w3(a1+a3w6+a5w12+a7w18)
b4=(a0+a2+a4+a6)-(a1+a3+a5+a7)
b5=(a0+a2w2+a4w4+a6w6)-w(a1+a3w2+a5w4+a7w6)
b6=(a0+a2w4+a4w8+a6w12)-w2(a1+a3w4+a5w8+a7w12)
b7=(a0+a2w6+a4w12+a6w18)-w3(a1+a3w6+a5w12+a7w18)
 Rewrite as

b0=c0+d0 b4=c0-d0=c0+w4d0
b1=c1+wd1 b5=c1-wd1=c1+w5d1
b2=c2+w2d2 b6=c2-w2d2=c2+w6d2
b3=c3+w3d3 b7=c3-w3d3=c3+w7d3

4 -52

 c0=a0+a2+a4+a6
c1=a0+a2w2+a4w4+a6w6

c2=a0+a2w4+a4w8+a6w12

c3=a0+a2w6+a4w12+a6w18

 Let x=w2=ei2π/4

c0=a0+a2+a4+a6
c1=a0+a2x+a4x2+a6x3

c2=a0+a2x2+a4x4+a6x6

c3=a0+a2x3+a4x6+a6x9

 Thus, {c0,c1,c2,c3} is FFT of {a0,a2,a4,a6}.
Similarly, {d0,d1,d2,d3} is FFT of {a1,a3,a5,a7}.

4 -53

General FFT
 In general, let w=ei2π/n (assume n is even.)

wn=1, wn/2=-1
bj =a0+a1wj+a2w2j+…+an-1w(n-1)j,

={a0+a2w2j+a4w4j+…+an-2w(n-2)j}+
wj{a1+a3w2j+a5w4j+…+an-1w(n-2)j}

=cj+wjdj
bj+n/2=a0+a1wj+n/2+a2w2j+n+a3w3j+3n/2+…

+an-1w(n-1)j+n(n-1)/2

=a0-a1wj+a2w2j-a3w3j+…+an-2w(n-2)j-an-1w(n-1)j

=cj-wjdj
=cj+wj+n/2dj

4 -54

Divide-and-conquer (FFT)
 Input: a0, a1, …, an-1, n = 2k

 Output: bj, j=0, 1, 2, …, n-1
where

Step 1: If n=2, compute
b0 = a0 + a1,
b1 = a0 - a1, and return.

Step 2: Recursively find the Fourier transform of
{a0, a2, a4,…, an-2} and {a1, a3, a5,…,an-1},
whose results are denoted as {c0, c1, c2,…,
cn/2-1} and {d0, d1, d2,…, dn/2-1}.





10

2 where
nk

π/nikj
kj e w, wab

4 -55

Step 3: Compute bj:
bj = cj + wjdj for 0  j  n/2 - 1
bj+n/2 = cj - wjdj for 0  j  n/2 - 1.

 Time complexity:
T(n) = 2T(n/2) + O(n)

= O(n log n)

4 -56

Matrix multiplication
 Let A, B and C be n  n matrices

C = AB
C(i, j) = A(i, k)B(k, j)

 The straightforward method to perform a
matrix multiplication requires O(n3) time.

1 

k n

4 -57

Divide-and-conquer approach
 C = AB

C11 = A11 B11 + A12 B21
C12 = A11B12 + A12 B22
C21 = A21 B11 + A22 B21
C22 = A21 B12 + A22 B22

 Time complexity:
(# of additions : n2)

We get T(n) = O(n3)

 C11 C12 = A11 A12 B11 B12
 C21 C22 = A21 A22 B21 B22

T(n) =




 b
8T(n/2)+cn2

, n  2
, n > 2

4 -58

 P = (A11 + A22)(B11 + B22)
Q = (A21 + A22)B11
R = A11(B12 - B22)
S = A22(B21 - B11)
T = (A11 + A12)B22
U = (A21 - A11)(B11 + B12)
V = (A12 - A22)(B21 + B22).

 C11 = P + S - T + V
C12 = R + T
C21 = Q + S
C22 = P + R - Q + U

Strassen’s matrix multiplicaiton

C11 = A11 B11 + A12 B21
C12 = A11B12 + A12 B22
C21 = A21 B11 + A22 B21
C22 = A21 B12 + A22 B22

4 -59

Time complexity
 7 multiplications and 18 additions or subtractions
 Time complexity:

T(n) =




 b
7T(n/2)+an2

, n  2
, n > 2

)(O)(O

)(

constanta is ,7)(

)1(7))()(1(

)4/(7

)4/(7)((7
)2/(7)(

81.27log

7log4log7log4log7loglog
4
72

loglog
4
72

1
4
72

4
7

4
72

22
4
72

2
2

2

2

2

222222

22

nn

ncnncn

ccn

Tan

nTanan

nTaan
nTannT

n

nn

kk

n

























5-1

Chapter 5

Tree Searching Strategies

5-2

Satisfiability problem
x1 x2 x3
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Tree representation of 8 assignments.

If there are n variables x1, x2, …,xn, then there are 2n

possible assignments.

5-3

 An instance:
-x1……..……(1)
x1…………..(2)
x2 v x5….….(3)
x3…….…….(4)
-x2…….…….(5)

A partial tree to determine
the satisfiability problem.

 We may not need to examine all possible
assignments.

5-4

Hamiltonian circuit problem

A graph containing a Hamiltonian circuit.

5-5

The tree representation of whether there exists a
Hamiltonian circuit.

5-6

Breadth-first search (BFS)
 8-puzzle problem

 The breadth-first search uses a queue to hold
all expanded nodes.

5-7

Depth-first search (DFS)
 e.g. sum of subset

problem
S={7, 5, 1, 2, 10}
 S’  S  sum of S’ = 9 ?

 A stack can be used to
guide the depth-first
search. A sum of subset problem

solved by depth-first search.
5-8

Hill climbing
 A variant of depth-first search

The method selects the locally optimal
node to expand.

 e.g. 8-puzzle problem
evaluation function f(n) = d(n) + w(n)
where d(n) is the depth of node n

w(n) is # of misplaced tiles in node n.

5-9

An 8-puzzle problem solved by a hill climbing method.
5-10

Best-first search strategy
 Combine depth-first search and breadth-first

search.
 Selecting the node with the best estimated

cost among all nodes.
 This method has a global view.
 The priority queue (heap) can be used as the

data structure of best-first search.

5-11

An 8-puzzle problem solved by a best-first
search scheme.

5-12

Best-First Search Scheme
Step1: Form a one-element list consisting of the

root node.
Step2: Remove the first element from the list.

Expand the first element. If one of the
descendants of the first element is a goal
node, then stop; otherwise, add the
descendants into the list.

Step3: Sort the entire list by the values of some
estimation function.

Step4: If the list is empty, then failure.
Otherwise, go to Step 2.

5-13

Branch-and-bound strategy
 This strategy can be used to efficiently solve

optimization problems.
 e.g.

A multi-stage graph searching problem.

5-14

 Solved by branch
-and-bound

5-15

Personnel assignment problem
 A linearly ordered set of persons P={P1,

P2, …, Pn} where P1<P2<…<Pn
 A partially ordered set of jobs J={J1, J2, …, Jn}
 Suppose that Pi and Pj are assigned to jobs

f(Pi) and f(Pj) respectively. If f(Pi)  f(Pj), then
Pi  Pj. Cost Cij is the cost of assigning Pi to Jj.
We want to find a feasible assignment with
the minimum cost. i.e.

Xij = 1 if Pi is assigned to Jj
Xij = 0 otherwise.

 Minimize i,j CijXij

5-16

 e.g. A partial ordering of jobs

 After topological sorting, one of the following
topologically sorted sequences will be
generated:

 One of feasible assignments:
P1→J1, P2→J2, P3→J3, P4→J4

J1 J2

↓ ↘ ↓
J3 J4

J1, J2, J3, J4

J1, J2, J4, J3

J1, J3, J2, J4

J2, J1, J3, J4

J2, J1, J4 J3

5-17

A solution tree
 All possible solutions can be represented

by a solution tree.

3

1 2

2

4

2

3 4

4 3

1

3 4

4 3

1

2

3

4

Person
Assigned

0J1 J2

↓ ↘ ↓
J3 J4

5-18

 Cost matrix
Jobs

Persons
1 2 3 4

1 29 19 17 12

2 32 30 26 28

3 3 21 7 9

4 18 13 10 15

Cost matrix

3

1 2

2

2

3 4

4 3

1

3 4

4 3

1

2

3

4

Person
Assigned

0 0

19

51

58 60

73 70

29

55

76

59

68

78

66

81

Only one node is pruned away.

 Apply the best-
first search scheme:

5-19

 Cost matrix
Jobs

Persons
1 2 3 4

1 29 19 17 12

2 32 30 26 28

3 3 21 7 9

4 18 13 10 15

Reduced cost matrix

Jobs
Persons

1 2 3 4

1 17 4 5 0 (-12)

2 6 1 0 2 (-26)

3 0 15 4 6 (-3)
4 8 0 0 5 (-10)

(-3)

 Reduced cost matrix

5-20

 A reduced cost matrix can be obtained:
subtract a constant from each row and each
column respectively such that each row and
each column contains at least one zero.

 Total cost subtracted: 12+26+3+10+3 = 54
 This is a lower bound of our solution.

5-21

Branch-and-bound for the
personnel assignment problem
 Bounding of subsolutions:

Jobs
Persons

1 2 3 4

1 17 4 5 0
2 6 1 0 2
3 0 15 4 6
4 8 0 0 5

J1 J2

↓ ↘ ↓
J3 J4

5-22

The traveling salesperson
optimization problem

 It is NP-complete.
 A cost matrix

j
i

1 2 3 4 5 6 7

1 ∞ 3 93 13 33 9 57

2 4 ∞ 77 42 21 16 34

3 45 17 ∞ 36 16 28 25

4 39 90 80 ∞ 56 7 91

5 28 46 88 33 ∞ 25 57

6 3 88 18 46 92 ∞ 7

7 44 26 33 27 84 39 ∞

5-23

 A reduced cost matrix
j

i
1 2 3 4 5 6 7

1 ∞ 0 90 10 30 6 54 (-3)

2 0 ∞ 73 38 17 12 30 (-4)

3 29 1 ∞ 20 0 12 9 (-16)

4 32 83 73 ∞ 49 0 84 (-7)

5 3 21 63 8 ∞ 0 32 (-25)

6 0 85 15 43 89 ∞ 4 (-3)

7 18 0 7 1 58 13 ∞ (-26)

Reduced: 84
5-24

 Another reduced matrix
j

i
1 2 3 4 5 6 7

1 ∞ 0 83 9 30 6 50

2 0 ∞ 66 37 17 12 26

3 29 1 ∞ 19 0 12 5

4 32 83 66 ∞ 49 0 80

5 3 21 56 7 ∞ 0 28

6 0 85 8 42 89 ∞ 0

7 18 0 0 0 58 13 ∞

(-7) (-1) (-4)

Total cost reduced: 84+7+1+4 = 96 (lower bound)

5-25

 The highest level of a decision tree:

 If we use arc 3-5 to split, the difference on
the lower bounds is 17+1 = 18.

5-26

j
i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50
2 0 ∞ 66 37 17 26
3 29 1 ∞ 19 0 5
5 3 21 56 7 ∞ 28
6 0 85 8 ∞ 89 0
7 18 0 0 0 58 ∞

 A reduced cost matrix if arc (4,6) is included
in the solution.

Arc (6,4) is changed to be infinity since it
can not be included in the solution.

5-27

 The reduced cost matrix for all solutions with
arc 4-6

 Total cost reduced: 96+3 = 99 (new lower
bound)

j
i

1 2 3 4 5 7

1 ∞ 0 83 9 30 50
2 0 ∞ 66 37 17 26
3 29 1 ∞ 19 0 5
5 0 18 53 4 ∞ 25 (-3)
6 0 85 8 ∞ 89 0
7 18 0 0 0 58 ∞

5-28

A branch-and-bound solution of a traveling salesperson problem.

1 2

3

5

6

7
4

5-29

The 0/1 knapsack problem
 Positive integer P1, P2, …, Pn (profit)

W1, W2, …, Wn (weight)
M (capacity)

maximize P Xi i
i

n




1

subject to W X Mi i
i

n





1
 Xi = 0 or 1, i =1, …, n.

The problem is modified:

minimize 

 P Xi i
i

n

1

5-30

 e.g. n = 6, M = 34

 A feasible solution: X1 = 1, X2 = 1, X3 = 0,
X4 = 0, X5 = 0, X6 = 0
-(P1+P2) = -16 (upper bound)
Any solution higher than -16 can not be an
optimal solution.

i 1 2 3 4 5 6

Pi 6 10 4 5 6 4

Wi 10 19 8 10 12 8

(Pi/Wi  Pi+1/Wi+1)

5-31

Relax the restriction
 Relax our restriction from Xi = 0 or 1 to 0  Xi  1

(knapsack problem)

Let 

 P Xi i
i

n

1
 be an optimal solution for 0/1

knapsack problem and  

P Xi
i

n
i

1
be an optimal

solution for knapsack problem. Let Y=

P Xi i
i

n

1
,

Y’ =  

P Xi
i

n
i

1
.

 Y’  Y
5-32

Upper bound and lower bound
 We can use the greedy method to find an optimal

solution for knapsack problem:

X1 = 1, X2 =1, X3 = 5/8, X4 = 0, X5 = 0, X6 =0
-(P1+P2+5/8P3) = -18.5 (lower bound)
-18 is our lower bound. (only consider integers)

 -18  optimal solution  -16
optimal solution: X1 = 1, X2 = 0, X3 = 0, X4 = 1, X5 =
1, X6 = 0
-(P1+P4+P5) = -17

5-330/1 knapsack problem solved by branch-and-bound strategy.

Expand the node with
the best lower bound.

5-34

The A* algorithm
 Used to solve optimization problems.
 Using the best-first strategy.
 If a feasible solution (goal node) is obtained, then it

is optimal and we can stop.
 Cost function of node n : f(n)

f(n) = g(n) + h(n)
g(n): cost from root to node n.
h(n): estimated cost from node n to a goal node.
h*(n): “real” cost from node n to a goal node.

 If we guarantee h(n)  h*(n), then
f(n) = g(n) + h(n)  g(n)+h*(n) = f*(n)

5-35

An example for A* algorithm
 Find the shortest path with A* algorithm.

 Stop iff the selected node is also a goal node.
5-36

 Step 1:

g(A)= 2 h (A)= m in {2 ,3 }= 2 f(A)= 2 + 2 = 4
g(B)= 4 h (B)= m in {2 }= 2 f(B)= 4 + 2 = 6
g(C)= 3 h (C)= m in {2 ,2 }= 2 f(C)= 3 + 2 = 5

5-37

 Step 2: Expand node A.

g (D)= 2 + 2 = 4 h (D)= m in { 3 ,1 } = 1 f(D)= 4 + 1 = 5
g (E)= 2 + 3 = 5 h (E)= m in { 2 ,2 } = 2 f(E)= 5 + 2 = 7

5

5-38

 Step 3: Expand node C.

g(F)=3+2=5 h(F)=m in{3,1}=1 f(F)=5+1=6
g(G) =3+2=5 h(G)=m in{5}=5 f(G) =5+5=10

5-39

 Step 4: Expand node D.

g (H)= 2 + 2 + 1 = 5 h (H)= m in { 5 } = 5 f (H)= 5 + 5 = 1 0
g (I)= 2 + 2 + 3 = 7 h (I)= 0 f (I)= 7 + 0 = 7

5-40

 Step 5: Expand node B.

g (J) = 4 + 2 = 6 h (J) = m in { 5 } = 5 f (J) = 6 + 5 = 1 1

5-41

 Step 6: Expand node F.

g (K) = 3 + 2 + 1 = 6 h (K) = m i n { 5 } = 5 f (K) = 6 + 5 = 1 1
g (L) = 3 + 2 + 3 = 8 h (L) = 0 f (L) = 8 + 0 = 8

f(n)  f*(n)

Node I is a goal node. Thus, the final
solution has been obtained.

5-42

The channel routing problem
 A channel specification

5-43

 Illegal wirings:

 We want to find a routing which minimizes
the number of tracks.

5-44

A feasible routing

 7 tracks are needed.

5-45

An optimal routing

 4 tracks are needed.
 This problem is NP-complete.

5-46

A* algorithm for the channel
routing problem

 Horizontal constraint graph (HCG)

 e.g. net 8 must be to the left of net 1 and net 2 if
they are in the same track.

5-47

 Vertical constraint graph:

 Maximum cliques in HCG: {1,8}, {1,3,7},
{5,7}. Each maximum clique can be assigned
to a track.

5-48

 f(n) = g(n) + h(n),
 g(n): the level of the tree
 h(n): maximal local density

A partial solution tree for the channel routing
problem by using A* algorithm.

6 -1

Chapter 6

Prune-and-Search

6 -2

A simple example: Binary
search

 sorted sequence : (search 9)
1 4 5 7 9 10 12 15

step 1 
step 2 
step 3 
 After each comparison, a half of the data set are

pruned away.
 Binary search can be viewed as a special divide-

and-conquer method, since there exists no
solution in another half and then no merging is
done.

6 -3

The selection problem
 Input: A set S of n elements
 Output: The kth smallest element of S
 The median problem: to find the -th

smallest element.
 The straightforward algorithm:

 step 1: Sort the n elements
 step 2: Locate the kth element in the sorted list.
 Time complexity: O(nlogn)







2
n

6 -4

Prune-and-search concept for
the selection problem

 S={a1, a2, …, an}
 Let p  S, use p to partition S into 3 subsets S1 , S2 ,

S3:
 S1={ ai | ai < p , 1  i  n}
 S2={ ai | ai = p , 1  i  n}
 S3={ ai | ai > p , 1  i  n}

 3 cases:
 If |S1|  k , then the kth smallest element of S is

in S1, prune away S2 and S3.
 Else, if |S1| + |S2|  k, then p is the kth smallest

element of S.
 Else, the kth smallest element of S is the (k - |S1|

- |S2|)-th smallest element in S3, prune away S1
and S2.

6 -5

How to select P?
 The n elements are divided into subsets.

(Each subset has 5 elements.)





5
n

M

P

At least 1/4 of S known to be less than or equal to P.

Each 5-elem
ent subset is

sorted in non-decreasing
sequence.

At least 1/4 of S known to be
greater than or equal to P.

6 -6

Prune-and-search approach
 Input: A set S of n elements.
 Output: The kth smallest element of S.
Step 1: Divide S into n/5 subsets. Each subset

contains five elements. Add some dummy 
elements to the last subset if n is not a net
multiple of S.

Step 2: Sort each subset of elements.
Step 3: Recursively, find the element p which is

the median of the medians of the n/5
subsets..

6 -7

Step 4: Partition S into S1, S2 and S3, which
contain the elements less than, equal to, and
greater than p, respectively.

Step 5: If |S1| k, then discard S2 and S3 and
solve the problem that selects the kth
smallest element from S1 during the next
iteration;

else if |S1| + |S2| k then p is the kth smallest
element of S;

otherwise, let k = k - |S1| - |S2|, solve the
problem that selects the k’th smallest element
from S3 during the next iteration.

6 -8

Time complexity
 At least n/4 elements are pruned away during

each iteration.
 The problem remaining in step 5 contains at

most 3n/4 elements.
 Time complexity: T(n) = O(n)

 step 1: O(n)
 step 2: O(n)
 step 3: T(n/5)
 step 4: O(n)
 step 5: T(3n/4)
 T(n) = T(3n/4) + T(n/5) + O(n)

6 -9

Let T(n) = a0 + a1n + a2n2 + … , a1  0
T(3n/4) = a0 + (3/4)a1n + (9/16)a2n2 + …
T(n/5) = a0 + (1/5)a1n + (1/25)a2n2 + …
T(3n/4 + n/5) = T(19n/20) = a0 + (19/20)a1n +

(361/400)a2n2 + …
T(3n/4) + T(n/5)  a0 + T(19n/20)

 T(n)  cn + T(19n/20)
 cn + (19/20)cn +T((19/20)2n)



 cn + (19/20)cn + (19/20)2cn + … +(19/20)pcn +
T((19/20)p+1n) , (19/20)p+1n 1  (19/20)pn
=

 20 cn +b
= O(n)

bcn
p




 

20
191

)
20
19(1 1

6 -10

The general prune-and-search
 It consists of many iterations.
 At each iteration, it prunes away a fraction,

say f, 0<f<1, of the input data, and then it
invokes the same algorithm recursively to
solve the problem for the remaining data.

 After p iterations, the size of input data will
be q which is so small that the problem can
be solved directly in some constant time c.

6 -11

Time complexity analysis
 Assume that the time needed to execute the

prune-and-search in each iteration is O(nk)
for some constant k and the worst case run
time of the prune-and-search algorithm is
T(n). Then

T(n) = T((1f) n) + O(nk)

6 -12

 We have
T(n)  T((1  f) n) + cnk for sufficiently large n.
 T((1  f)2n) + cnk + c(1  f)knk



 c’+ cnk + c(1  f)knk + c(1  f)2knk + ... + c(1  f)pknk

= c’+ cnk(1 + (1  f)k + (1  f)2k + ... + (1  f) pk).
Since 1  f < 1, as n ,
 T(n) = O(nk)

 Thus, the time-complexity of the whole prune-
and-search process is of the same order as the
time-complexity in each iteration.

6 -13

Linear programming with two
variables

 Minimize ax + by
subject to aix + biy  ci , i = 1, 2, …, n

 Simplified two-variable linear programming
problem:

Minimize y
subject to y  aix + bi, i = 1, 2, …, n

6 -14

 The boundary F(x):
F(x) =

 The optimum solution x0:
F(x0) = F(x)

x

y F(x)

a4x + b4

a2x + b2

a3x + b3

a5x + b5

a7x + b7a6x + b6a1x + b1a8x + b8

(x0,y0)

}{max
1

ii
ni

bxa 


min
 x

6 -15

Constraints deletion
 If x0 < xm and the

intersection of a3x +
b3 and a2x + b2 is
greater than xm, then
one of these two
constraints is always
smaller than the
other for x < xm.
Thus, this constraint
can be deleted.

 It is similar for x0 >
xm.

x

y

a8x + b8
x0

xm

a1x + b1 a2x + b2

a4x + b4

a3x + b3

a5x + b5

a7x + b7a6x + b6

May be deleted

6 -16

Determining the direction of the
optimum solution

 Let ym = F(xm) =
 Case 1: ym is on

only one constraint.
 Let g denote the

slope of this
constraint.

 If g > 0, then x0 <
xm.

 If g < 0, then x0 >
xm.

y

x

y'
m

ym

xmx'
m

x0x0

The cases where xm is on only
one constrain.

}{max
1

imi
ni

bxa 


Suppose an xm is known.
How do we know whether
x0 < xm or x0 > xm ?

6 -17

 Case 2: ym is the
intersection of several
constraints.
 gmax=
max. slope

gmin =
min. slop
 If gmin > 0, gmax > 0,

then x0 < xm
 If gmin < 0, gmax < 0,

then x0 > xm
 If gmin < 0, gmax > 0 ,

then (xm, ym) is the
optimum solution.

y

x
xm,3xm,2xm,1

Case 2a: xm,3
Case 2b: xm,1
Case 2c: xm,2

gmax

gmax gmin

gmin

gmaxgmin

Cases of xm on the intersection of several
constraints.

)}(|{max
1

mimii
ni

xFbxaa 


)}(|{min
1

mimii
ni

xFbxaa 


6 -18

How to choose xm?
 We arbitrarily group the n constraints

into n/2 pairs. For each pair, find their
intersection. Among these n/2
intersections, choose the median of
their x-coordinates as xm.

6 -19

Prune-and-Search approach
 Input: Constraints S: aix + bi, i=1, 2, …, n.
 Output: The value x0 such that y is minimized at

x0 subject to the above constraints.
Step 1: If S contains no more than two constraints,

solve this problem by a brute force method.
Step 2: Divide S into n/2 pairs of constraints

randomly. For each pair of constraints aix + bi
and ajx + bj, find the intersection pij of them and
denote its x-value as xij.

Step 3: Among the xij’s, find the median xm.

6 -20

Step 4: Determine ym = F(xm) =
gmin =
gmax =

Step 5:
Case 5a: If gmin and gmax are not of the same

sign, ym is the solution and exit.
Case 5b: otherwise, x0 < xm, if gmin > 0, and x0

>xm, if gmin < 0.

}{max
1

imi
ni

bxa 


)}(|{min
1

mimii
ni

xFbxaa 


)}(|{max
1

mimii
ni

xFbxaa 


6 -21

Step 6:
Case 6a: If x0 < xm, for each pair of constraints

whose x-coordinate intersection is larger than xm,
prune away the constraint which is always
smaller than the other for x  xm.

Case 6b: If x0 > xm, do similarly.
Let S denote the set of remaining constraints. Go

to Step 2.
 There are totally n/2 intersections. Thus, n/4

constraints are pruned away for each iteration.
 Time complexity:

T(n) = T(3n/4)+O(n)
= O(n)

6 -22

The general two-variable
linear programming problem
Minimize ax + by
subject to aix + biy  ci , i = 1, 2, …, n
Let x’ = x

y’ = ax + by


Minimize y’
subject to ai’x’ + bi’y’  ci’ , i = 1, 2, …, n
where ai’ = ai –bia/b, bi’ = bi/b, ci’ = ci

6 -23

Change the symbols and rewrite as:
Minimize y
subject to y  aix + bi (i  I1)

y  aix + bi (i  I2)
a  x  b

Define:
F1(x) = max {aix + bi , i  I1}
F2(x) = min {aix + bi , i  I2}



Minimize F1(x)
subject to F1(x)  F2(x), a  x  b
Let F(x) = F1(x) - F2(x)

y

xba

F2(x)

F1(x)

6 -24

 If we know x0 < xm, then a1x + b1 can be deleted
because a1x + b1 < a2x + b2 for x< xm.

 Define:
 gmin = min {ai | i  I1, aixm + bi = F1(xm)}, min. slope
 gmax = max{ai | i  I1, aixm + bi = F1(xm)}, max. slope
 hmin = min {ai | i  I2, aixm + bi = F2(xm)}, min. slope
 hmax = max{ai | i  I2, aixm + bi = F2(xm)}, max. slope

6 -25

Determining the solution
 Case 1: If F(xm)  0, then xm is feasible.

x

y

x0  xm

F2(x)

F1(x) gmax

y

x
xm
x0

F2(
x)

F1(
x)

gmi

n

gma

x

Case 1.a: If gmin > 0,
gmax > 0, then x0 < xm.

Case 1.b: If gmin < 0,
gmax < 0, then x0 > xm.

6 -26

Case 1.c: If gmin < 0, gmax > 0, then xm is the
optimum solution.

y

x
xm = x0

gmaxgmin

F2(x)

F1(x)

6 -27

 Case 2: If F(xm) > 0, xm is infeasible.

x0 xm

y

x

F1(x
)

F2(x
)

hmaxgmin

Case 2.a: If gmin > hmax,
then x0 < xm.

y

x
xm 
x0

F1(
x)

F2(
x)

hmin
gmax

Case 2.b: If gmin < hmax,
then x0 > xm.

6 -28

Case 2.c: If gmin  hmax, and gmax  hmin, then
no feasible solution exists.

y

x
xm

F1(x)

F2(x)

gmax

gmin

hmax

hmin

6 -29

Prune-and-search approach
 Input: Constraints:

I1: y  aix + bi, i = 1, 2, …, n1
I2: y  aix + bi, i = n1+1, n1+2, …, n.
a  x  b

 Output: The value x0 such that
y is minimized at x0

subject to the above constraints.
Step 1: Arrange the constraints in I1 and I2 into

arbitrary disjoint pairs respectively. For each
pair, if aix + bi is parallel to ajx + bj, delete
aix + bi if bi < bj for i, jI1 or bi > bj for i,
jI2. Otherwise, find the intersection pij of y
= aix + bi and y = ajx + bj. Let the x-
coordinate of pij be xij. 6 -30

Step 2: Find the median xm of xij’s (at most
points).

Step 3:
a. If xm is optimal, report this and exit.
b. If no feasible solution exists, report this

and exit.
c. Otherwise, determine whether the

optimum solution lies to the left, or right,
of xm.

Step 4: Discard at least 1/4 of the constraints.
Go to Step 1.

 Time complexity:
T(n) = T(3n/4)+O(n)

= O(n)






2
n

6 -31

 Given n planar points, find a smallest
circle to cover these n points.

The 1-center problem

6 -32

The area where the
center of the optimum
circle is located.

y

p3
p1 L12

p4
p2

L34

x

The pruning rule
L1 2: bisector of segment connecting p1 and p2 ,
L3 4: bisector of segments connecting p3 and p4

P1 can be eliminated without affecting our solution.

6 -33

The constrained 1-center
problem

 The center is restricted to lying on a
straight line.

y = 0

LijPi

Pj

xijxmx*

6 -34

Prune-and-search approach
 Input : n points and a straight line y = y’.
 Output: The constrained center on the

straight line y = y’.
Step 1: If n is no more than 2, solve this problem by a

brute-force method.
Step 2: Form disjoint pairs of points (p1, p2), (p3,

p4), …,(pn-1, pn). If there are odd number of points,
just let the final pair be (pn, p1).

Step 3: For each pair of points, (pi, pi+1), find the point
xi,i+1 on the line y = y’ such that d(pi, xi,i+1) = d(pi+1,
xi,i+1).

6 -35

Step 4: Find the median of the xi,i+1’s. Denote it as
xm.

Step 5: Calculate the distance between pi and xm for all
i. Let pj be the point which is farthest from xm. Let xj
denote the projection of pj onto y = y’. If xj is to the
left (right) of xm, then the optimal solution, x*, must
be to the left (right) of xm.

Step 6: If x* < xm, for each xi,i+1 > xm, prune the point
pi if pi is closer to xm than pi+1, otherwise prune the
point pi+1;
If x* > xm, do similarly.

Step 7: Go to Step 1.
 Time complexity

T(n) = T(3n/4)+O(n)
= O(n)






2
n

6 -36

The general 1-center problem
 By the constrained 1-center algorithm, we can

determine the center (x*,0) on the line y=0.
 We can do more

 Let (xs, ys) be the center of the optimum circle.
 We can determine whether ys > 0, ys < 0 or ys = 0.
 Similarly, we can also determine whether xs > 0, xs < 0

or xs = 0

6 -37

 Let I be the set of points which are farthest
from (x*, 0).

 Case 1: I contains one point P = (xp, yp).
ys has the same sign as that of yp.

The sign of optimal y

6 -38

 Case 2 : I contains more than one point.
Find the smallest arc spanning all points in I.
Let P1 = (x1, y1) and P2 = (x2, y2) be the two
end points of the smallest spanning arc.
If this arc  180o , then ys = 0.
else ys has the same sign as that of .2

21 yy 

y = 0y = 0

P3 P4

P1

P2

P1

P3 P2

(x*, 0)

(x*, 0)

(b)(a)
(See the figure on the next page.)

6 -39

Optimal or not optimal
 an acute triangle:  an obtuse triangle:

The circle is optimal. The circle is not optimal.

6 -40

An example of 1-center problem

 One point for each of n/4 intersections of Li+ and Li-
is pruned away.

 Thus, n/16 points are pruned away in each iteration.

y

ym

xxm

6 -41

Prune-and-search approach
 Input: A set S = {p1, p2, …, pn} of n points.
 Output: The smallest enclosing circle for S.
Step 1: If S contains no more than 16 points,

solve the problem by a brute-force method.
Step 2: Form disjoint pairs of points, (p1, p2),

(p3, p4), …,(pn-1, pn). For each pair of points,
(pi, pi+1), find the perpendicular bisector of
line segment .Denote them as Li/2, for i =
2, 4, …, n, and compute their slopes. Let the
slope of Lk be denoted as sk, for k = 1, 2,
3, …, n/2.

1ii pp 

6 -42

Step 3: Compute the median of sk’s, and denote
it by sm.

Step 4: Rotate the coordinate system so that
the x-axis coincide with y = smx. Let the set
of Lk’s with positive (negative) slopes be I+ (I-

). (Both of them are of size n/4.)
Step 5: Construct disjoint pairs of lines, (Li+, Li-)

for i = 1, 2, …, n/4, where Li+  I+ and Li- 
I-. Find the intersection of each pair and
denote it by (ai, bi), for i = 1, 2, …, n/4.

6 -43

Step 6: Find the median of bi’s. Denote it as y*.
Apply the constrained 1-center subroutine to
S, requiring that the center of circle be
located on y=y*. Let the solution of this
constrained 1-center problem be (x’, y*).

Step 7: Determine whether (x’, y*) is the
optimal solution. If it is, exit; otherwise,
record ys > y* or ys < y*.

6 -44

 Step 8: If ys > y*, find the median of ai’s for
those (ai, bi)’s where bi < y*. If ys < y*, find the
median of ai’s of those t hose (ai, bi)’s where bi >
y*. Denote the median as x*. Apply the
constrained 1-center algorithm to S, requiring
that the center of circle be located on x = x*. Let
the solution of this contained 1-center problem
be (x*, y’).

 Step 9: Determine whether (x*, y’) is the
optimal solution. If it is, exit; otherwise,
record xs > x* and xs < x*.

6 -45

Step 10:
 Case 1: xs < x* and ys < y*.

Find all (ai, bi)’s such that ai > x* and bi > y*. Let
(ai, bi) be the intersection of Li+ and Li-. Let Li- be
the bisector of pj and pk. Prune away pj(pk) if pj(pk)
is closer to (x*, y*) than pk(pj).

 Case 2: xs > x* and ys > y*. Do similarly.
 Case 3: xs < x* and ys > y*. Do similarly.
 Case 4: xs > x* and ys < y*. Do similarly.

Step 11: Let S be the set of the remaining points. Go to
Step 1.

 Time complexity :
T(n) = T(15n/16)+O(n)

= O(n)

7 -1

Chapter 7

Dynamic Programming

7 -2

Fibonacci sequence (1)
 0,1,1,2,3,5,8,13,21,34,...
 Leonardo Fibonacci (1170 -1250)

用來計算兔子的數量

每對每個月可以生產一對

兔子出生後, 隔一個月才會生產, 且永不死亡

生產 0 1 1 2 3 ...
總數 1 1 2 3 5 8 ...

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

7 -3

Fibonacci sequence (2)
 0,1,1,2,3,5,8,13,21,34,...

7 -4

Fibonacci sequence and
golden number

 0,1,1,2,3,5,8,13,21,34,...

fn = 0 if n = 0
fn = 1 if n = 1
fn = fn-1 + fn-2 if n  2

numberGolden
2

51lim
1








n

n
n f

f

1 x-1

x
2

51

01
1

1
1

2









x

xx
x

x

7 -5

Computation of Fibonacci sequence

 Solved by a recursive program:

 Much replicated computation is done.
 It should be solved by a simple loop.

fn = 0 if n = 0
fn = 1 if n = 1
fn = fn-1 + fn-2 if n  2

7 -6

Dynamic Programming
 Dynamic Programming is an algorithm

design method that can be used when
the solution to a problem may be
viewed as the result of a sequence of
decisions

7 -7

The shortest path

 To find a shortest path in a multi-stage graph

 Apply the greedy method :
the shortest path from S to T :

1 + 2 + 5 = 8

S A B T

3

4
5

2 7

1

5 6

7 -8

The shortest path in
multistage graphs

 e.g.

 The greedy method can not be applied to this
case: (S, A, D, T) 1+4+18 = 23.

 The real shortest path is:
(S, C, F, T) 5+2+2 = 9.

S T132 B E

9

A D4

C F2

1

5

11

5

16

18

2

7 -9

Dynamic programming approach
 Dynamic programming approach (forward approach):

 d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

S T2 B

A

C

1

5 d (C , T)

d (B , T)

d (A , T)

A

T

4

E

D

11
d(E, T)

d(D, T) d(A,T) = min{4+d(D,T), 11+d(E,T)}
= min{4+18, 11+13} = 22.

S T132 B E

9

A D4

C F2

1

5

11

5

16

18

2

7 -10

 d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)}
= min{9+18, 5+13, 16+2} = 18.

 d(C, T) = min{ 2+d(F, T) } = 2+2 = 4
 d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

= min{1+22, 2+18, 5+4} = 9.
 The above way of reasoning is called

backward reasoning.

B T5 E

D

F

9

16 d(F, T)

d(E, T)

d(D, T)

S T132 B E

9

A D4

C F2

1

5

11

5

16

18

2

7 -11

Backward approach
(forward reasoning)

 d(S, A) = 1
d(S, B) = 2
d(S, C) = 5

 d(S,D)=min{d(S,A)+d(A,D), d(S,B)+d(B,D)}
= min{ 1+4, 2+9 } = 5

d(S,E)=min{d(S,A)+d(A,E), d(S,B)+d(B,E)}
= min{ 1+11, 2+5 } = 7

d(S,F)=min{d(S,B)+d(B,F), d(S,C)+d(C,F)}
= min{ 2+16, 5+2 } = 7

S T132 B E

9

A D4

C F2

1

5

11

5

16

18

2

7 -12

 d(S,T) = min{d(S, D)+d(D, T), d(S,E)+
d(E,T), d(S, F)+d(F, T)}

= min{ 5+18, 7+13, 7+2 }
= 9

S T132 B E

9

A D4

C F2

1

5

11

5

16

18

2

7 -13

Principle of optimality
 Principle of optimality: Suppose that in solving

a problem, we have to make a sequence of
decisions D1, D2, …, Dn. If this sequence is
optimal, then the last k decisions, 1  k  n
must be optimal.

 e.g. the shortest path problem
If i, i1, i2, …, j is a shortest path from i to j,
then i1, i2, …, j must be a shortest path from i1
to j

 In summary, if a problem can be described by a
multistage graph, then it can be solved by
dynamic programming.

7 -14

 Forward approach and backward approach:
 Note that if the recurrence relations are

formulated using the forward approach then the
relations are solved backwards . i.e., beginning
with the last decision

 On the other hand if the relations are formulated
using the backward approach, they are solved
forwards.

 To solve a problem by using dynamic
programming:
 Find out the recurrence relations.
 Represent the problem by a multistage graph.

Dynamic programming

7 -15

The resource allocation
problem

 m resources, n projects
profit Pi, j : j resources are allocated to project
i.

maximize the total profit.
 Resource
Project

 1

 2

 3

1 2 8 9
2 5 6 7
3 4 4 4
4 2 4 5

7 -16

The multistage graph solution

 The resource allocation problem can be described as a
multistage graph.

 (i, j) : i resources allocated to projects 1, 2, …, j
e.g. node H=(3, 2) : 3 resources allocated to projects 1, 2.

S T

6

0,1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

1,3

2,3

3,3

A

7

6

44

4

B

C

D H

G

F

E I

J

K

L

0 5

8

9

0

0

0

0

5

5

5

0

0

0

0
4

4

4

42

2

0

7 -17

 Find the longest path from S to T :
(S, C, H, L, T), 8+5+0+0=13
2 resources allocated to project 1.
1 resource allocated to project 2.
0 resource allocated to projects 3, 4.

7 -18

The longest common
subsequence (LCS) problem

 A string : A = b a c a d
 A subsequence of A: deleting 0 or more

symbols from A (not necessarily consecutive).
e.g. ad, ac, bac, acad, bacad, bcd.
 Common subsequences of A = b a c a d and

B = a c c b a d c b : ad, ac, bac, acad.
 The longest common subsequence (LCS) of A

and B:
a c a d.

7 -19

The LCS algorithm
 Let A = a1 a2  am and B = b1 b2  bn
 Let Li,j denote the length of the longest

common subsequence of a1 a2  ai and b1 b2
 bj.

 Li,j = Li-1,j-1 + 1 if ai=bj
max{ Li-1,j, Li,j-1 } if aibj

L0,0 = L0,j = Li,0 = 0 for 1im, 1jn.

7 -20

 The dynamic programming approach for
solving the LCS problem:

 Time complexity: O(mn)

L1,1

L2,1

L3,1

L1,2 L1,3

L2,2

Lm,n

7 -21

Tracing back in the LCS algorithm
 e.g. A = b a c a d, B = a c c b a d c b

 After all Li,j’s have been found, we can trace
back to find the longest common subsequence
of A and B.

2

4
3

1
0
0
0
0
0

0 0 0

1
1
1

1 1 1
1 1 1 1 1

2
2 2 2

22
2

2 2 2 2
22

3
3 3 3

33

4 4

0 0 0 0 0 0 0 00 0 0 0 0
b
a
c
a
d

A

ac c ba d cb
B

2

7 -22

0/1 knapsack problem
 n objects , weight W1, W2, ,Wn

profit P1, P2, ,Pn
capacity M
maximize
subject to  M
xi = 0 or 1, 1in

 e. g.


 ni

ii xP
1


 ni

ii xW
1

i Wi Pi
1 10 40
2 3 20
3 5 30

M=10

7 -23

The multistage graph solution
 The 0/1 knapsack problem can be

described by a multistage graph.

S T

0

1 0

10

00

01

100

010

011

000

001

0
0

0

0

00

40

0 20

0

30
0

0
30

x1=1

x1=0

x2=0

x2=1

x2=0

x3=0

x3=1

x3=0

x3=1

x3=0
7 -24

The dynamic programming
approach

 The longest path represents the optimal
solution:
x1=0, x2=1, x3=1

= 20+30 = 50
 Let fi(Q) be the value of an optimal solution

to objects 1,2,3,…,i with capacity Q.
 fi(Q) = max{ fi-1(Q), fi-1(Q-Wi)+Pi }
 The optimal solution is fn(M).

 ii xP

7 -25

Optimal binary search trees
 e.g. binary search trees for 3, 7, 9, 12;

3

7

12

9

(a) (b)

9

3

7

12

12

3

7

9

(c)

12

3

7

9

(d)

7 -26

Optimal binary search trees
 n identifiers : a1 <a2 <a3 <…< an
Pi, 1in : the probability that ai is searched.
Qi, 0in : the probability that x is searched

where ai < x < ai+1 (a0=-, an+1=).

1
01




n

i
i

n

i
i QP

7 -27

 Identifiers : 4, 5, 8, 10, 11,
12, 14

 Internal node : successful
search, Pi

 External node :
unsuccessful search, Qi

10

14

E7

5

11

12E4

4

E0 E1

8

E2 E3

E5 E6

The expected cost of a binary tree:

The level of the root : 1





n

0n
ii

n

1n
ii 1))(level(EQ)level(aP

7 -28

The dynamic programming
approach

 Let C(i, j) denote the cost of an optimal binary
search tree containing ai,…,aj .

 The cost of the optimal binary search tree with ak
as its root :

ak

a1...ak-1 ak+1...an

P1...Pk-1
Q0...Qk-1

Pk+1...Pn

Qk...Qn

C(1,k-1) C(k+1,n)

       

























 








n1,kCQPQ1k1,CQPQPminn)C(1,
n

1km
mmk

1k

1m
mm0knk1

7 -29

   

   

     





















































j

im
mm1-ijki

j

1km
mmk

1k

im
mm1-ikjki

QPQj1,kC1ki,Cmin

j1,kCQPQ

1ki,CQPQPminj)C(i,

General formula

a
k

a
i
...a

k-1
a
k+1

...a
j

Pi...Pk-1
Qi-1...Qk-1

Pk+1...Pj

Qk...Qj

C(i,k-1) C(k+1,j)
7 -30

Computation relationships of
subtrees

 e.g. n=4

 Time complexity : O(n3)
(n-m) C(i, j)’s are computed when j-i=m.
Each C(i, j) with j-i=m can be computed in O(m) time.

C(1,4)

C(1,3) C(2,4)

C(1,2) C(2,3) C(3,4)

)O(n)m)m(nO(3

nm1




7 -31

Matrix-chain multiplication
 n matrices A1, A2, …, An with size

p0  p1, p1  p2, p2  p3, …, pn-1  pn
To determine the multiplication order such that # of
scalar multiplications is minimized.

 To compute Ai  Ai+1, we need pi-1pipi+1 scalar
multiplications.

e.g. n=4, A1: 3  5, A2: 5  4, A3: 4  2, A4: 2  5
((A1  A2)  A3)  A4, # of scalar multiplications:

3 * 5 * 4 + 3 * 4 * 2 + 3 * 2 * 5 = 114
(A1  (A2  A3))  A4, # of scalar multiplications:

3 * 5 * 2 + 5 * 4 * 2 + 3 * 2 * 5 = 100
(A1  A2)  (A3  A4), # of scalar multiplications:

3 * 5 * 4 + 3 * 4 * 5 + 4 * 2 * 5 = 160
7 -32

 Let m(i, j) denote the minimum cost for computing
Ai  Ai+1  …  Aj

 Computation sequence :

 Time complexity : O(n3)

m(1,4)

m(1,3) m(2,4)

m(1,2) m(2,3) m(3,4)

  jiif
jiif

pppj)1,m(kk)m(i,min
0

j)m(i,
jk1i1-jki 












7 -33

Single step graph edge searching
 fugitive: can move in any speed and is hidden

in some edge of an undirected graph G=(V,E)
 edge searcher(guard): search an edge (u, v)

from u to v, or stay at vertex u to prevent the
fugitive passing through u

 Goal: to capture the fugitive in one step.
 no extra guards needed extra guards needed

a

b ce3

e2e1

a

b ce3

e2e1

7 -34

 cost of a searcher from u to v: wt(u)
a guard staying at u: wt(u)

 Cost of the following: 2wt(a)+wt(b)+wt(b)
(one extra guard stays at b)

 Problem definition: To arrange the searchers
with the minimal cost to capture the fugitive
in one step.

 NP-hard for general graphs; P for trees.

a

b ce3

e2e1

7 -35

The weighted single step graph
edge searching problem on trees

 T(vi): the tree includes vi , vj (parent of vi) and all descendant
nodes of vi.

 C(T(vi), vi , vj): cost of an optimal searching plan with
searching from vi to vj.

 C(T(v4), v4 , v2)=5 C(T(v4), v2 , v4)=2
 C(T(v2), v2 , v1)=6 C(T(v2), v1 , v2)=9 7 -36

The dynamic programming
approach

 Rule 1: optimal total cost

 Rule 2.1 : no extra guard at root r: All children must
have the same searching direction.



























m

i
ii

m

i
ii

rvvTC

vrvTC
rrTC

1

1

),),((

,),),((
min)),((

rrrTC
rrrTC

rrTCrrTCrTC

root at guardextra one :)),((
root at guardextra no :)),((where
)},),((),),((min{))((

7 -37

 Rule 2.2: one extra guard at root r: Each child can
choose its best direction independently.





m

i
iiii rvvTCvrvTCrwtrrTC

1
)},),((),,),((min{)()),((

7 -38

 Rule 3.1 : Searching to an internal node u from its
parent node w

.at guardextra one means and at guardextra no means where

)},),((),,),((min{)()(),,),((

),),(()(),,),((

 where)},,,),((),,,),((min{),),((

1

1

uuuu

vuvTCuvvTCuwtwwtuuwuTC

uvvTCwwtuuwuTC

uuwuTCuuwuTCuwuTC

m

i
iiii

m

i
ii
























7 -39

 Rule 3.2 : Searching from an internal node u to its
parent node w























m

i
iiii

m

i
ii

vuvTCuvvTCuwtuwuuTC

vuvTCuwtuwuuTC

uwuuTCuwuuTCwuuTC

1

1

)},),((),,),((min{)(2),,),((

),),(()(),,),((

where)},,,),((),,,),((min{),),((

w

u

v2 vmv1 v3
...

w

u

v2 vmv1 v3
...

7 -40

 Rule 4: A leaf node u and its parent node w.

 the dynamic programming approach: working from
the leaf nodes and gradually towards the root

 Time complexity : O(n)
computing minimal cost of each sub-tree and
determining searching directions for each edge

)(),),((
)(),),((

uwtwuuTC
wwtuwuTC




8- 1

Chapter 8

The Theory of NP-Completeness

8- 2

 P: the class of problems which can be solved
by a deterministic polynomial algorithm.

 NP : the class of decision problem which can
be solved by a non-deterministic polynomial
algorithm.

 NP-hard: the class of problems to which every
NP problem reduces.

 NP-complete (NPC): the class of problems
which are NP-hard and belong to NP.

8- 3

Some concepts of NPC
 Definition of reduction: Problem A reduces to

problem B (A  B) iff A can be solved by a
deterministic polynomial time algorithm using
a deterministic algorithm that solves B in
polynomial time.

 Up to now, none of the NPC problems can be
solved by a deterministic polynomial time
algorithm in the worst case.

 It does not seem to have any polynomial time
algorithm to solve the NPC problems.

8- 4

 The theory of NP-completeness always
considers the worst case.

 The lower bound of any NPC problem seems
to be in the order of an exponential function.

 Not all NP problems are difficult. (e.g. the
MST problem is an NP problem.)

 If A, B  NPC, then A  B and B  A.

 Theory of NP-completeness:
If any NPC problem can be solved in polynomial
time, then all NP problems can be solved in
polynomial time. (NP = P)

8- 5

Decision problems
 The solution is simply “Yes” or “No”.
 Optimization problems are more difficult.
 e.g. the traveling salesperson problem

 Optimization version:
Find the shortest tour

 Decision version:
Is there a tour whose total length is less than
or equal to a constant c ?

8- 6

Solving an optimization problem by a
decision algorithm :

 Solving TSP optimization
problem by a decision algorithm :
 Give c1 and test (decision algorithm)

Give c2 and test (decision algorithm)


Give cn and test (decision algorithm)

 We can easily find the smallest ci

8- 7

The satisfiability problem

 The satisfiability problem
 The logical formula :

x1 v x2 v x3
& - x1
& - x2

the assignment :
x1 ← F , x2 ← F , x3 ← T

will make the above formula true .
(-x1, -x2 , x3) represents x1 ← F , x2 ← F , x3 ← T

8- 8

 If there is at least one assignment which
satisfies a formula, then we say that this
formula is satisfiable; otherwise, it is
unsatisfiable.

 An unsatisfiable formula :
x1 v x2

& x1 v -x2
& -x1 v x2
& -x1 v -x2

8- 9

 Definition of the satisfiability problem: Given
a Boolean formula, determine whether this
formula is satisfiable or not.

 A literal : xi or -xi
 A clause : x1 v x2 v -x3  Ci
 A formula : conjunctive normal form (CNF)

C1& C2 & … & Cm

8- 10

 Resolution principle
C1 : x1 v x2
C2 : -x1 v x3
 C3 : x2 v x3

 From C1 & C2, we can
obtain C3, and C3 can
be added into the
formula.

 The formula becomes:
C1 & C2 & C3

The resolution principle

x1 x2 x3 C1 & C2 C3

0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

8- 11

 Another example of resolution principle
C1 : -x1 v -x2 v x3
C2 : x1 v x4
 C3 : -x2 v x3 v x4

 If no new clauses can be deduced, then
it is satisfiable.

-x1 v -x2 v x3 (1)
x1 (2)
x2 (3)

(1) & (2) -x2 v x3 (4)
(4) & (3) x3 (5)
(1) & (3) -x1 v x3 (6)

8- 12

 If an empty clause is deduced, then it is
unsatisfiable.

- x1 v -x2 v x3 (1)
x1 v -x2 (2)
x2 (3)

- x3 (4)
 deduce

(1) & (2) -x2 v x3 (5)
(4) & (5) -x2 (6)
(6) & (3) □ (7)

8- 13

Semantic tree
 In a semantic tree, each

path from the root to a
leaf node represents a
class of assignments.

 If each leaf node is
attached with a clause,
then it is unsatisfiable.

8- 14

Nondeterministic algorithms
 A nondeterminstic algorithm consists of

phase 1: guessing
phase 2: checking

 If the checking stage of a nondeterministic
algorithm is of polynomial time-complexity, then
this algorithm is called an NP (nondeterministic
polynomial) algorithm.

 NP problems : (must be decision problems)
 e.g. searching, MST

sorting
satisfiability problem (SAT)
traveling salesperson problem (TSP)

8- 15

Decision problems
 Decision version of sorting:

Given a1, a2,…, an and c, is there a
permutation of ai

s (a1
, a2

 , … ,an
) such

that∣a2
–a1

∣+∣a3
–a2

∣+ … +∣an
–an-1

∣
＜ c ?

 Not all decision problems are NP problems
 E.g. halting problem :

 Given a program with a certain input data, will
the program terminate or not?

 NP-hard
 Undecidable

8- 16

Nondeterministic operations
and functions

[Horowitz 1998]
 Choice(S) : arbitrarily chooses one of the elements in set

S
 Failure : an unsuccessful completion
 Success : a successful completion
 Nonderministic searching algorithm:

j ← choice(1 : n) /* guessing */
if A(j) = x then success /* checking */

else failure

8- 17

 A nondeterministic algorithm terminates
unsuccessfully iff there does not exist a set of
choices leading to a success signal.

 The time required for choice(1 : n) is O(1).
 A deterministic interpretation of a non-

deterministic algorithm can be made by
allowing unbounded parallelism in computation.

8- 18

Nondeterministic sorting
B ← 0
/* guessing */
for i = 1 to n do

j ← choice(1 : n)
if B[j] ≠ 0 then failure
B[j] = A[i]

/* checking */
for i = 1 to n-1 do

if B[i] > B[i+1] then failure
success

8- 19

Nondeterministic SAT
/* guessing */
for i = 1 to n do

xi ← choice(true, false)
/* checking */
if E(x1, x2, … ,xn) is true then success
else failure

8- 20

Cook’s theorem
NP = P iff the satisfiability
problem is a P problem.

 SAT is NP-complete.
 It is the first NP-complete

problem.
 Every NP problem reduces

to SAT.

Stephen Arthur Cook
(1939~)

8- 21

Transforming searching to SAT
 Does there exist a number in { x(1),

x(2), …, x(n) }, which is equal to 7?
 Assume n = 2.

nondeterministic algorithm:

i = choice(1,2)

if x(i)=7 then SUCCESS

else FAILURE

8- 22

i=1 v i=2
& i=1 → i≠2
& i=2 → i≠1
& x(1)=7 & i=1 → SUCCESS
& x(2)=7 & i=2 → SUCCESS
& x(1)≠7 & i=1 → FAILURE
& x(2)≠7 & i=2 → FAILURE
& FAILURE → -SUCCESS
& SUCCESS (Guarantees a successful termination)
& x(1)=7 (Input Data)
& x(2)≠7

8- 23

 CNF (conjunctive normal form) :
i=1 v i=2 (1)
i≠1 v i≠2 (2)
x(1)≠7 v i≠1 v SUCCESS (3)
x(2)≠7 v i≠2 v SUCCESS (4)
x(1)=7 v i≠1 v FAILURE (5)
x(2)=7 v i≠2 v FAILURE (6)
-FAILURE v -SUCCESS (7)
SUCCESS (8)
x(1)=7 (9)
x(2)≠7 (10)

8- 24

 Satisfiable at the following assignment :
i=1 satisfying (1)
i≠2 satisfying (2), (4) and (6)
SUCCESS satisfying (3), (4) and (8)
-FAILURE satisfying (7)
x(1)=7 satisfying (5) and (9)
x(2)≠7 satisfying (4) and (10)

8- 25

The semantic tree
i=1 v i=2 (1)
i≠1 v i≠2 (2)
x(1)≠7 v i≠1 v SUCCESS (3)
x(2)≠7 v i≠2 v SUCCESS (4)
x(1)=7 v i≠1 v FAILURE (5)
x(2)=7 v i≠2 v FAILURE (6)
-FAILURE v -SUCCESS (7)
SUCCESS (8)
x(1)=7 (9)
x(2)≠7 (10)

8- 26

Searching for 7, but x(1)7, x(2)7
 CNF (conjunctive normal form) :

 i=1 v i=2 (1)
 i1 v i2 (2)
 x(1)7 v i1 v S U C C E S S (3)
 x(2)7 v i2 v S U C C E S S (4)
 x(1)=7 v i1 v FAILURE (5)
 x(2)=7 v i2 v FAILURE (6)
 SUCCESS (7)
 -SUCCESS v -FAILURE (8)
 x(1)  7 (9)
 x(2)  7 (10)

8- 27

 Apply resolution principle :

(9) & (5) i1 v FAILURE (11)
(10) & (6) i2 v FAILURE (12)
(7) & (8) -FAILURE (13)
(13) & (11) i1 (14)
(13) & (12) i2 (15)
(14) & (1) i=2 (11)
(15) & (16) □ (17)
We get an empty clause  unsatisfiable
  7 does not exit in x(1) or x(2).

8- 28

 CNF:
 i=1 v i=2 (1)
 i1 v i2 (2)
 x(1)7 v i1 v S U C C E S S (3)
 x(2)7 v i2 v S U C C E S S (4)
 x(1)=7 v i1 v FA I L U R E (5)
 x(2)=7 v i2 v FA I L U R E (6)
 SUCCESS (7)
 -SUCCESS v -FAILURE (8)
 x(1)=7 (9)
 x(2)=7 (10)

Searching for 7, where x(1)=7, x(2)=7

8- 29

The semantic
tree

It implies that both assignments (i=1, i=2) satisfy the
clauses.

8- 30

The node cover problem

 Def: Given a graph G=(V, E), S is the node
cover if S  V and for every edge (u, v)  E,
either u  S or v  S.

node cover :
{1, 3}
{5, 2, 4}

 Decision problem :  S   S   K 

8- 31

Transforming the node cover
problem to SAT

 BEGIN
 i1  choice({1, 2, …, n})
 i2  choice({1, 2, …, n} – {i1})
 
 ik  choice({1, 2, …, n} – {i1, i2, …, ik-1}).
 For j=1 to m do

 BEGIN
 if ej is not incident to one of i t

(1tk)
 then FAILURE
 END
 SUCCESS

8- 32

 i1 = 1 v i1 = 2… v i1 = n
(i1≠1 i1＝2 v i1＝3…v i1 = n)

 i2 = 1 v i2 = 2… v i2 = n
 

 ik = 1 v ik = 2… v ik = n

 i1  1 v i2  1 (i1=1  i21 & ... & ik1)
 i1  1 v i3  1

 
 ik-1  n v ik  n
 i1

 e1 v  i2
  e1 v … v  i k

 e1 v FAILURE
( i1

e1  i2
e1…  i k

e1→Failure)

 i1
 e2 v  i2

  e2 v … v  i k
  e2 v FAILURE


 i1

 em v  i2
  em v … v  i k

 em v FAILURE
 SUCCESS

CNF:

(To be continued)

8- 33

-SUCCESS v -FAILURE
 r1 e1

 s1
  e1

 r2
  e2

 s2
  e2

 
 rm

  em

 sm
  em

8- 34

SAT is NP-complete
(1) SAT has an NP algorithm.
(2) SAT is NP-hard:

 Every NP algorithm for problem A can be
transformed in polynomial time to SAT
[Horowitz 1998] such that SAT is satisfiable
if and only if the answer for A is “YES”.

 That is, every NP problem  SAT .
 By (1) and (2), SAT is NP-complete.

8- 35

Proof of NP-Completeness
 To show that A is NP-complete

(I) Prove that A is an NP problem.
(II) Prove that  B  NPC, B  A.
 A  NPC

 Why ?

8- 36

3-satisfiability problem (3-SAT)
 Def: Each clause contains exactly three

literals.
 (I) 3-SAT is an NP problem (obviously)
 (II) SAT  3-SAT

Proof:
(1) One literal L1 in a clause in SAT :

in 3-SAT :
L1 v y1 v y2
L1 v -y1 v y2
L1 v y1 v -y2
L1 v -y1 v -y2

8- 37

(2) Two literals L1, L2 in a clause in SAT :
in 3-SAT :
L1 v L2 v y1
L1 v L2 v -y1

(3) Three literals in a clause : remain unchanged.

(4) More than 3 literals L1, L2, …, Lk in a clause :
in 3-SAT :
L1 v L2 v y1
L3 v -y1 v y2



Lk-2 v -yk-4 v yk-3
Lk-1 v Lk v -yk-3

8- 38

SAT transform 3-SAT
S S

 The instance S in 3-SAT :
x1 v x2 v y1
x1 v x2 v -y1
-x3 v y2 v y3
-x3 v -y2 v y3
-x3 v y2 v -y3
-x3 v -y2 v -y3
x1 v -x2 v y4
x3 v -y4 v y5
-x4 v -y5 v y6
x5 v x6 v -y6

 An instance S in SAT :
x1 v x2
-x3
x1 v -x2 v x3 v -x4 v x5 v x6

Example of transforming SAT to 3-SAT

8- 39

 Proof : S is satisfiable  S is satisfiable
“”

 3 literals in S (trivial)
consider  4 literals
S : L1 v L2 v … v Lk
S: L1 v L2 v y1

L3 v -y1 v y2
L4 v -y2 v y3



Lk-2 v -yk-4 v yk-3
Lk-1 v Lk v -yk-3

8- 40

 S is satisfiable  at least Li = T
Assume : Lj = F  j  i
assign : yi-1 = F

yj = T  j  i-1
yj = F  j  i-1

( Li v -yi-2 v yi-1)
 S is satisfiable.

 “”
If S is satisfiable, then assignment satisfying
S can not contain yi’s only.
 at least one Li must be true.
(We can also apply the resolution principle).

Thus, 3-SAT is NP-complete.

8- 41

Comment for 3-SAT
 If a problem is NP-complete, its special cases

may or may not be NP-complete.

8- 42

Chromatic number decision
problem (CN)

 Def: A coloring of a graph G=(V, E) is a function
f : V  { 1, 2, 3,…, k } such that if (u, v)  E, then
f(u)f(v). The CN problem is to determine if G has a
coloring for k.

<Theorem> Satisfiability with at most 3 literals per
clause (SATY)  CN.

3-colorable
f(a)=1, f(b)=2, f(c)=1
f(d)=2, f(e)=3

8- 43

Proof :
 instance of SATY :
 variable : x1, x2, …, xn , n  4
 clause : c1, c2, …, cr
 instance of CN :
 G=(V, E)
 V={ x1, x2, …, xn }{ -x1, -x2, …, -xn }
 { y1, y2, …, yn }{ c1, c2, …, cr }
 
 newly added
 E={ (xi, -xi)  1 i  n }{ (yi, yj)  i  j }
 { (yi, xj)  i  j }{ (yi, -xj)  i  j }
 { (xi, cj)  xi  cj }{ (-xi, cj)  -xi  cj }

SATY  CN

8- 44

x1 v x2 v x3 (1)
-x3 v -x4 v x2 (2)



Example of SATY  CN

True assignment:
x1=T
x2=F
x3=F
x4=T

E={ (xi, -xi)  1 i  n }{ (yi, yj)  i  j }
{ (yi, xj)  i  j }{ (yi, -xj)  i  j }
{ (xi, cj)  xi  cj }{ (-xi, cj)  -xi  cj }

8- 45

 Satisfiable  n+1 colorable
 “”

(1) f(yi) = i
(2) if xi = T, then f(xi) = i, f(-xi) = n+1

else f(xi) = n+1, f(-xi) = i
(3)if xi in cj and xi = T, then f(cj) = f(xi)

if -xi in cj and -xi = T, then f(cj) = f(-xi)
(at least one such xi)

Proof of SATY  CN

8- 46

 “”
(1) yi must be assigned with color i.
(2) f(xi)  f(-xi)

either f(xi) = i and f(-xi) = n+1
or f(xi) = n+1 and f(-xi) = i

(3) at most 3 literals in cj and n  4
 at least one xi,  xi and -xi are not in cj
 f(cj)  n+1

(4) if f(cj) = i = f(xi), assign xi to T
if f(cj) = i = f(-xi), assign -xi to T

(5) if f(cj) = i = f(xi)  (cj, xi)  E
 xi in cj  cj is true
if f(cj) = i = f(-xi)  similarly

8- 47

Set cover decision problem
 Def: F = {Si} = { S1, S2, …, Sk }

= { u1, u2, …, un }

T is a set cover of F if T  F and

The set cover decision problem is to determine if F has
a cover T containing no more than c sets.

 Example
F = {(u1, u3), (u2, u4), (u2, u3), (u4), (u1, u3 , u4)}

s1 s2 s3 s4 s5
T = { s1, s3, s4 } set cover
T = { s1, s2 } set cover, exact cover


FS

i
i

S



FS

i
TS

i
ii

SS




8- 48

Exact cover problem
(Notations same as those in set cover.)

Def: To determine if F has an exact cover T,
which is a cover of F and the sets in T are
pairwise disjoint.

<Theorem> CN  exact cover
(No proof here.)

8- 49

Sum of subsets problem
 Def: A set of positive numbers A = { a1,

a2, …, an }
a constant C
Determine if  A  A 

 e.g. A = { 7, 5, 19, 1, 12, 8, 14 }
 C = 21, A = { 7, 14 }
 C = 11, no solution

<Theorem> Exact cover  sum of subsets.

Ca
Aa

i
i




8- 50

 Proof :
instance of exact cover :
F = { S1, S2, …, Sk }

instance of sum of subsets :
A = { a1, a2, …, ak } where

where eij = 1 if uj  Si
eij = 0 if otherwise.

 Why k+1? (See the example on the next page.)

Exact cover  sum of subsets

 
FS

ni
i

uuuS


 ..., ,2,1

j

nj
iji kea)1(

1
 



kkkkC n

nj

j /)1)1)((1()1(
1

 


8- 51

Example of Exact cover  sum of
subsets

 Valid transformation:
u1=6, u2=8, u3=9, n=3
EC: S1={6,8}, S2={9},

S3={6,9}, S4={8,9}

k=4
SS: a1=51+52=30

a2=53=125
a3=51+53=130
a4=52+53=150
C=51+52 +53 =155

 Invalid transformation:
EC: S1={6,8}, S2={8}, S3={8},
S4={8,9}. K=4
Suppose k-2=2 is used.

SS: a1=21+22=6
a2=22=4
a3=22=4
a4=22+23=12
C=21+22+23=14

   9,8,6..., ,2,1 



FS
ni

i

uuuS

8- 52

Partition problem

 Def: Given a set of positive numbers A =
{ a1,a2,…,an },
determine if  a partition P, 

 e. g. A = {3, 6, 1, 9, 4, 11}
partition : {3, 1, 9, 4} and {6, 11}

<Theorem> sum of subsets  partition





Pa

i
Pa

i
ii

aa

8- 53

Sum of subsets  partition
proof :
 instance of sum of subsets :
 A = { a1, a2, …, an }, C
 instance of partition :
 B = { b1, b2, …, bn+2 }, where bi = ai, 1 i  n
 bn+1 = C+1
 bn+2 = ( ai)+1C
 1in

 C = ai  (ai)+bn+2 = (ai)+bn+1
 aiS aiS aiS

  partition : { bi  aiS {bn+2}
 and { bi  aiS }{bn+1}

S

S’

A C

8- 54

 Why bn+1 = C+1 ? why not bn+1 = C ?
 To avoid bn+1 and bn+2 to be partitioned

into the same subset.

8- 55

Bin packing problem
 Def: n items, each of size ci , ci > 0

Each bin capacity : C
 Determine if we can assign the items into

k bins,  ci  C , 1jk.
ibinj

<Theorem> partition  bin packing.

8- 56

VLSI discrete layout problem
 Given: n rectangles, each with height hi (integer)

width wi
and an area A

Determine if there is a placement of the n
rectangles within the area A according to the rules :
1. Boundaries of rectangles parallel to x axis or y

axis.
2. Corners of rectangles lie on integer points.
3. No two rectangles overlap.
4. Two rectangles are separated by at least a unit

distance.
(See the figure on the next page.)

8- 57

A Successful Placement

<Theorem> bin packing  VLSI discrete layout.
8- 58

Max clique problem

 Def: A maximal complete subgraph of a graph
G=(V,E) is a clique. The max (maximum) clique
problem is to determine the size of a largest
clique in G.

 e. g.

<Theorem> SAT  clique decision problem.

maximal cliques :
{a, b}, {a, c, d}
{c, d, e, f}
maximum clique :
(largest)
{c, d, e, f}

8- 59

Node cover decision problem

 Def: A set S  V is a node cover for a graph
G = (V, E) iff all edges in E are incident to at
least one vertex in S.  S,  S  K ?

<Theorem> clique decision problem 
node cover decision problem.

(See proof on the next page.)

8- 60

Clique decision  node cover
decision

 G=(V,E) : clique Q of size k (QV)

G’=(V,E’) : node cover S of size n-k, S=V-Q
where E’={(u,v)|uV, v V and (u,v)E}

8- 61

Hamiltonian cycle problem
 Def: A Hamiltonian cycle is a round trip path

along n edges of G which visits every vertex
once and returns to its starting vertex.

 e.g.

Hamiltonian cycle : 1, 2, 8, 7, 6, 5, 4, 3, 1.
<Theorem> SAT  directed Hamiltonian cycle

(in a directed graph)

8- 62

Traveling salesperson problem

 Def: A tour of a directed graph G=(V, E)
is a directed cycle that includes every
vertex in V. The problem is to find a tour
of minimum cost.

<Theorem> Directed Hamiltonian cycle 
traveling salesperson decision problem.

(See proof on the next page.)

8- 63

Proof of Hamiltonian  TSP

8- 64

0/1 knapsack problem
 Def: n objects, each with a weight wi > 0

a profit pi > 0
capacity of knapsack : M
Maximize pixi

1in

Subject to wixi  M
1in

xi = 0 or 1, 1 i n
 Decision version :

Given K,  pixi  K ?
1in

 Knapsack problem : 0  xi  1, 1 i n.
<Theorem> partition  0/1 knapsack decision

problem.

8- 65

 Refer to Sec. 11.3, Sec. 11.4 and its exercises
of [Horowitz 1998] for the proofs of more NP-
complete problems.
 [[Horowitz 1998] E. Howowitz, S. Sahni and S.

Rajasekaran, Computer Algorithms, Computer
Science Press, New York, 1998,「台北圖書」代理,
02-23625376

9-1

Chapter 9

Approximation Algorithms

9-2

Approximation algorithm
 Up to now, the best algorithm for

solving an NP-complete problem
requires exponential time in the worst
case. It is too time-consuming.

 To reduce the time required for solving
a problem, we can relax the problem,
and obtain a feasible solution “close” to
an optimal solution

9-3

The node cover problem
 Def: Given a graph G=(V, E), S is the node

cover if S  V and for every edge (u, v)  E,
either u  S or v  S.

 The node cover problem is NP-complete.

v2

v1

v5

v4
v3

The optimal solution:
{v2,v5}

9-4

An approximation algorithm

 Input: A graph G=(V,E).
 Output: A node cover S of G.
Step 1: S= and E’=E.
Step 2: While E’  

Pick an arbitrary edge (a,b) in E’.
S=S{a,b}.
E’=E’-{e| e is incident to a or b}

 Time complexity: O(|E|)

9-5

 Example:
First: pick (v2,v3)

then S={v2,v3 }
E’={(v1,v5), (v4,v5)}

second: pick (v1,v5)
then S={v1,v2,v3 ,v5}
E’=

v2

v1

v5

v4
v3

9-6

How good is the solution ?
 |S| is at most two times the minimum size of

a node cover of G.
 L: the number of edges we pick

M*: the size of an optimal solution
(1) L  M*, because no two edges picked in

Step 2 share any same vertex.
(2) |S| = 2L  2M*

9-7

The Euclidean traveling
salesperson problem (ETSP)

 The ETSP is to find a shortest closed path
through a set S of n points in the plane.

 The ETSP is NP-hard.

9-8

An approximation algorithm for ETSP

 Input: A set S of n points in the plane.
 Output: An approximate traveling salesperson

tour of S.
Step 1: Find a minimal spanning tree T of S.
Step 2: Find a minimal Euclidean weighted

matching M on the set of vertices of odd
degrees in T. Let G=M∪T.

Step 3: Find an Eulerian cycle of G and then
traverse it to find a Hamiltonian cycle as an
approximate tour of ETSP by bypassing all
previously visited vertices.

9-9

 Step1: Find a minimal spanning tree.

An example for ETSP algorithm

9-10

 Step2: Perform weighted matching. The
number of points with odd degrees must be
even because is even.




n

i
i Ed

1
2

9-11

 Step3: Construct the tour with an Eulerian
cycle and a Hamiltonian cycle.

9-12

 Time complexity: O(n3)
Step 1: O(nlogn)
Step 2: O(n3)
Step 3: O(n)

 How close the approximate solution to an
optimal solution?
 The approximate tour is within 3/2 of the optimal

one. (The approximate rate is 3/2.)
(See the proof on the next page.)

9-13

Proof of approximate rate
 optimal tour L: j1…i1j2…i2j3…i2m

{i1,i2,…,i2m}: the set of odd degree vertices in T.
2 matchings: M1={[i1,i2],[i3,i4],…,[i2m-1,i2m]}

M2={[i2,i3],[i4,i5],…,[i2m,i1]}
length(L) length(M1) + length(M2) (triangular inequality)

 2 length(M)
 length(M) 1/2 length(L)
G = T∪M
 length(T) + length(M)  length(L) + 1/2 length(L)

= 3/2 length(L)

9-14

The bottleneck traveling
salesperson problem (BTSP)

 Minimize the longest edge of a tour.
 This is a mini-max problem.
 This problem is NP-hard.
 The input data for this problem fulfill

the following assumptions:
 The graph is a complete graph.
 All edges obey the triangular inequality

rule.

9-15

An algorithm for finding an
optimal solution

Step1: Sort all edges in G = (V,E) into a
nondecresing sequence |e1||e2|…|em|.
Let G(ei) denote the subgraph obtained from
G by deleting all edges longer than ei.

Step2: i←1
Step3: If there exists a Hamiltonian cycle in

G(ei), then this cycle is the solution and stop.
Step4: i←i+1 . Go to Step 3.

9-16

An example for BTSP algorithm

 e.g.

 There is a Hamiltonian
cycle, A-B-D-C-E-F-G-A, in
G(BD).

 The optimal solution is 13.

1

9-17

Theorem for Hamiltonian cycles
 Def : The t-th power of G=(V,E), denoted as

Gt=(V,Et), is a graph that an edge (u,v)Et if
there is a path from u to v with at most t
edges in G.

 Theorem: If a graph G is bi-connected, then
G2 has a Hamiltonian cycle.

9-18

An example for the theorem

A Hamiltonian cycle:
A-B-C-D-E-F-G-A

G2

9-19

An approximation algorithm for BTSP
 Input: A complete graph G=(V,E) where all edges

satisfy triangular inequality.
 Output: A tour in G whose longest edges is not

greater than twice of the value of an optimal solution
to the special bottleneck traveling salesperson
problem of G.

Step 1: Sort the edges into |e1||e2|…|em|.
Step 2: i := 1.
Step 3: If G(ei) is bi-connected, construct G(ei)2, find a

Hamiltonian cycle in G(ei)2 and return this as the
output.

Step 4: i := i + 1. Go to Step 3.

9-20

An example

Add some more edges.
Then it becomes bi-
connected.

9-21

 A Hamiltonian
cycle: A-G-F-E-D-
C-B-A.

 The longest edge:
16

 Time complexity:
polynomial time

1

9-22

How good is the solution ?

 The approximate solution is bounded by two
times an optimal solution.

 Reasoning:
A Hamiltonian cycle is bi-connected.
eop: the longest edge of an optimal solution
G(ei): the first bi-connected graph
|ei||eop|
The length of the longest edge in G(ei)22|ei|

(triangular inequality) 2|eop|

9-23

NP-completeness

 Theorem: If there is a polynomial
approximation algorithm which produces a
bound less than two, then NP=P.
(The Hamiltonian cycle decision problem
reduces to this problem.)

 Proof:
For an arbitrary graph G=(V,E), we expand G to a
complete graph Gc:
Cij = 1 if (i,j)  E
Cij = 2 if otherwise
(The definition of Cij satisfies the triangular inequality.)

9-24

Let V* denote the value of an optimal solution
of the bottleneck TSP of Gc.

V* = 1  G has a Hamiltonian cycle

Because there are only two kinds of edges, 1
and 2 in Gc, if we can produce an
approximate solution whose value is less than
2V*, then we can also solve the Hamiltonian
cycle decision problem.

9-25

The bin packing problem
 n items a1, a2, …, an, 0 ai  1, 1  i  n, to

determine the minimum number of bins of
unit capacity to accommodate all n items.

 E.g. n = 5, {0.8, 0.5, 0.2, 0.3, 0.4}

 The bin packing problem is NP-hard.
9-26

An approximation algorithm
for the bin packing problem

 An approximation algorithm:
(first-fit) place ai into the lowest-indexed

bin which can accommodate ai.

 Theorem: The number of bins used in the
first-fit algorithm is at most twice of the
optimal solution.

9-27

 Notations:
 S(ai): the size of item ai
 OPT: # of bins used in an optimal solution
 m: # of bins used in the first-fit algorithm
 C(Bi): the sum of the sizes of aj’s packed in bin Bi in

the first-fit algorithm

 OPT 
C(Bi) + C(Bi+1)  1
C(B1)+C(B2)+…+C(Bm)  m/2

 m < 2 = 2  2 OPT

m < 2 OPT




n

i
iaS

1
)(




m

i
iBC

1
)(



n

i
iaS

1
)(

Proof of the approximate rate

9-28

The rectilinear m-center problem
 The sides of a rectilinear square are parallel

or perpendicular to the x-axis of the
Euclidean plane.

 The problem is to find m rectilinear squares
covering all of the n given points such that
the maximum side length of these squares is
minimized.

 This problem is NP-complete.
 This problem for the solution with error ratio

< 2 is also NP-complete.
(See the example on the next page.)

9-29

 Input: P={P1, P2, …, Pn}
 The size of an optimal solution must be equal

to one of the L ∞(Pi,Pj)’s, 1  i < j  n, where
L ∞((x1,y1),(x2,y2)) = max{|x1-x2|,|y1-y2|}.

9-30

An approximation algorithm
 Input: A set P of n points, number of centers: m
 Output: SQ[1], …, SQ[m]: A feasible solution of the

rectilinear m-center problem with size less than or equal to
twice of the size of an optimal solution.

Step 1: Compute rectilinear distances of all pairs of two points
and sort them together with 0 into an ascending sequence
D[0]=0, D[1], …, D[n(n-1)/2].

Step 2: LEFT := 1, RIGHT := n(n-1)/2 //* Binary search
Step 3: i := (LEFT + RIGHT)/2.
Step 4: If Test(m, P, D[i]) is not “failure” then

RIGHT := i-1
else LEFT := i+1

Step 5: If RIGHT = LEFT then
return Test(m, P, D[RIGHT])

else go to Step 3.

9-31

Algorithm Test(m, P, r)
 Input: point set: P, number of centers: m, size: r.
 Output: “failure”, or SQ[1], …, SQ[m] m squares of

size 2r covering P.
Step 1: PS := P
Step 2: For i := 1 to m do

If PS   then
p := the point is PS with the smallest

x-value
SQ[i] := the square of size 2r with center

at p
PS := PS -{points covered by SQ[i]}

else SQ[i] := SQ[i-1].
Step 3: If PS =  then return SQ[1], …, SQ[m]

else return “failure”. (See the example on the next page.)
9-32

An example for the algorithm

The first application of the relaxed test subroutine.

9-33

The second application of the test subroutine.
9-34

A feasible solution of the rectilinear 5-center problem.

9-35

Time complexity
 Time complexity: O(n2logn)

 Step 1: O(n)
 Step 2: O(1)
 Step 3 ~ Step 5:

O(logn)* O(mn) = O(n2logn)

9-36

How good is the solution ?
 The approximation algorithm is of error ratio

2.
 Reasoning: If r is feasible, then Test(m, P, r)

returns a feasible solution of size 2r.

The explanation of
Si  Si

’

10 -1

Chapter 10

Amortized Analysis

10 -2

 A sequence of operations: OP1, OP2, … OPm
OPi : several pops (from the stack) and

one push (into the stack)
ti : time spent by OPi
the average time per operation:

An example– push and pop





m

i
itm 1

ave
1t

10 -3

 Example: a sequence of push and pop
p: pop , u: push

i 1 2 3 4 5 6 7 8
OPi 1u 1u 2p 1u 1u 1u 2p 1p

 1u 1u 1u
ti 1 1 3 1 1 1 3 2

tave = (1+1+3+1+1+1+3+2)/8
= 13/8
= 1.625

10 -4

 Another example: a sequence of push
and pop
p: pop , u: push

tave = (1+2+1+1+1+1+6+1)/8
= 14/8
= 1.75

i 1 2 3 4 5 6 7 8
OPi 1u 1p 1u 1u 1u 1u 5p 1u

 1u 1u
ti 1 2 1 1 1 1 6 1

10 -5

Amortized time and potential function
 ai = ti +  i i 1

ai : amortized time of OPi
 i : potential function of the stack after OPi
  i i 1: change of the potential

a ti
i

m
i

i

m
i

i

m
i

  
     

1 1 1
1() 

   


t i
i

m
m

1
0 

If  m  0  0, then ai
i

m




1
 represents an upper

bound of ti
i

m




1

10 -6



 Suppose that before we execute Opi , there are k
elements in the stack and Opi consists of n pops and
1 push.

Amortized analysis of the
push-and-pop sequence

0 have We
stack thein elements of # :

0 


m

i

2
)1()1(

1 Then,
1

1

1














-kk-nn
ta

nk
nt

k

iiii

i

i

i

10 -7



 By observation, at most m pops and m
pushes are executed in m operations. Thus,

2. tThen,

2/)(have We

ave

1






m

i
i ma

2.tave 

10 -8

Skew heaps

1

50

13 20

10

16 25

5

12

30

19

40 14

Two skew heaps

Step 1: Merge the right paths.
5 right heavy nodes: yellow

 meld: merge + swapping

10 -9

1

5

13

20

10

16

25

50

12

30

19

40

14

Step 2: Swap the children along the right path.

No right heavy node

10 -10

Amortized analysis of skew heaps

 meld: merge + swapping
 operations on a skew heap:

 find-min(h): find the min of a skew heap h.
 insert(x, h): insert x into a skew heap h.
 delete-min(h): delete the min from a skew heap h.
 meld(h1, h2): meld two skew heaps h1 and h2.

The first three operations can be implemented
by melding.

10 -11

Potential function of skew heaps
 wt(x): # of descendants of node x, including

x.
 heavy node x: wt(x)  wt(p(x))/2, where

p(x) is the parent node of x.
 light node : not a heavy node
 potential function i: # of right heavy nodes

of the skew heap.

10 -12

light nodes  log2n

heavy=k3 log2n
possible heavy nodes

of nodes: n

 Any path in an n-node tree contains at most
log2n light nodes.

 The number of right heavy nodes attached to
the left path is at most log2n .

10 -13

Amortized time

heap: h1

of nodes: n1

heap: h2

of nodes: n2

light  log2n1
heavy = k1

light  log2n2
heavy = k2

10 -14

 ai = ti + i  i-1
 ti : time spent by OPi
 ti  2+log2n1+k1+log2n2+k2

(“2” counts the roots of h1 and h2)
 2+2log2n+k1+k2

where n=n1+n2
i  i-1 = k3-(k1+k2)  log2nk1k2
ai = ti + i  i-1
2+2log2n+k1+k2+log2nk1k2
=2+3log2n

 ai = O(log2n)

10 -15

AVL-trees
height balance of node v:
hb(v)= (height of right subtree) – (height of left subtree)
 The hb(v) of every node never differ by more than 1.

M

I O

E K QN

G LC J P R

B D F

-1

-1

-1

0

0

0 0 0

0

0

0

0

00

0

+1

Fig. An AVL-Tree with Height Balance Labeled
10 -16

 Add a new node A.

Before insertion, hb(B)=hb(C)=hb(E)=0
hb(I)0 the first nonzero from leaves.

10 -17

Amortized analysis of AVL-trees
 Consider a sequence of m insertions on an

empty AVL-tree.
 T0: an empty AVL-tree.
 Ti: the tree after the ith insertion.
 Li: the length of the critical path involved in the ith

insertion.
 X1: total # of balance factor changing from 0 to +1

or -1 during these m insertions (the total cost for
rebalancing)

X1= Li
i

m




1
 , we want to find X1.

Val(T): # of unbalanced node in T
(height balance  0)

10 -18

Case 1 : Absorption

Val(Ti)=Val(Ti-1)+(Li1)

 The tree height is not increased, we need not
rebalance it.

10 -19

Case 2.1 Single rotation

i

0

0

10 -20

Case 2 : Rebalancing the tree
D

B F

E GA C

D

B

F

E

G

A C

D

B

F

E G

A

C

10 -21

Case 2.1 Single rotation
 After a right rotation on the subtree rooted at

D:

Val(Ti)=Val(Ti-1)+(Li-2) 10 -22

Case 2.2 Double rotation

10 -23

Case 2.2 Double rotation

Val(Ti)=Val(Ti-1)+(Li-2)

 After a left rotation on the subtree rooted at
B and a right rotation on the subtree rooted
at F:

10 -24

Case 3 : Height increase

Val(Ti)=Val(Ti-1)+Li

 Li is the height of the root.

0

0

-1

-1

-1

root

10 -25

Amortized analysis of X1
X2: # of absorptions in case 1
X3: # of single rotations in case 2
X4: # of double rotations in case 2
X5: # of height increases in case 3

 Val(Tm) = Val(T0)+ Li
i

m




1
X22(X3+X4)

 =0+X1X22(X3+X4)
 Val(Tm)  0.618m (proved by Knuth)
 X1 = Val(Tm)+2(X2+X3+X4)X2
  0.618m+2m
 = 2.618m

10 -26

A self-organizing sequential
search heuristics

 3 methods for enhancing the performance of
sequential search

(1) Transpose Heuristics:
Query Sequence

B B
D D B
A D A B
D D A B
D D A B
C D A C B
A A D C B

10 -27

(2) Move-to-the-Front Heuristics:
Query Sequence

B B
D D B
A A D B
D D A B
D D A B
C C D A B
A A C D B

10 -28

(3) Count Heuristics: (decreasing order by the count)
Query Sequence

B B
D B D
A B D A
D D B A
D D B A
A D A B
C D A B C
A D A B C

10 -29

Analysis of the move-to-the-
front heuristics

 interword comparison: unsuccessful
comparison

 intraword comparison: successful comparison
 pairwise independent property:
 For any sequence S and all pairs P and Q, # of

interword comparisons of P and Q is exactly # of
interword comparisons made for the subsequence
of S consisting of only P’s and Q’s.

(See the example on the next page.)

10 -30

e.g.

Query Sequence (A, B) comparison
C C
A A C
C C A
B B C A 
C C B A
A A C B 

of comparisons made between A and B: 2

Pairwise independent
property in move-to-the-front

10 -31

Consider the subsequence consisting of A and B:
Query Sequence (A, B) comparison

A A
B B A 
A A B 

of comparisons made between A and B: 2

10 -32

Query Sequence C A C B C A
 (A, B) 0 1 1
 (A, C) 0 1 1 0 1
 (B, C) 0 0 1 1

 0 1 1 2 1 2

There are 3 distinct interword comparisons:

(A, B), (A, C) and (B, C)

 We can consider them separately and then
add them up.
the total number of interword comparisons:
0+1+1+2+1+2 = 7

10 -33

Theorem for the move-to-the-
front heuristics

CM(S): # of comparisons of the move-to-the-
front heuristics

CO(S): # of comparisons of the optimal static
ordering

CM (S) 2CO(S)

10 -34

Proof
Proof:

 InterM(S): # of interword comparisons of the move to
the front heuristics

 InterO(S): # of interword comparisons of the optimal
static ordering
Let S consist of a A’s and b B’s, a  b.
The optimal static ordering: BA

InterO(S) = a
InterM(S)  2a

 InterM(S)  2InterO(S)

10 -35

 Consider any sequence consisting of more than two
items. Because of the pairwise independent property,
we have InterM(S)  2InterO(S)

 IntraM(S): # of intraword comparisons of the move-
to-the-front heuristics

 IntraO(S): # of intraword comparisons of the optimal
static ordering

 IntraM(S) = IntraO(S)

 InterM(S) + IntraM(S)  2InterO(S) + IntraO(S)
 CM(S)  2CO(S)

Proof (cont.)

10 -36

The count heuristics

 The count heuristics has a similar result:
CC(S)  2CO(S), where CC(S) is the cost
of the count heuristics

10 -37

The transposition heuristics
 The transposition heuristics does not possess the

pairwise independent property.
 We can not have a similar upper bound for the cost

of the transposition heuristics.
e.g.

Consider pairs of distinct items independently.
Query Sequence C A C B C A
 (A, B) 0 1 1
 (A, C) 0 1 1 0 1
 (B, C) 0 0 1 1

 0 1 1 2 1 2

of interword comparisons: 7 (not correct)

10 -38

the correct interword comparisons:
Query Sequence C A C B C A
Data Ordering C AC CA CBA CBA CAB
Number of Interword
Comparisons

0 1 1 2 0 2

 
6

11 -1

Chapter 11

Randomized Algorithms

11 -2

Randomized algorithms

 In a randomized algorithm (probabilistic
algorithm), we make some random choices.

 2 types of randomized algorithms:
 For an optimization problem, a randomized

algorithm gives an optimal solution. The average
case time-complexity is more important than the
worst case time-complexity.

 For a decision problem, a randomized algorithm
may make mistakes. The probability of producing
wrong solutions is very small.

11 -3

The closest pair problem
 This problem can be solved by the divide-and-

conquer approach in O(nlogn) time.
 The randomized algorithm:

 Partition the points into several clusters:

 We only calculate distances among points within
the same cluster.

 Similar to the divide-and-conquer strategy. There
is a dividing process, but no merging process.

 X3

  X5
 X4 

 X1

 X2

 X6

 X7

11 -4

A randomized algorithm for
closest pair finding

 Input: A set S consisting of n elements x1, x2,…,
xn, where S R2.

 Output: The closest pair in S.
Step 1: Randomly choose a set S1={ }

where m=n2/3. Find the closest pair of S1 and
let the distance between this pair of points be
denoted as  .

Step 2: Construct a set of squares T with mesh-
size .

miii xxx ,...,,
21

11 -5

Step 3: Construct four sets of squares T1, T2, T3
and T4 derived from T by doubling the mesh-
size to 2 .

Step 4: For each Ti, find the induced
decomposition S=S1

(i) S2
(i)  …  Sj

(i), 1i 4,
where Sj

(i) is a non-empty intersection of S
with a square of Ti.

Step 5: For each xp, xqSj
(i), compute d(xp, xq).

Let xa and xb be the pair of points with the
shortest distance among these pairs. Return
xa and xb as the closest pair.

11 -6

6δ5δ4δ3δ2δδ

X3X4

X2X5

X1
X9

X7

X6

X8

δ

2δ

3δ

4δ

5δ

6δ

 n=27 points.
m=n2/3

S1 = {x1, x2, …, x9},
δ = d(x1, x2)

An example

11 -76δ5δ4δ3δ2δδ

X3X4

X2X5

X9X1

X7
X6

X8

6δ

5δ

4δ

3δ

2δ

δ

6δ5δ4δ3δδ 2δ

X3X4

X2X5

X9X1

X7X6

X8

δ

2δ

3δ

4δ

5δ

6δ

T1

T2

11 -8

X3X4

X2X5

X9X1

X7X6

X8

6δ5δ4δ3δ2δδ

6δ

5δ

4δ

3δ

2δ

δ

X3X4

X2X5

X9X1

X7X6

X8

6δ5δ4δ3δ2δδ

6δ

5δ

4δ

3δ

2δ

δ

T3

T4

11 -9

Time complexity

 Time complexity: O(n) in average
 step 1: O(n)

 step 2 ~ Step 4: O(n)
 step 5: O(n)with probability 1-2e-cn 6

1

)O(:points

for the method rwardstraightfoa it with
solve thenpoints, thefrom points

)(chooserandomly i.e.

once, algorithm apply thely Recursive:method

9
8

9
4

3
2

9
4

3
2

3
2

nn

n

nn 

11 -10

Analysis of Step 5

 How many distance computations in step 5?
 : mesh-size in step 1
Ti: partition in step 5
N(Ti): # of distance computations in partitionTi
Fact: There exists a particular partition R0, whose
mesh-size is 0 such that
(1) N(R0)  c0n.
(2) the probability that .2-1 is 2 6

1

0
cne 

11 -11

 Construct R1, R2, …, R16
mesh-size: 40

 The probability that each square in Ti falls
into at least one square of Ri , 1  i  16 is

 The probability that

.2-1 is)()(6
116

1

cn

i
ii eRNTN 




.2-1 6
1

cne



11 -12

 Let the square in R0 with the largest number
of elements among the 16 squares have k
elements.

 N(R0)  c0n => N(Ri)  cin

)(
2

)116(16),(
2

)1(22 kOkkkOkk







.2-1y probabilit

 with)O()()(

6
1

16

1

cn

i
ii

e

nRNTN






k

40

0Ri:

11 -13

A randomized algorithm to test
whether a number is prime.

 This problem is very difficult and no
polynomial algorithm has been found to
solve this problem

 Traditional method:
use 2,3,… to test whether N is prime.
input size of N : B=log2N (binary

representation)
=2B/2, exponential function of B

Thus can not be viewed as a
polynomial function of the input size.

N

N
N

11 -14

Randomized prime number
testing algorithm

 Input: A positive number N, and a parameter m.
 Output: Whether N is a prime or not, with

probability of being correct at least 1-ε = 1-2-m.
Step 1: Randomly choose m numbers b1, b2, …, bm, 1

b1, b2, …, bm <N, where mlog2(1/ε).
Step 2: For each bi, test whether W(bi) holds where

W(bi) is defined as follows:
(1) bi

N-1  1 mod N or
(2)  j such that = k is an integer and the

greatest common divisor of (bi)k-1 and N is not 1
or N.

If any W(bi) holds, then return N as a composite
number, otherwise, return N as a prime.

j
N

2
1

11 -15

Examples for randomized prime
number testing

 Example 1: N = 12
Randomly choose 2, 3, 7
212-1 = 2048  1 mod 12
 12 is a composite number.

11 -16

 Example 2: N = 11
Randomly choose 2, 5, 7
(1) 211-1=1024≡1 mod 11

j=1, (N-1)/2j=5
GCD(25-1, 11) = GCD(31,11) = 1
W(2) does not hold .

(2) 511-1=9765625≡1 mod 11
GCD(55-1, 11) = GCD(3124,11) = 11
W(5) does not hold .

(3) 711-1=282475249≡1 mod 11
GCD(75-1, 11) = GCD(16806,11) = 1
W(7) does not hold .

 Thus, 11 is a prime number with the
probability of correctness being at least
1-2-3= 7/8 .

11 -17

Theorem for number theory
 Theorem:

 If W(b) holds for any 1 b<N, then N is a
composite number .

 If N is composite, then
(N-1)/2  | { b | 1  b<N, W(b) holds } |.

11 -18

Pattern matching
 Pattern string : X length : n

Text string : Y length : m, m  n
To find the first occurrence of X as a
consecutive substring of Y .
Assume that X and Y are binary strings.

 e.g. X = 01001 , Y = 1010100111

 Straightforward method : O(mn)
 Knuth-Morris-Pratt’s (KMP) algorithm : O(m)
 The randomized algorithm : O(mk) with a

mistake of small probability. (k:# of testings)

X

11 -19

Binary representation
 X = x1 x2…xn{0,1}

Y = y1 y2…ym{0,1}
Let Y(i)=yi yi+1….yi+n-1
A match occurs if X=Y(i) for some i .

 Binary values of X and Y(i):
B(X) = x12n-1 + x22n-2 + … + xn
B(Y(i)) = yi2n-1+yi+12n-2+…+yi+n-1 ,

1 i  m-n+1

11 -20

Fingerprints of binary strings
 Let p be a randomly chosen prime number in

{1,2,…,nt2}, where t = m - n + 1.
 Notation: (xi)p = xi mod p
 Fingerprints of X and Y(i):

Bp(x) = ((((x12)p+x2)p2)p+x3)p2…
Bp(Y(i)) = ((((yi2)p+yi+1)p2+yi+2)p2…
 Bp(Y(i+1))= ((Bp(Yi)-2n-1yi) 2+Yi+n)p

=(((Bp(Yi)-((2n-1)pyi)p)p 2)p +yi+n)p

 If X=Y(i), then Bp(X) = Bp (Y(i)), but not vice
versa.

11 -21

Examples for using fingerprints
 Example: X = 10110 , Y = 110110

n = 5 , m = 6 , t = m - n + 1 = 2
suppose P=3.
Bp(X) = (22)3 = 1
Bp(Y(1)) = (27)3 = 0
 XY(1)
Bp(Y(2)) = ((0-24)3 2+0)3 = 1
 X = Y(2)

11 -22

 e.g. X = 10110 , Y = 10011 , P = 3
Bp(X) = (22)3 = 1
Bp(Y(1)) = (19)3 = 1
 X= Y(1) WRONG!

 If Bp(X)  Bp(Y(i)), then X  Y(i) .
 If Bp(X) = Bp(Y(i)), we may do a bit by bit

checking or compute k different fingerprints
by using k different prime numbers in
{1,2,…nt2} .

11 -23

A randomized algorithm for
pattern matching

 Input: A pattern X = x1 x2…xn, a text Y = y1
y2…ym and a parameter k.

 Output:
(1) No, there is no consecutive substring in Y which

matches with X.
(2) Yes, Y(i) = yi yi+1.…yi+n-1 matches with X which is

the first occurrence.
If the answer is “No” , there is no mistake.
If the answer is “Yes” , there is some

probability that a mistake is made.

11 -24

Step 1: Randomly choose k prime numbers p1, p2, …,
pk from {1,2,…,nt2}, where t = m - n + 1.

Step 2: i = 1.
Step 3: j = 1.
Step 4: If B(X)Pj  (B(Yi))pj, then go to step 5.

If j = k, return Y(i) as the answer.
j = j + 1.
Go to step 4.

Step5: If i = t, return “No, there is no consecutive
substring in Y which matches with X.”
i = i + 1.
Go to Step 3.

11 -25

An example for the algorithm
 X = 10110 , Y = 100111 , P1 = 3 , P2 = 5

B3(X) = (22)3 = 1
B5(X) = (22)5 = 2
B3(Y(2)) = (7)3 = 1
B5(y(2)) = (7)5 = 2
Choose one more prime number, P3 = 7
B7(x) = (22)7 = 1
B7(Y(2)) = (7)7 = 0
X  Y(2)

11 -26

How often does a mistake
occur

 If a mistake occurs in X and Y(i), then
B(X) - B(Y(i))  0, and
pj divides | B(X) - B(Y(i)) | for all pj’s.

 Let Q =

 Q<2n(m-n+1)

reason: B(x)<2n, and at most (m-n+1) B(Y(i))’s

2n 2n…2n

m-n+1

))(()(
))(()(p where j

iYBXB
iYBXBdividesi






11 -27

Theorem for number theory
 Theorem: If u29 and q<2u, then q has fewer than (u)

diffferent prime number divisors where (u) is the
number of prime numbers smaller than u.

 Assume nt  29 .
Q < 2n(m-n+1) = 2nt

 Q has fewer than (nt) different prime number
divisors.

 If pj is a prime number selected from {1, 2, …, M},
the probability that pj divides Q is less than .

 If k different prime numbers are selected from {1,
2, …nt2} , the probability that a mistake occurs is less
than provided nt  29.

)(
)(

M
nt




k

nt
nt









)(

)(
2



11 -28

An example for mistake probability
 How do we estimate

 Theorem: For all u  17,



 Example: n = 10 , m = 100 , t = m - n + 1 = 91

Let k=4 (0.0229)42.75×10-7 // very small

u
uu

u
u

ln
25506.1)(

ln
 

)
)ln(

)ln(1(
t

1.25506=

)ln(
ln

25506.1
)(
)(

2

2

2

nt
t
nt
nt

nt
nt

nt
nt







0229.0
)(
)(

2 
nt
nt




k

nt
nt









)(

)(
2



11 -29

Interactive proofs: method I
 Two persons: A : a spy

B : the boss of A
When A wants to talk to B , how does B know
that A is the real A, not an enemy imitating A 

 Method I : a trivial method
B may ask the name of A’s mother (a private
secret)

 Disadvantage:
The enemy can collect the information, and
imitate A the next time.

11 -30

 Method II:
B may send a Boolean formula to A and ask A to
determine its satisfiability (an NP-complete problem).
It is assumed that A is a smart person and knows
how to solve this NP-complete problem.
B can check the answer and know whether A is the
real A or not.

 Disadvantage:
The enemy can study methods of mechanical
theorem proving and sooner or later he can imitate A.

 In Methods I and II, A and B have revealed too much.

Interactive proofs: method II

11 -31

A randomized algorithm for
interactive proofs

 Method III:
B can ask A to solve a quadratic nonresidue
problem in which the data can be sent back and
forth without revealing much information.

 Definition:
GCD(x, y) = 1, y is a quadratic residue mod x if
z2  y mod x for some z, 0 < z < x, GCD(x, z) = 1,
and y is a quadratic nonresidue mod x if otherwise.

(See the example on the next page.)

11 -32

An example for quadratic
residue/nonresidue

 Let
QR = {(x, y) | y is a quadratic residue mod x}
QNR = {(x, y) | y is a quadratic nonresidue mod x}

 Try to test x = 9, y = 7:
12  1 mod 9 22  4 mod 9
32  0 mod 9 42  7 mod 9
52  7 mod 9 62  0 mod 9
72  4 mod 9 82  1 mod 9

 We have (9,1), (9,4), (9,7)  QR
but (9,5), (9,8)  QNR

11 -33

Detailed method for
interactive proofs

1) A and B know x and keep x confidential .
B knows y.

2) Action of B:
Step 1: Randomly choose m bits: b1, b2, …, bm,

where m is the length of the binary
representation of x.

Step 2: Find z1, z2, …, zm s.t. GCD(zi , x)=1 for all i .
Step 3:Compute w1, w2, …, wm:

wi zi
2 mod x if bi=0 //(x, wi)  QR

wi  (zi
2y) mod x if bi=1 //(x, wi)  QNR

Step 4: Send w1, w2, …, wm to A.

11 -34

3) Action of A:
Step 1: Receive w1, w2, …, wm from B.
Step 2: Compute c1, c2, …, cm:

ci 0 if (x, wi)  QR
ci 1 if (x, wi)  QNR
Send c1, c2, …, cm to B.

4) Action of B:
Step 1: Receive c1, c2, …, cm from A.
Step 2: If (x, y)  QNR and bi = ci for all i, then A is

the real A (with probability 1-2-m).

