Chapter 1

Introduction

Why to study algorithms?

= Sorting problem:

To sort a set of elements into increasing or
decreasing order.

11,7,14,1,5,9, 10
lsort
1,5,7,9, 10, 11, 14
= Insertion sort
= Quick sort

= Comparison of two algorithms implemented on
two computers

S3e§0[1ds
30

25 -

20 ¢ —&— Insertion

sort by

VAX8800
-8 Quicksort

by PC/XT

15

10

200 600 1000 1400 1800
numer of data items

Analysis of algorithms

= Measure the goodness of algorithms
= efficiency
= asymptotic notations: e.g. O(n2)
= worst case
= average case
= amortized
= Measure the difficulty of problems
= NP-complete
= undecidable
= lower bound

= Is the algorithm optimal?

0/1 Knapsack problem

P, P, [P, [P, [P [P [P, |Pg

Valuee |10 |5 |1 |9 |3 (4 |11 |17

Weight |7 (3 |3 |10 |1 |9 |22 |15

M(weight limit)=14
best solution: P,, P,, P;, P-(optimal)
This problem is NP-complete.

Traveling salesperson problem

= Given: A set of n planar points

Find: A closed tour which includes all
points exactly once such that its total
length is minimized.

= This problem is NP-complete.

Partition problem

= Given: A set of positive integers S
Find: S, and S, such that 5,nS,=¢, S,US,=S,
D=2

ieS; ieS,

(partition into S, and S, such that the sum of S,
is equal to that of S,) -
= e.g.5={1,7,10,4,6,8, 3,13}
= 5,={1, 10, 4, 8, 3}
= 5,={7, 6,13}
= This problem is NP-complete.

Art gallery problem

R
5

o)

0 0

= Given: an art gallery

Determine: min # of quards and their
placements such that the entire art gallery
can be monitored.

= NP-complete

Minimum spanning tree

= graph: greedy method

= geometry(on a plane): divide-and-
conquer

= # of possible spanning trees for n
points: nn-2

= N=10—108, n=100—101%

Convex hull

= Given a set of planar points, find a smallest
convex polygon which contains all points.

= It is not obvious to find a convex hull by
examining all possible solutions

» divide-and-conquer

One-center problem

= Given a set of planar points, find a smallest
circle which contains all points.

s Prune-and-search

The goodness of an algorithm

Chapter 2 = Time complexity (more important)
= Space complexity
The Complexity of Algorithms = For a parallel algorithm :
and the Lower Bounds of = time-processor product
Problems = For a VLSI circuit :

= area-time (AT, AT?)

Measure the goodness of an Measure the difficulty of a problem
algorithm
= Time complexity of an algorithm = NP-complete ?
=« efficient (algorithm) = Undecidable ?

= worst-case
= average-case
= amortized

= Is the algorithm best ?
= optimal (algorithm)

= We can use the number of comparisons
to measure a sorting algorithm.

Asymptotic notations

Def: f(n) = O(g(n))
3¢, ny> [f(n)] <clg(n)] Vnx=n,
e.g. f(n) =3n2 + 2
g(n) = n?
= Ny=2, c=4
- f(n) = 0O(n?)

e.g. f(n) = n® + n = O(n3)

"at most"

e. g. f(n) = 3n2 + 2 = O(n3) or O(n100)

m Def : f(n) = Q(g(n)) “at least®, “lower bound"
J ¢, and n, 5 [f(n)| = c|g(n)| V n = n,
e.g.f(n)=3n2+ 2= Q(n2) or Q(n)

= Def : f(n) = O(g(n))
dc¢c,, ¢,, and ny, 3 ¢,|g(n)| < [f(n)| < c,|g(n)| V n=n,
e.g.f(n) =3n2+ 2 =0 (n?)

= Def : f(n) ~ o(g(n))

lim—— —1
n—oo g(1)

e.g. f(n) = 3n>tn = 0(3n?)

Problem size
10 102 103 104
log,n 3.3 6.6 10 13.3
n 10 102 103 104
nlog,n | 0.33x10% | 0.7x103 104 1.3x10°
n2 102 104 106 108
2" 1024 1.3x1030 | >10100 >10100
n! 3x106 >10100 | >10Q100 | >71Q100

Time Complexity Functions

Common computing time functions

= O(1) < O(log n) < O(n) < O(n log n) < O(n?) < O(n?) <
O(2") < O(n!) < O(n")
= Exponential algorithm: O(2%)

= Polynomial algorithm: e.g. O(n?), O(nlogn)

= Algorithm A : O(n?), Algorithm B : O(n)
= Should Algorithm B run faster than A?
NO !
= [t is true only when n is large enough!

Analysis of algorithms

» Best case: easiest
= Worst case
= Average case: hardest

Straight insertion sort

input: 7,5,1,4,3
7,5,1,4,3
t
5,7,14,3
7
115I7Iﬂl3

S

1,4,5,7,3

t = 7

13,45,7

Algorithm 2.1 Straight Insertion Sort

Input: x,,X,,...,X,

Output: The sorted sequence of x,,X,,...,X
Forj:=2tondo

n

Begin
i=j-1
X=X
While x<x;and i > 0 do
Begin
Xivg == X
i=i1
End

X.

i+1 - X
End

Inversion table

= (a,a,..,Q,) : a permutation of {1,2,...,n}
= (d,,d,,...,d): the inversion table of (a,a,,...a,)

= d;: the number of elements to the left of j that
are greater than j

= e.g. permutation (7514326)
inversiontable 2432110

= e.g. permutation (7654321)
inversiontable 6543210

Analysis of # of movements

= M: # of data movements in straight
insertion sort

15743
g
temporary
e.g. d;=2

M =nf:(2+di)

Analysis by inversion table

= best case: already sorted
d=0forl1<i<n
=M =2(n-1) = 0(n)

= worst case: reversely sorted

d=n-1
d,=n-2
d=n-i
d,=0

=0(n%)

M =3 @+d)=20n-1)+ ”(”2_1)

m dverage Case.

X; is being inserted into the sorted sequence
X1 Xp eon X g
= the probability that x; is the largest: 1/
= takes 2 data movements
= the probability that x; is the second largest : 1/
= takes 3 data movements 1 4 775
X

D/

= # of movements for inserting x;:

2 3 j+1 j+3
—t =4t — ==
| J 2

L j+3 (n+8)(n-1))
M = = =0(n")
,Z:;‘ 2 4

Analysis of # of exchanges
e Method 1 (straightforward)

X; is being inserted into the sorted sequence
Xy Xy weer Xig
= If . is the Ath (1<4<j) largest, it takes (k1)
exci]anges.
m eg.1 5 74
1 54 7
1457
of exchanges required for x; to be inserted:

= # of exchanges for sorting:
y -t
= 2
yi vl
23722

1 (n-D(n+2) n-1
T2 2 2
_n(n-1)

4

Method 2: with inversion table
and generating function

I(k): # of permutations in 7 nmbers which
have exactly & inversions

Nkl o | 1|23 | 4|56
lt1]0]0]0]|0]|]O0]O
211|100/ 0| 00
3/1 2210|010
411 |3 |56 5|31

= Assume we have I5(k), 0 <k < 3. We will
calculate I,(k).

(1) a; a, a3 a; (2) a; &, a3 a,

T T
largest second largest

G3(2) 2G5(2)

(3) a; a, a3 a; (4) a; &, a3 g,
third largest smallest
72G4(2) Z°G4(2)

case | L,(0)[(1) | L) | L,3) [1,(4) [1(5) | 1,(6)
I [L0)|50) [5| Le)
1,0) | L(1) | L2) | LB3)
1,(0) | (D) | L2) | L3)
1,(0) | (1) | L(2) | LB3)

EE N EYSH B .}

case |1,(0)|1,(1)] 14(2) | 14(3) | La(4) | 14(5) | I4(6)

2 1 2 2 1

3 1 2 2 1

4 1 2 2 1
total | 1 3 5 6 5 3 1

n generatniqng function for I (k)
G,(2) =D 1.(k)Z"
k=0

= forn=4
G,(Z2)=(1+3Z+52>+6Z>+5Z*+32°+Z°)

=(1+Z2+2°+Z%)G,(2)

= in general,
G(Z)=(1+Z+Z>+--+2Z"NHG,_ (Z)

P,(k): probability that a given permutation
of nnumbers has & inversions

= generating function for P (k):

9,(Z)=> P (k)z*=> ntoz*
k=0

k=0
— 1
- FGn(Z)
— Lez4z?ee 4z 14Z47%47"7 147]
- n n-1 2

> kP, (k)=g,"(1)

1+2+---+(n-1) 1+2+---4+(n=-2)
5 +

1
- +--+ 5+ 0
+ 0

Nl'—‘ o]

= ol a5t g
=+n(n-1)

Binary search

= sorted sequence : (search 9)
1 4 5 7 9 10 12 15
step 1 T
step 2 T
step 3 T
= best case: 1 step = O(1)
= worst case: (Llog, n]+1) steps = O(log n)
= average case: O(log n) steps

n cases for successful search
n+1 cases for unsuccessful search

Average # of comparisons done in the binary tree:

(k.
A(m) =5 (12112 '+ k(n+ 1)}, where k =[log n }+1

Straight selection sort

= Recursively apply the same procedure.

Assume n=2* proved by induction /5143
i =2 k-D+1 on k 15743
13745
13475
- 1
A= (k-2 +1+kQ" +1) o 13457 o
n+1 = Only consider # of changes in the flag which is used
. for selecting the smallest number in each iteration.
~k 1
= as n 1s very large - best case: O(1)
=logn
— o = worst case: O(n?)
(log n) » average case: O(n log n)
Quicksort Best case of quicksort
= Best case: O(nlogn)
= A list is split into two sublists with almost
1 5 24 2 31 7 8 26 10 15 equal size.
T T round 1 size =n
1 5 10 2 31 7 8 26 24 15
T T round 2 size = nf2
11 5 10 2 8 7 31 26 24 15 ound 3 cive = n/a
A .
7 5 10 2 8 11 31 26 24 15 -

log n rounds are needed

In each round, 17 comparisons (ignoring the
element used to split) are required.

Worst case of quicksort

= Worst case: O(n?)

= In each round, the number used to split is
either the smallest or the largest.

n(n+1) _om?)

= n+(h=-D+---+1=

Average case of quicksort

= Average case: O(n log n)

s | [ns |

include the splitter

T(n)= Avg(T(s)+T(n-s))+cn, c is a constant

1<s<n

=1 ZH:(T(S)+ T(n—-s))+cn
Ny

=1 (T(1)*+T(n=1)+T(2)+T(n=2)+---+T(n)+T(0))+cn, T(0)=0
n

= %(2T(1)+2T(2)+- -+2T(n—1)+T(n))+cn

(n—1)T(n) = 2T(1)+2T(2)+--+2T(n-1) + cn’-----(1)
(n=2)T(n-1)=2T(1)+2TQ2)++--+2T(n-2)+c(n—1)*--+(2)

H-©

(n—=1)T(n) —(n—2)T(n—1) = 2T(n—1)+c(2n-1)
(n—1)T(n) -nT(n-1) = c(2n—-1)

Tm_T-H 1, 1
n n—1 n n 1
=C(l+ L)+C(1)+---+C(l+1)+T(1),T(1)=O

_C(+7+ f) C(7+7+ +])

Harmonic number[Knuth 1986]
H,= 1+1+1+---+1

—lnn+y+1 12+ 14—8,Wh€1‘€0<8< 16
2n 12p7 120p 252

v =0.5772156649--
H,= O(log n)

T H,-1) + cH,,

= cH,~-1)

=T(n)=2cnH, - c(ntl)
=0(n log n)

2-D ranking finding
= Def: Let A = (x,,y,), B = (X,,¥,). B dominates A iff
X, > X, andy, >y,
= Def: Given a set S of n points, the rank of a point x
is the number of points dominated by x.

= Straightforward algorithm:

compare all pairs of points : O(n2)

» More efficient algorithm (divide-and-conquer)

A

A L B
B *D . *244=6
ae T) ¢ 243=5
°* 1* *143=4
rank(A)= 0 rank(B) = 1 rank(C) = 1 0o . 049>
rank(D) — 3 rank(E) - 0 O] SRR 0+]:])
DIVIde-and-Conquer 2-D » time complexity : step 1: O(n) (finding median)

ranking finding

Step 1: Split the points along the median line L
into A and B.

Step 2: Find ranks of points in A and ranks of
points in B, recursively.

Step 3: Sort points in A and B according to their
y-values. Update the ranks of points in B.

step 3 : O(n log n) (sorting)
» total time complexity :

T(n) < 2T(g) +cynlogn+cyn, 1, C, are constants
SZT(%)Jrcnlogn, letc=c;+c,
S4T(2)+cnlog g +cnlogn
<nT(1)+c(nlogn+n logg+n log§+---+n log 2)

cnlogn(logn+1log?2)

=nT(1)+ 5

= O(n log’n)

Lower bound

= Def : A lower bound of a problem is the least time
complexity required for any algorithm which can
be used to solve this problem.

= 77 worst case lower bound
v¢ average case lower bound

= The lower bound for a problem is not unique.

= €.9. Q(1), Q(n), Q(n log n) are all lower bounds
for sorting.

= (Q(1), Q(n) are trivial)

= At present, if the highest lower bound of a
problem is Q(n log n) and the time complexity
of the best algorithm is O(n2).
= We may try to find a higher lower bound.
= We may try to find a better algorithm.
= Both of the lower bound and the algorithm may be

improved.

» If the present lower bound is Q(n log n) and
there is an algorithm with time complexity O(n
log n), then the algorithm is optimal.

The worst case lower bound of sorting

6 permutations for 3 data elements

W W INDNRFE= = Hﬂ)
N = W= W I\JNQJ
= N = W N wwm

Straight insertion sort:

= input data: (2, 3, 1)
(1) a;:a,
(2) a,:a5 a,¢>a,
(3) a;:a,, a,>a,

= input data: (2, 1, 3)
(1)a;:a,, a;>a,
(2)a,:a,

Decision tree for straight
insertion sort J Decision tree for bubble sort

(2.1.3)-(1.23)
ama | BL2-(13.2)

<as[(1.2,3) @
(21231 = | > < >
<
2,3,1
G:a A (2:153)'(15253) m
1.az 1:2:3 @

(1,2,3)-(1,2,3) aza: | (1,3.2(1.2.3) (aa () @ @
A=Az 1(1,3,2)-(1,3,2) 2,3,1)-(2,1,3) 23 - . - .

(2.3,1)-(2,3,1) (32:9 ar< | (1,2,3) -(1’3’2)

(1,2.3) (25 a3n|lesnl{euy|cia]cn

Lower bound of sorting Method 1:
= Every sorting algorithm (based on comparisons) log(n!) = log(n(n-1)---1)
corresponds to a decision tree. =log2 +log3 +---+ logn
= To find the lower bound, we have to find the > jln log xdx
depth of a binary tree with the smallest depth. - i Frﬂ"_
= n! distinct permutations =log e, Inxdx s
n! leaf nodes in the binary decision tree. =log e[xInx —x]{
= balanced tree has the smallest depth: =loge(nlnn—n+1)
[log(n!)| = Q(n log n) =nlogn—nloge+ 1.44
lower bound for sorting: Q(n log n) >nlogn—1.44n

(See the next page.) =Q(n log n)

Method 2:

= Stirling approximation:

N~ S, = «/27zn(2)”

logn!~log~27x +%logn + nlogE ~nlogn=Q(nlogn)
€

n n! S,

1 1 0.922

2 2 1.919

3 6 5.825

4 24 23.447

5 120 118.02

6 720 707.39
10 3,628,800 3,598,600
20 2.433x10" 2.423x10"
100 9.333x10"’ 9.328x10"7

Hea pSOrt—An optimal sorting algorithm

= A heap : parent > son

= output the maximum and restore:

= Heapsort:

= Phase 1: Construction
= Phase 2: Output

Phase 1: construction

= input data: 4, 37, 26, 15, 48 = restore the subtree rooted
at A(2):

° 1)) AQ) @
“ i @ ()
AQ) @ A(S) = restore the tree rooted at
@ @ A(1):

Ad) AG) . .
(19 @ ©10

A Heap

Phase 2: output O
©10
@ () ’6

Output 26

(9
gﬂ

Output 15

Output 4

Implementation

= using a linear array

not a binary tree.
= The sons of A(h) are A(2h) and A(2h+1).

= time complexity: O(n log n)

Time complexity
Phase 1: construction

d=|logn]: depth
of comparisons is at most:

d-1

> 2(d-L)2"

y
d-1 d-1

=2d Y 2"-4> 12% d
L=0 L=0

k

(> L2 =25Kk-1)+1)

L=0

=2d(2%-1) -4 (d-1-1)+ 1)

=cn—2|_lognJ—4, 2<c<4

Time complexity
Phase 2: output

n—1
23 llogil
i=1

=2n[logn|—4cn+4, 2<c<4
=0(n log n) max

—

log i

|

i nodes

Average case lower bound of sorting

unbalanced
= By binary decision tree external path length
= The average time complexity of a sorting =43+1=13
algorithm:
the external path length of the binary tree
n! balanced
= The external path length is minimized if the external path length
=2-3+3-2=12

tree is balanced.
(all leaf nodes on level d or level d-1)

Compute the min external path length
3. External path length:

M= x,(d - 1) + x,d

1. Depth of balanced binary tree with c leaf nodes:
= (29 -c)(d-1) + 2(c — 291)d

d =log c|
Leaf no%es can appear only on level d or d—1. = c+cd - 29, logc<d <logc+1
2. x, leaf nodes on level d-1 > ctc log ¢ — 2*2s ¢

X, leaf nodes on level d =clogc-c
B X;+X,=cC 4. c=n!

X M =n!logn! —n!
Foxt 72= 241 M/n! =logn! -1

=Q(n log n)

= X, =29

X, = 2(c - 201) Average case lower bound of sorting: Q(n log n)

Quicksort & Heapsort

= Quicksort is optimal in the average case.
(O(n log n) in average)
= (i)worst case time complexity of heapsort is
O(n log n)
(i)average case lower bound: Q(n log n)

= average case time complexity of heapsort is
O(n log n)
» Heapsort is optimal in the average case.

Improving a lower bound
through oracles

Problem P: merge two sorted sequences A
and B with lengths m and n.
Conventional 2-way merging:

2 3 5 6

1 4 7 8

Complexity: at most m+n-1 comparisons

= (1) Binary decision tree:
There are (m:”j ways !

[m: nj leaf nodes in the decision tree.
= The lower bound for merging:
[log [m:”ﬂg m+n-1
(conventional merging)

When m =n

log m+n =log (2m)! =log((2m)!)—2logm!
n (m!)?

Using Stirling approximation
n
n!'~ /2 (—)"
e

m+n
log("]z(log\/2ﬁ+log\/2m+2mlog2—m)—
€

—2(log2r +10g\/a+ mlogm)
€

z2m—%logm+0(l) < 2m-1

Optimal algorithm: conventional merging needs
2m-1 comparisons

(2) Oracle:

= The oracle tries its best to cause the
algorithm to work as hard as it might. (to
give a very hard data set)
= Two sorted sequences:
= Ala; <a,<..<a,
= Bib,<b,<..<b,
= The very hard case:
= a,<b;<a,<b,<..<a,<b,

We must compare:
a, : b,
b, : a,
a,:b,

by :a
a,: b,
Otherwise, we may get a wrong result for some input data.
e.g. If b, and a, are not compared, we can not distinguish
a,<b;<a,<b,<..<a,<b,and
a,<a,<b;<b,<..<a,<b,
Thus, at least 2m-1 comparisons are required.
= The conventional merging algorithm is optimal for m = n.

m-1

Finding lower bound by
problem transformation

= Problem A reduces to problem B (A«xB)
= iff A can be solved by using any algorithm which

solves B.
= If AxcB, B is more difficult.
instance transformation instance of B
of A T(try)
T(A) l T(B) |solver of B
answer transformation
of A T(tr,) answer of B

= Note: T(tr,) + T(tr,) < T(B)
T(A) < T(tr)) + T(tr,) + T(B) ~ O(T(B))

The lower bound of the
convex hull problem

= sorting o« convex hull

A B 1 (XJ,X:Z)
= an instance of A: (X, X5,..., X,)
ltransformation
an instance of B: {(X;, X;%), (X, XX

Xo2)r-wor (Xy %32}

assume: X; < X, < ...< X,

= If the convex hull problem can be
solved, we can also solve the sorting
problem.
= The lower bound of sorting: Q(n log n)

= The lower bound of the convex hull
problem: Q(n log n)

The lower bound of the Euclidean
minimal spanning tree (MST) problem

= sorting oc Euclidean MST

A B
= an instance of A: (X;, Xy,..., X))
ltransformation

an instance of B: {(x;, 0), (x,, 0),..., (x, 0)}
= Assume X; < X, < X3 <...< X,

= <there is an edge between (x;, 0) and (x,,, 0)
in the MST, where1 <i<n-1

= If the Euclidean MST problem can be
solved, we can also solve the sorting
problem.
= The lower bound of sorting: Q(n log n)

= The lower bound of the Euclidean MST
problem: Q(n log n)

Chapter 3

The Greedy Method

A simple example

= Problem: Pick k numbers out of n
numbers such that the sum of these k
numbers is the largest.

= Algorithm:
FORi=1tok
pick out the largest number and
delete this number from the input.
ENDFOR

The greedy method

= Suppose that a problem can be solved by a
sequence of decisions. The greedy method
has that each decision is locally optimal.
These locally optimal solutions will finally add
up to a globally optimal solution.

s KFRRR. Z2ROFMELIREIR T2 34
BemiTrr B4 022+ FE o m3 28
4o

= Only a few optimization problems can be
solved by the greedy method.

Shortest paths on a special graph

= Problem: Find a shortest path from v, to v;.
= The greedy method can solve this problem.
= The shortest path: 1 +2+4=7.

Shortest paths on a multi-stage graph

= Problem: Find a shortest path from v, to v,
in the multi-stage graph.

Stage 0 Stage | Stage 2 Stage 3

= Greedy method: vyv, ,v, V5 = 23
= Optimal: vyv, ;v,,v3 =7
= The greedy method does not work.

Solution of the above problem

= d,(i,j): minimum distance between i
and j.

3+dmin(V1,1,V3)
1+dmin(Vi,2,V3)
5+dmin(Vi3,V3)
THdmin(V1,4,V3)

dmin(vo,v3)=min

= This problem can be solved by the
dynamic programming method.

Minimum spanning trees (MST)

= It may be defined on Euclidean space
points or on a graph.

= G = (V, E): weighted connected
undirected graph

= Spanning tree : S = (V, T), T < E,
undirected tree

= Minimum spanning tree(MST) : a
spanning tree with the smallest total
weight.

An example of MST

= A graph and one of its minimum costs
spanning tree

Kruskal’s algorithm for
finding MST

Step 1: Sort all edges into nondecreasing order.

Step 2: Add the next smallest weight edge to the
forest if it will not cause a cycle.

Step 3: Stop if n-1 edges. Otherwise, go to Step2.

An example of Kruskal’s algorithm

Edge Cost Spanning Forest
OOOB®O®
(1.2) 10 OZOJOIOXOXO);
(3.6) 15 Oz @/@ OXO)
(4.6) 20 OZ0) ©OJO)
Oz0
(2.6) 25 @@—li@@
(1.4) 30 (reject)
(3,5) 35 O—O
@ —3
Q,

The details for constructing MST

= How do we check if a cycle is formed
when a new edge is added?
= By the SET and UNION method.

= Each tree in the spanning forest is
represented by a SET.

» If (u, v) € E and u, v are in the same set,
then the addition of (u, v) will form a cycle.

= If (u, v) € Eand ueS, , veS, , then
perform UNION of S; and S, .

Time complexity

= Time complexity: O(|E| log|E|)
= Step 1: O(E| log|E|)

= Step 2 & Step 3: O(E|a([ELIV])
Where a is the inverse of Ackermann’s function.

Ackermann’s function

A, j)=2! for j>1
AG,D) = A(i —1,2) fori>2
A,)= Ali—1,AG, j-1)) fori, j>2

= A(p, q+1) > A(p, q), A(p+1, q) > A(p, q)

2
A(34)=2% } 65536 two’s

Inverse of Ackermann’s function

= a(m, n) = min{i>1|A(i, Lm/n]) > log,n}
Practically, A(3,4) > log,n
=a(m, n) <3
=a(m, n) is almost a constant.

Prim’s algorithm for finding
MST

Stepl:xeV, LetA={x}, B=V-{x}.

Step 2: Select (u, v) e E, u e A, veB
such that (u, v) has the smallest weight
between A and B.

Step 3: Put (u, v) in the tree. A = A U {v},
B=B-{v}

Step 4: If B = O, stop; otherwise, go to
Step 2.

= Time complexity : O(n?), n = |V|.
(see the example on the next page)

An example for Prim’s algorithm

Edge Cost Spanning tree

(1.2) 10 0—0

(2.6) 25 @g@

(3,6) 15 @W

6.4 20

(6.4) O—2 5
N0

3,5 35

(3.5) 0 96 5

The single-source shortest
path problem

= shortest paths from v, to all destinations

Path Length

In the cost adjacency
matrix, all entries not

Dijkstra’s algorithm

Boston

San
Francisco

300

1) VOVZ 10 Los Angeles
shown are +oo.
2) Vv,V 25
1 2 3 4 5 6
3) VoVaVaVy 45 i[o T Miami
4) vy, 45 2| 300 0
31 1000 800 0
4 1200 0
(b) 5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 1700 0 |
Chicago 1500 Boston

San

Los Angeles

New Orleans

Vertex Minmi

Iteration S Selected @M > @ @& 6 ©® D e
Initial -—_

1 5 6 +o0 4o 4o 1500 0 250 +oo oo

2 5,6 7 +to +oo +oo 1250 0 250 1150 1650

3 5,6,7 4 +oo +oo too 1250 0 250 1150 1650

4 5,6,7,4 8 too +oo 2450 1250 0 250 1150 1650

5 5,6,7,4,8 3 3350 +oo 2450 1250 0 250 1150 1650

6 5,6,7,4,8,3 2 3350 3250 2450 1250 0 250 1150 1650

5,6,7,4,8,3,2 3350 3250 2450 1250 0 250 1150 1650

= Time complexity : O(n2), n = |V]|.

The longest path problem

= Can we use Dijkstra’s algorithm to find the
longest path from a starting vertex to an
ending vertex in an acyclic directed graph?

= There are 3 possible ways to apply Dijkstra’s
algorithm:

= Directly use “max” operations instead of “min”
operations.

= Convert all positive weights to be negative. Then
find the shortest path.

» Give a very large positive number M. If the
weight of an edge is w, now M-w is used to
replace w. Then find the shortest path.

= All these 3 possible ways would not work!

CPM for the longest path
problem

= The longest path(critical path) problem
can be solved by the critical path
method(CPM) :

Step 1:Find a topological ordering.
Step 2: Find the critical path.

(see [Horiwitz 1995].)

» [[Horowitz 1995] E. Howowitz, S. Sahni and D.
Metha, Fundamentals of Data Structures in C++,
Computer Science Press, New York, 1995

The 2-way merging problem

= # of comparisons required for the linear 2-
way merge algorithm is m;+ m, -1 where m,
and m, are the lengths of the two sorted lists
respectively.

= 2-way merging example
2 3 5 6
1 4 7 8

= The problem: There are n sorted lists, each of
length m.. What is the optimal sequence of
merging process to merge these n lists into
one sorted list ?

Extended binary trees

= An extended binary tree representing a 2-way

merge

A

L, L, L, L,

An example of 2-way merging

= Example: 6 sorted lists with lengths 2,
3,5 7,11 and 13.

Huffman codes

= In telecommunication, how do we represent a
set of messages, each with an access
frequency, by a sequence of 0’s and 1°s?

= To minimize the transmission and decoding
costs, we may use short strings to represent
more frequently used messages.

enerating an optimal = This problem can by solved by using an
gxtended gbinaryp extended binary tree which is used in the 2-

= Time complexity for

The minimal cycle basis
An example of Huffman algorithm problem

= Symbols: A,B,C,D,E, F,G

freq. :2,3,5,8, 13,15, 18 = 3 cycles:

A, = {ab, bc, ca}

A, = {ac, cd, da}

A; = {ab, bc, cd, da}
where A; = A, @ A,

(A ® B = (AUB)-(AnB))
A, =A @A

A=A @A

A Huffman code Tree Cycle basis : {A,, A} or {A,, AJ} or {A,, A}

= Huffman codes:
A: 10100 B: 10101 C: 1011
D: 100 E: 00 F: 01
G: 11

= Def : A cycle basis of a graph is a set of = Algorithm for finding a minimal cycle basis:
cycles such that every cycle in the Step 1: Determine the size of the minimal cycle

. basis, demoted as k.
raph can be generated by applying @ ’
gn spome Cyclegs of this bas)i/s pplying Step 2: Find all of the cycles. Sort all cycles(by

weight).
= Minimal cycle basis : smallest total Step 3: Add cycles to the cycle basis one by one.
weight of all edges in this cycle. Check if the added cyclg is a !lnear com.blnatlo_n .of
some cycles already existing in the basis. If it is,
= e.g. {A, A} delete this cycle.

Step 4: Stop if the cycle basis has k cycles.

Detailed steps for the minimal
= Step 2:

Cyde baSIS prOblem How to find all cycles in a graph?
[Reingold, Nievergelt and Deo 1977]
= Step1: How many cycles in a graph in the worst case?

A cycle basis corresponds to the fundamental set of

cycles with respect to a spanning tree. In a complete digraph of n vertices and n(n-1) edges:

a graph a spanning tree a fundamental set L
of cycles Z; Cii-D!>(n-1)!
. # of cycles in a = Step 3:

1

cycle basis : How to check if a cycle is a linear combination of some
e - odes?
) Using Gaussian elimination.

|5 = EL-(VI- 1)
------- O =IE[-|V[+1

Gaussian elimination

= 2 cycles C, and C, are
represented by a 0/1 matrix

G & & & &

G111
G 1 1 1

The 2-terminal one to any special
channel routing problem

= Def: Given two sets of terminals on the upper and
lower rows, respectively, we have to connect each
upper terminal to the lower row in a one to one
fashion. This connection requires that # of tracks
used is minimized.

=®onrows 1and3 A A A A A A A
€ € € €4 € 1 2 3 4 5 6 7 8 9 10 11 12 13
- Add C3 C1 1 1 1 | | | | | | | | | 1 1 | |
C 1 1 1
€ € € €4 €5 2
ol 11 Cs 1
C2 1 1 1 .] | I | | | | ! | 1 1 | |
Gl 1 1 11 @ on rows 2 and 3 : empty L 2 3 4 5 6 7 8 9 10 11 12 13
.. _ N\ AN N\ AN A AN /\ AN A\ /\ VAN FAN
2 feasible solutions |, | Redrawing solutions
AOAA AN A AYIE ¢ .)
1 2 3 4 5 6 7 8 9 10 11 12 13 (a) Optimal solution
—1— : —1— L2 3 405 6 7 8 9 100 1213
track 1 1 1 1 1 1 1 |
1) 1 I |) | T I T I I\I T
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
/N A A A \ A\ /\ /N AN /\ A A AN A AN A A A A AN
/ /N VAN AN /AN AN N -
1 2 3 4 5 6 7 8 9 10 11 12 13 (b) Another solution
1 | | 1 | 1 | | | 1 AA A AN AN
! ‘ track 1 1 2 3 4 5 6 7 8 9 10 11 12 13
track 3 1 1 1]]] 1 1 1 1 1 1 1
track 4 "
ek i
‘ ‘ [%rack7 /
I) 1) |) I | 1 | 1 1) d
1 2 3 4 5 6 7 8 9 10 11 12 13 L 2 3 4 05 6 7.8 9 1001 1213
A A A AN A VAN A A A A yaN A A A A A A A A A AA A A

= At each point, the local density of the solution
is # of lines the vertical line intersects.

= The problem: to minimize the density. The
density is a lower bound of # of tracks.

= Upper row terminals: P, ,P, ,..., P, from left
to right

= Lower row terminals: Q, ,Q, ,..., Q. from left
to right m > n.

= It would never have a crossing connection:

Pl P2 Pl PZ
X =
Q Q, Q, Q,

= Suppose that we have a method to
determine the minimum density, d, of a
problem instance.

= The greedy algorithm:
Step 1 : P, is connected Q;.

Step 2 : After P, is connected to Q;, we check
whether P,,, can be connected to"Q,,,. If the
density is increased to d+1, try to connect
P.1 10 Qe

Step 3 : Repeat Step2 until all P’s are
connected.

The knapsack problem

= N objects, each with a weight w;, > 0
a profit p, > 0
capacity of knapsack: M
PiX;
Maximize ISiZSn
Subject to 2 Wixi =M

1<i<n

0<x<1,1<i<n

The knapsack algorithm

= The greedy algorithm:
Step 1: Sort p/w; into nonincreasing order.
Step 2: Put the objects into the knapsack according
to the sorted sequence as possible as we can.
= €. Q.
n=23,M=20, (p,, P, P3) = (25, 24, 15)
(wy, w,, w;) = (18, 15, 10)
Sol: p,/w, = 25/18 = 1.39
p,/W, = 24/15 = 1.6
ps/W; = 15/10 = 1.5
Optimal solution: x;, =0, x, =1, x; = 1/2

Chapter 4

The Divide-and-Conquer Strategy

A simple example

= finding the maximum of a set S of n numbers

32

T

29,14, 15, 1,6, 10,32, 12

A A
29 32
29, 14, 15, 1 6, 10, 32, 12
A A A A
29 15 10 32
29, 14| [15,1 6,10 | (32,12
. . = ST, > * 7
Time complexity HEFEFT—Z B
= Time complexity: o zéﬁl <3 %if’ﬁ'l Z>, . Z AT
T _{ 2T@2)+H ,n>2 >3 peen- B EEr e
(n)_ 1 ,ngz
= Calculation of T(n): m P BT ®ERF2Z SR
Assume n = 2K, TNl ot I maBgY o ow 4 &
o) = 202 HE(9)0 B—r) Ag s as
= 2(2T(n/4)+1)+1 3 F Moz 3E > Lﬁv“ Bz (%) > 18 2
= 4T(n/4)+2+1 OhE R (=) S e
= AR EEA DHE AL & 1
= 21T (2) 4224 +4+2+1 w7

=214 2k24 | +4+2+1
=21 =n-1

A general divide-and-conquer
algorithm

Step 1: If the problem size is small, solve this
problem directly; otherwise, split the
original problem into 2 sub-problems
with equal sizes.

Step 2: Recursively solve these 2 sub-problems
by applying this algorithm.

Step 3: Merge the solutions of the 2 sub-

problems into a solution of the original
problem.

Time complexity of the
general algorithm

Time complexity:

_J 2T/2)S()M(n) ,n>c
T(n)—{ b ,n<c

where S(n) : time for splitting

e.g.
e.g.
e.g.

M(n) : time for merging
b : a constant
C : a constant
Binary search
quick sort
mergesort eg.2 6 537 481

2-D maxima finding problem

= Def : A point (x,, y;) dominates (x,, Y,) if X;
> X, and y; > y,. A pointis called a
maximum if no other point dominates it

= Straightforward method : Compare every pair
of points.

Y4

Time complexity: ®

o(m) A

Y4

Divide-and-conquer for
maxima finding

S, L Sg
Pl
[} p
o] P,
p @P D . EPQ
P
o E o' ¢ 11. Epw
.P7 .P5 .Pl3 P14

The maximal points of S, and S

The algorithm:

= Input: A set S of n planar points.

= Output: The maximal points of S.

Step 1: If S contains only one point, return it as
the maximum. Otherwise, find a line L
perpendicular to the X-axis which separates S
into S and S, with equal sizes.

Step 2: Recursively find the maximal points of
S, and S;.

Step 3: Find the largest y-value of S;, denoted

as Y. Discard each of the maximal points of
S, if its y-value is less than or equal to yg.

= Time complexity: T(n)

Step 1: O(n)
Step 2: 2T(n/2)
Step 3: O(n)
T(n):{ %T(n/2)+0(n)+0(n) E:

Assume n = 2k
T(n) = O(n log n)

The closest pair problem

= Given a set S of n points, find a pair of points
which are closest together.

= 1-D version : m 2-D version
Solved by sorting ‘ T o
) . S : 3 o S
Time complexity : * * o '
: o
O(n log n) « LY
: e
° g . °

L-d L+d d=min(d}, d)

= at most 6 points in area A:

The algorithm:
= Input: A set S of n planar points.

= Output: The distance between two closest
points.

Step 1: Sort points in S according to their y-
values.

Step 2: If S contains only one point, return
infinity as its distance.

Step 3: Find a median line L perpendicular to
the X-axis to divide S into S| and Sg, with
equal sizes.

Step 4: Recursively apply Steps 2 and 3 to solve
the closest pair problems of S, and S;. Let
d (dy) denote the distance between the
closest pair in S (Sg). Letd = min(d,, d).

Step 5: For a point P in the half-slab bounded
by L-d and L, let its y-value be denoted as y,, .
For each such P, find all points in the half-
slab bounded by L and L+d whose y-value
fall within y,+d and y,-d. If the distance d’
between P and a point in the other half-slab
is less than d, let d=d’. The final value of d is
the answer.

= Time complexity: O(n log n)
Step 1: O(n log n)
Steps 2~5:
Tin)= { ?T(n/2)+0(n)+0(n) , Eii

=T(n) = O(n log n)

The convex hull problem

concave polygon: convex polygon:

= The convex hull of a set of planar points is
the smallest convex polygon containing all of

the points.

= The divide-and-conquer strategy to
solve the problem:

|

The merging procedure:
Select an interior point p.

There are 3 sequences of points which have
increasing polar angles with respect to p.

(1) g, h,i,j k
(2)a, b, ¢, d
(3)f. e
Merge these 3 sequences into 1 sequence:
gl hl al bl fl CI eI dl iI jl k'
Apply Graham scan to examine the points
one by one and eliminate the points which
cause reflexive angles.

(See the example on the next page.)

= e.g. points b and f need to be deleted.

Final result:

Divide-and-conquer for convex hull

= Input : A set S of planar points

= Output : A convex hull for S

Step 1: If S contains no more than five points,
use exhaustive searching to find the convex
hull and return.

Step 2: Find a median line perpendicular to the
X-axis which divides S into S, and S, with
equal sizes.

Step 3: Recursively construct convex hulls for S
and Sg, denoted as Hull(S,) and Hull(SR),
respectively.

= Step 4: Apply the merging procedure to
merge Hull(S,) and Hull(Sg) together to form
a convex hull.

= Time complexity:
T(n) = 2T(n/2) + O(n)
= O(n log n)

The Voronoi diagram problem

= e.g. The Voronoi diagram for three points

Each L is the perpendicular bisector of line
segment p P, . The intersection of three L;'s is
the C|rcumcenter (#Mo») of triangle P,P,P;.

Definition of Voronoi diagrams

= Def : Given two points P, P, e S, let H(Pi,Pj)
denote the half plane containing P. The
Voronoi polygon associated with P, is defined

as
Vi)=(H(P,P)

l;ﬁ]

= Given a set of n points, the Voronoi diagram

consists of all the Voronoi polygons of these
points.

= The vertices of the Voronoi diagram are
called Voronoi points and its segments are
called Voronoi edges.

Delaunay triangulation

B2 LR AR 25 [
B 5 R R PR RO

i

/

/s
7

IS e s .
b A
s / /-.\jf/'/ ///l 1/
ey \7 f '

4-25

Example for constructing
Voronoi diagrams
= Divide the points into two parts.

26

Merging two Voronoi diagrams

= Merging along the piecewise linear hyperplane

o 517, 427

Fig. 5-18: The Piccewise Lincar Hyperplane for the sct of Points Shown in Fi

The final Voronoi diagram

= After merging

Divide-and-conquer for Voronoi
diagram

= Input: A set S of n planar points.
= Output: The Voronoi diagram of S.
Step 1: If S contains only one point, return.

Step 2: Find a median line L perpendicular to
the X-axis which divides Sinto S, and S,
with equal sizes.

Step 3: Construct Voronoi diagrams of S, and
Sg recursively. Denote these Voronoi
diagrams by VD(S,) and VD(Sg).

Step 4: Construct a dividing piece-wise linear
hyperplane HP which is the locus of points
simultaneously closest to a pointin S, and a
point in S;. Discard all segments of VD(S,)
which lie to the right of HP and all segments
of VD(Sg) that lie to the left of HP. The
resulting graph is the Voronoi diagram of S.

(See details on the next page.)

Mergeing Two Voronoi Diagrams
into One Voronoi Diagram

= Input: (@) S, and S; where S, and S; are
divided by a perpendicular line L.
(b) VD(S,) and VD(Sg).

= Output: VD(S) where S = S, NS,

Step 1: Find the convex hulls of S, and S,
denoted as Hull(S,) and Hull(Sg), respectively.
(A special algorithm for finding a convex hull
in this case will by given later.)

Step 2: Find segments P,P, and P,P, which join
HULL(S,) and HULL(Sy) into a convex hull (P,
and P. belongto S, and P, and P, belong to
Si) Assume that P, P, lies above PP, . Letx
=a,y=b,SG= ppand HP = .

Step 3: Find the perpendicular bisector of SG.
Denote it by BS. Let HP = HPU{BS}. If SG
=pp,90to Step 5; otherwise, go to Step 4.

Step 4: The ray from VD(S,) and VD(Sg) which
BS first intersects with mustbea
perpendicular bisector of either P, p, or PP, for
some z. If this ray is the perpendicular
bisector of £ P, then let SG = PP, ; otherwise,
let SG = pp . Go to Step 3.

Step 5: Discard the edges of VD(S,) which
extend to the right of HP and discard the
edges of VD(Sg) which extend to the left of
HP. The resulting graph is the Voronoi
diagram of S = S USg.

Properties of Voronoi Diagrams

= Def : Given a point P and a set S of points,
the distance between P and S is the distance
between P and P, which is the nearest
neighbor of P in S.

= The HP obtained from the above algorithm is
the locus of points which keep equal
distancesto S, and S; .

= The HP is monotonic iny.

of Voronoi edges

= # of edges of a Voronoi diagram < 3n - 6,
where n is # of points.
= Reasoning:
i. # of edges of a planar graph with n vertices <
3n - 6.
i. A Delaunay triangulation is a planar graph.
iii. Edges in Delaunay triangulation
<=L, edges in Voronoi diagram.

of Voronoi vertices

s # of Voronoi vertices < 2n - 4.

= Reasoning:

i. LetF, EandV denote # of face, edges and
vertices in a planar graph.
Euler’s relation: F=E -V + 2.

ii. In a Delaunay triangulation,
triangle =15 Voronoi vertex
V=nE<3n-6
= F=E-V+2<3n-6-n+2=2n-4.

Construct a convex hull from
a Voronoi diagram

= After a Voronoi diagram is constructed, a
convex hull can by found in O(n) time.

Construct a convex hull from
a Voronoi diagram

Step 1: Find an infinite ray by examining all
Voronoi edges.

Step 2: Let P, be the point to the left of the
infinite ray. P; is a convex hull vertex.
Examine the Voronoi polygon of P, to find the
next infinite ray.

Step 3: Repeat Step 2 until we return to the
starting ray.

Time complexity

= Time complexity for merging 2 Voronoi
diagrams:

Total: O(n)

= Step 1: O(n)

= Step 2: O(n)

= Step 3 ~ Step 5: O(n)
(at most 3n - 6 edges in VD(S,) and VD(Sy)
and at most n segments in HP)

= Time complexity for constructing a Voronoi
diagram: O(n log n)
because T(n) = 2T(n/2) + O(n)=0(n log n)

Lower bound

= The lower bound of the Voronoi
diagram problem is Q(n log n).
sorting oc Voronoi diagram problem

- @
»

| w

The Voronoi diagram for a set
of points on a straight line

Applications of Voronoi
diagrams

= The Euclidean nearest neighbor
searching problem.

= The Euclidean all nearest neighbor
problem.

Fast Fourier transform (FFT)

= Fourier transform
b= a@edt, wherei=-1
» Inverse Fourier transform
a(t) = lj‘” b(fe > dt
- 27[- -
= Discrete Fourier transform(DFT)
Given a,, a,, ..., a,,, compute

n—1

b, :Zake"z’”'k/",OSan—l

i27/n

y
=) a,0”,wherew=e

DFT and waveform(1)

= Any periodic waveform can be decomposed
into the linear sum of sinusoid functions (sine
or cosine).

DFT and waveform(2)

= Any periodic waveform can be decomposed
into the linear sum of sinusoid functions (sine
or cosine).

SR
715 48 56 1)

+ f(@®)=cosm(7)t)+3cos2r(15)t) +
3cos(27(48)¢t) +cos(2x(56)t)

DFT and waveform (3)

wpy | ‘
MMA_LJ.JJ i Ll

2 Y Y all
4T I0 w00 000 00 0000 1I000 M000 10000 18000 © 000 b0 BOO0 MO0 10000 10D M0 1000 LBNO

The waveform of a music The frequency spectrum of
signal of 1 second the music signal with DFT

An application of the FFT —
polynomial multiplication

Polynomial multiplication:
F6)=Fas glo)=T e hlx)=1(x)eg(x)

The straightforward product requires O(n?) time.
DFT notations:
fx)=a,+ax+a,x*+..+a, x"
Let b, = f(w/) 0<j<n—1, w' =1

{by,by,---,b,_,} is the DFT of {a,,a,,---,a, }.
h(x)=b, + bx +bx* +...+b,_x""

a,=Lh(w*) 0<j<n-1

{a,,a,,"--,a, } is the inverse DFT of {b,,b,,---,b, }.

-1

Fast polynomial multiplication

Step 1: Let N be the smallest integer that N=29 and N>2n-1.
Step 2: Compute FFT of (4 .a,,---,a,,,0,0,---,0}.

N

Step 3: Compute FFT of {c,,¢,,--*,¢, ,0,0,---,0}.

N
Step 4: Compute f(wj)o gw’), 0<j<N-1, w=e"""
Step 5: Let h(w') = f(w')e g(w')
Compute inverse DFT of {h(w°),A(w"),---,h(W"™)}.
The resulting sequence of numbers are
the coefficients of A(x).

= Time complexity: O(NlogN)=0(nlogn), N<4n.

FFT algorithm

Inverse DFT:

n—1
a, = ! Db 0<k<n-1
j=0

n-

e’ =cos@+isin@
0" =" =" =cos2r +isin2xr =1

0" =(*'")"? =" =cosx+ising =-1

DFT can be computed in O(/#) time by a
straightforward method.

DFT can be solved by the divide-and-conquer
strategy (FFT) in O(sogn) time.

FFT algorithm when n=4

= =4, w=e?74 w=1, wP=-1 U=
b _ a el27;]k/n
by=a,+a,+a,+a, T L%k
k=0
b,=ay+a,w+a, w+a,nA et |
by=a,+a, WA +a,wHa,nh =Y a,0"
by=ay+a, WA+a,w+an? k=0

another form:

by=(a,+a,)+(a,+a;)
b,=(gy+a,W)+(a,W+a,nP) =(gy+a,)-(a,+a,)
= When we calculate), we shall calculate (g,+a,)
and (a,+a;). Later, b, van be easily calculated.
Similarly,

b,=(a,+ a,n?)+(aw+a;n?) =(gy-a,)+ma,-a,)
by=(gy+a,wP)+(a,WP+a; W) =(a,a,)-ma,-a,).

FFT algorithm when n=8

—

n—

n-1
_ i2mik/n _ ki
= =8, w=e2/8, yp=1, w=-1 b; =2 ae =D 4
k=0

bl
Il

0

by=a,t+a,+a,ta;+a,ta+a.+a,
b,=ay+a, w+a, W+ a,wi+a,wh+a. nb+a nwh+a,w
b,=ay+a, w+a, W+ awb+a, i+ a, i+ g ni+a, nit
by=ay+a, WA+ a, WP+ a; W+ a, Wi+ a. W+ g i+ a, nAl
b,=ay+a, W+ a, B+ a, ni+ a, i+ a '+ a, P+ a, nP8
b=ay+a, W+ a, Wi+ a W+ a, w20+ a >+ g i+ a, s
b= ay+a, W+ a, W+ a, Wi+ g, WP+ a, A+ g, A+ a, W'
b,=ay+a, w+a, W+ a WP+ a, P+ a A+ g W+ a, wh

= After reordering, we have
by=(a,+a,ta,+a;)+(a+a;ta;+a,)
b,=(ay+a,W+a,w+a.nP)+ ma,+a,wP+a.w+a,nP)
b,=(a,+a,W+a,u+a,ni?)+ wA(a+a,w+a,nP+a,ni?)
by=(ay+a,w+a,wi+a,n'8)+ nA(a,+awb+a,ni’+a,nd)
b=(a,+a,ta,+a;)-(a,ta;+a.+a,)
b=(ay+a,W+a,w'+a.unP)-ma,+a,w+a.,w'+a,nk)
by=(a,+a, W+a,ns+a,ni?)-wP(a, +a; W+ a nP+a,nt?)
b,=(ay+a,wo+a,wi+a,wi8)-nh(a, + a, WP+ a, i+ a, n8)
= Rewrite as

by=ctd, b=G-d=Gtnid,
b=c+wd, bs=c,-wd,=c,+1nPd,
b=c+1nd, by=c-wd,=c,+nhd,

b=c+1nd, b=c-Wd=c+wd,

s G=dta,tatag
C,=ay+a, W+a,w+ag,np
G,=ay+a, W+a,nB+ag, w2
G=3ay+a, We+a, w2+ g nis

» Let x=nP=e27/4
G=ay+a,+a,+a
— 2
C, =@yt ax+ae+axt
G=3ayta,X+axt+a.xe
G=3ay+a,X¥+axo+a.x°

= Thus, {q,c,c, G} is FFT of {&,,a,,4,,a.}
Similarly, {q,,d,,d,,d;} is FFT of {a,,a;,a:,a,}.

General FFT

= In general, let w=e27/7 (assume nis even.)
w'=1, w?=-1
bi=ayta,wta,w+.. +a, mrty,
={a,+a,W+a,wWi+...+a, W+
w{a,+aw+awi+.. . +a, w2}
=G+ wid
sy y=3ay+ @ W2+ a, W+ g npi3na4
+an_1 Mjn—l)j+n(n-1)/2
=gy-a, W+a,W-a;W+.. . +a, ,wWr-g Wt
=C}-—VI/0}
=cHwtnd,

Divide-and-conquer (FFT)

= Input: a,, a,, ..., a4, N =2k
= Output: b, j=0, 1, 2, ..., n-1
where b,= Y aw", where w=e¢

0<k<n-1

i2n/n

Step 1: If n=2, compute
b,=a, +a,,
b, =a, -a,, and return.

Step 2: Recursively find the Fourier transform of
{a,, a,, a,...,a ,rand{a,, a5, a,...,a_,},
whose results are denoted as {c,, c,, C,,...,
C.q3 @nd {dy, d,, d,,..., d 4}

Step 3: Compute b;:
b,=c +wd, for 0<j<n/2-1
biinp = € - WId; for 0<j<n/2-1.
= Time complexity:
T(n) = 2T(n/2) + O(n)
= O(n log n)

Matrix multiplication

= Let A, B and C be n x n matrices
C=AB
Ci, §) = = A, K)B(K, j)

= The straightforward method to perform a
matrix multiplication requires O(n3) time.

Divide-and-conquer approach

« C=AB
Cu C|=|An An B; Bi
[Cu Cp] = [AZI Ay][B, By]

Cy;y =A; By +ALBy

Cy, =A;B, +A;L By,

Cy = Ay By + A, By

Cpp =Ay B t+A,By,
= Time complexity:

b ,n<2 (# of additions : n2

T(“):{ 8T(n2)en? 1= 2 ()

We get T(n) = O(n3)

Strassen’s matrix multiplicaiton

(All + AZZ)(Bll + BZZ)

(Ay + A»)By Ciy = A By + A, By
A,;(B;; - By,) C, =A;By, +A; By,
C
C

= A,,(B,; - Byy) 21 = Ay By + Ay By
(A, +A,)B,y, 2 = Ay B+ A,By,

P
Q
R
U (A21 - A11)(811 + Blz)
(A12 - Azz)(Bz1 + Bzz)-

C;=P+S-T+V
C,=R+T
C
C

S
T
\Y

N =

21 =Q+5S
»=P+R-Q+U

Time complexity

= 7 multiplications and 18 additions or subtractions
= Time complexity:
] b ,n<2
T - | TT(/2)+an, n > 2
T(n)=an>+7T(n/2)
an’ + 7(61(%)2 +7T(n/4)

an2+;an2+72T(n/4)

an’(1+ 2+ (P +-+ (D H+7T1)

IA

75 log 5 It .
en ()" + 7" ¢ is a constant

log , 4—log , 7+log , 4 lo,
g2 g2 g2 +n g2

2 ,7\log,n log,7 __
en“ ()™ " +n =cn

O(n10g27) ~ O(nZ.SI)

Chapter 5

Tree Searching Strategies

Satisfiability problem

—~ = ==X
==X
e R R I R

Tree representation of 8 assignments.

If there are n variables x, X, ...,X_, then there are 2"
possible assignments.

= An instance:

Kennemnaennnn (1)

X{eornernaennans (2)

Xy V Xs..oo... (3)

) CTPTOT 4) 3 3
'Xz (5) (1) falsified (2) falsified

A partial tree to determine
the satisfiability problem.

= We may not need to examine all possible
assignments.

Hamiltonian circuit problem

O—0 O—=¢

N1

A graph containing a Hamiltonian circuit.

The tree representation of whether there exists a
Hamiltonian circuit.

Breadth-first search (BFS)

= 8-puzzle problem

49 tlely

2
1| e
6|5
2| 3

4 |4 1]z]4a]s sl il ilslalg

= The breadth-first search uses a queue to hold
all expanded nodes.

Depth-first search (DFS)

= €.g. sum of subset
problem

S={7,5, 1, 2, 10}
3S <cS>ssumof S =97

% 3=10Goﬂl Node

= A stack can be used to
guide the depth-first .
search.

A sum of subset problem
solved by depth-first search.

Hill climbing

= A variant of depth-first search

The method selects the locally optimal
node to expand.

» e.g. 8-puzzle problem
evaluation function f(n) = d(n) + w(n)
where d(n) is the depth of node n
w(n) is # of misplaced tiles in node n.

mitial [2]]|:
state | . 4|3

g |4 1|4 L
AR T.51® els |

f
s |05)

g |4 1]z]a
5(4) 765(6)

g 3(4)
5

@ 734(6)
5 6|5

Goal Node

An 8-puzzle problem solved by a hill climbing method.

Best-first search strategy

Combine depth-first search and breadth-first
search.

Selecting the node with the best estimated
cost among all nodes.

This method has a global view.

The priority queue (heap) can be used as the
data structure of best-first search.

3
4| (3)

1]4 Ls 4 t]4 L]
4 4 (5
6| s) 7 1e]s 7

(5)

LN N6 1 ey | fs e 154 |6
615 7 7]6]|s

1)

4 (4) 7 8 4
5 -

An 8-puzzle problem solved by a best-first
search scheme.

Best-First Search Scheme

Stepl: Form a one-element list consisting of the
root node.

Step2: Remove the first element from the list.
Expand the first element. If one of the
descendants of the first element is a goal
node, then stop; otherwise, add the
descendants into the list.

Step3: Sort the entire list by the values of some
estimation function.

Step4: If the list is empty, then failure.
Otherwise, go to Step 2.

Branch-and-bound strategy

= This strategy can be used to efficiently solve
optimization problems.

= €.0.

7
Vi Voo

A multi-stage graph searching problem.

= Solved by branch Vﬁ
-and-bound 7 1

Personnel assignment problem

= A linearly ordered set of persons P={P,,
P,, ..., P} where P,<P,<...<P,

n A part|aIIy ordered set of jobs J 3 3o -y

= Suppose that P, and P; are assigned to jobs
f(P,) and f(P,) respectlvely If f(P) f(P.), then
P, <P, Cost’ C,; is the cost of assigning]P to J.
We want to f]nd a feasible aSS|gnment W|th
the minimum cost. i.e.
X; = 1 if P; is assigned to J;
X;; = 0 otherwise.
= Minimize % ; C)X;

1}

= e.g. A partial ordering of jobs

J) Iz

N

I3 4

«—

= After topological sorting, one of the following
topologically sorted sequences will be
generated: L N N)

e)
—
®

1’ 3

J
3 S I

— e
S

1 S I

N

J
J
J
b, I, 1, L

N

= One of feasible assignments:
P,—J,, P,—J,, P;—J;, P,—],

A solution tree Cost matrix

= All possible solutions can be represented _ = Apply the best-
by a solution tree. = Cost matrix first search scheme:
Person Jobs 1 2 3
I Assigned Persons
!
5) 1 29 19 17
2 32 30 26
2 3 3 21 7
4 18 13 10
3
4 Only one node is pruned away.
Reduced cost matrix
i) A reduced matrix i :
= Cost matrix . Reduced cost matrix n cost matrix can be obtained
Jobs | 1 > 3 4 subtract a constant from each row and each
Persons Jobs| 1 2 3 4 column respectively such that each row and
Persons each column contains at least one zero.
1 29 19 17 12 1 174 5 0 (-12)
2 6 1 0 2 (26 = Total cost subtracted: 12+26+3+10+3 = 54
2 32 30 26 28 .. .
3 0 15 4 6 (3 = This is a lower bound of our solution.
3 3 21 7 9 4 8 0 0 5 (-10)
4 18 13 10 15 (-3)

Branch-and-bound for the The traveling salesperson
personnel assignment problem optimization problem
= Bounding of subsolutions: = It is NP-complete.
. Person Assigned - A COSt matI‘IX
: il 2 3 4 5 6 7
(N i
I3 1 0 3 93 13 33 9 57
2 2 4 w 77 42 21 16 34
Jobs 5 3 145 17 o 36 16 28 25
Pfrs‘"'s N 4 139 90 8 o 56 7 91
2 6 1 5 |28 46 88 33 o 25 57
3 0 15 6 3 88 18 46 92 0 7
4 8 0
7 |4 26 33 27 8 39
= Another reduced matrix
= A reduced cost matrix i1 2 3 4 5 6 7
. i
R ! © 0 8 9 30 6 50
1 0 0 9 10 30 6 54 (3) 2 0 o 66 37 17 12 26
2 0 w 73 38 17 12 30 (4) 3 29 1 o 19 0 12 5
312 1 o 200 0 129 (16) 4 32 8 66 o 49 0 80
5 3 21 63 8 o 0 32 (25 6 0 . . 2 %9 . 0
6 0 8 15 43 8 4 (-3)
7 18 0 0 0 58 13 w
7 18 0 7 1 58 13w (-26)
7 D (-4)
Reduced: 84
Total cost reduced: 84+7+1+4 = 96 (lower bound)

= The highest level of a decision tree:

All solutions Lower bound = 96
All solutions All solutions
with arc 4-6 without arc 4-6
Lower bound = 96 Lower bound = 96+32 =128

= If we use arc 3-5 to split, the difference on
the lower bounds is 17+1 = 18.

= A reduced cost matrix if arc (4,6) is included
in the solution.

T1 2134577

o | 0 8] 9 |30 50
0 | o0 | 66|37 | 17 | 26
29| 1 [o0 | 19] 0 5
21 | 56 | 7 | oo | 28
0 | 8 | 8 [(0)] &8 | 0
18 | 0 0 0 | 58 | oo

N[N N[W || |-
W

Arc (6,4) is changed to be infinity since it
can not be included in the solution.

= The reduced cost matrix for all solutions with
arc 4-6

if1o2 3 4 5 7
i

w 0 8 9 30 50
0 o 66 37 17 26
29 1 o 19 0 5
18 53 4 o« 25 (-3)
85 8 w® 8 0
18 0 0 0 58 o

~N N L W N =

= Total cost reduced: 96+3 = 99 (new lower
bound)

L.B.=96

Node to be terminated

Without 3-5

- Node to be
LB=117 expanded

With 2-1 - B.=12 Node to be
LB.=112 ithout 2 L.B.=125 expanded
terminated
- » Node to be
With 6-7 | L.B.=126 Without6-7 | LB=141 (erminated | 2
With 5-2 Without 5-2 | No solution (i
With 7-3 | Solution Without 7-3 | No solution 3
1-4-6-7-3-5-2-1 4

Cost=126 7
A branch-and-bound solution of a traveling salesperson problem.

The 0/1 knapsack problem

= Positive integer P,, P,, ..., P, (profit)
W, W,, ..., W, (weight)
M (capacity)

n
maximize Y P;X;
i=1

n
subjectto > W;X; <M X;=0orl,i=l,...,n
i=1
The problem is modified:
n
minimize -) PX;
i=1

=eg.n=6M=34
i 1 2 3 4 5 6
P. 6 10 4 5 6 4

W, 10 19 8 10 12 8

(Pi/Wi 2 Pi+1/Wi+1)

= Afeasible solution: X, =1, X, =1, X; =0,
X,=0,Xs=0,X,=0
-(P,+P,) = -16 (upper bound)
Any solution higher than -16 can not be an
optimal solution.

Relax the restriction

= Relax our restriction from X; =0or 1to 0 <X <1
(knapsack problem)

n
Let —> PX; be an optimal solution for 0/1
i=1
n
knapsack problem and — > P;X! be an optimal

i=1

n
solution for knapsack problem. Let Y=-> P:X;,

i=l1
, n
Y= -YPX.
i=1

=Y <Y

Upper bound and lower bound

= We can use the greedy method to find an optimal

solution for knapsack problem:

X;=1,X,=1,X;=5/8,X,=0,X.=0, X, =0
-(P,+P,+5/8P;) = -18.5 (lower bound)
-18 is our lower bound. (only consider integers)

= -18 < optimal solution < -16
optimal solution: X; =1, X,=0,X;=0,X, =1, X; =
1, X, =0
-(Py+P,+P;) = -17

Expand the node with
the best lower bound. x2—

U.B.=-16 P U.B=-14
L.B.=-1 < |LB=17
X=1 Xr=10 X
U.B.=-1 U.B.=-15

w upper bound

found here)

Xo= 1y,) K= X= 1, N K= 0
UB=16 UB.=-15 U.B=17
inﬁ:a-.' LB=18 I.B=-|>: 14 |Lps1s

£ Xe=lg , =0 Xe=1g W= 0
B=-16 UB=-15 UB.=16 UB=17
""“-“"‘ H B.=-18 '--“=”" l-!!-= 18 15 |Lp=15 | 16
y Xs=0 AXs=0 M= \ Ya=0
B=16 UB= l n 14 | B=17
2
n LB.=-18 . 1 o : Aok Lomis E

!Qo?\l Xe= 1) \.\.uh.l s Xo= 0

..
UB=1S

U.B=-17
LB=-17

0/1 knapsack problem solved by branch-and-bound strategy.

The A* algorithm

Used to solve optimization problems.
Using the best-first strategy.

If a feasible solution (goal node) is obtained, then it
is optimal and we can stop.

Cost function of node n : f(n)

f(n) = g(n) + h(n)

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.
h*(n): “real” cost from node n to a goal node.

If we guarantee h(n) < h*(n), then
f(n) = g(n) + h(n) < g(n)+h*(n) = f*(n)

An example for A® algorithm

= Find the shortest path with A* algorithm.

Q\m\é/

» Stop iff the selected node is also a goal node.

g(A)=2 h(A)=min{2,3}=2 f(A)=2+2=4
g(B)=4 h(B)=min{2}=2 f(B)=4+2=6
g(C)=3 h(C)=min{2,2}=2 f(C)= 3+2=5

= Step 2: Expand node A. / 6%\0_>®
/CTE\ \g;)/

d2€
©
g(D)=2+2=4 h(D)=min{3,1}=1 f(D)=4+1=5
g(E)=2+3=5 h(E)=min{2,2}=2 f(E)=5+2=7

= Step 3: Expa/nd%(%de C. Q\ﬁi:é/

df2 e\d /Zfllz

5 7

g(F)=3+2=5 h(F)=min{3,1}=1 f(F)=5+1=6
g(G) =3+2=5 h(G)=min{5}=5 f(G) =5+5=10

= Step 4: Expand node D. (}——=()+—()

g(H)=2+2+1=5 h(H)=min{5}=5 f(H)=5+5=10
g(I)=2+2+3=7 h(1)=0 f(1)=7+0=7

g(J)=4+2=6 h(J)=min{5}=5 f(J)=6+5=11

AT

= Step 6: Expand node F. (= O\O/@
5 chog

G%@ R@ f(n) <f*(n)

11 h/q 3 10

oholcHcR
10 7 %é >8<
g(K)=3+2+1=6 h(K)=min{5}=5 f(K)=6+5=11
g(L)=3+2+3=8 h(L)=0 f(L)=8+0=8

Node I is a goal node. Thus, the final
solution has been obtained.

The channel routing problem

= A channel specification

1 2 3 4 5 6 7 & 9 10 11 12 13 colunmno.

4 &8 4 7 06 3 6 0 0 2 1 5 O terminal no.

00 7 0 35 4 0 8 3 0 2 6 1 terminalno.

1 2 3 4 5 6 7 8 9% 19 11 12 13 colunmne.

= Illegal wirings:

= We want to find a routing which minimizes
the number of tracks.

A feasible routing

1 2 3 4 5 6 7 8 % 16 11 12 13

_"J 1 trackl

track 2
3 track 3
4 track 4
5 track 5
6 track 6
g | track 7

1 2 3 4 5 6 7 8 9% 16 11 12 13

[RF]

= 7 tracks are needed.

_ _ A* algorithm for the channel
An optimal routing routing problem

= Horizontal constraint graph (HCG)

|
4 0 8 3 0

Sl e

g o 70

(]
[u—

1 23 4 5 ¢ 7 & 9% 10 11 12 13

4 tracks are needed.
This problem is NP-complete.

= e.g. net 8 must be to the left of net 1 and net 2 if
they are in the same track.

= f(n) = g(n) + h(n),
= Vertical constraint graph: (n) = g(n) + h(n)

= g(n): the level of the tree
(? C? @ g ﬁgdlggme = h(n): maximal local densit}/+ 3/% x "
O O ©

SR
= Maximum cliques in HCG: {1,8}, {1,3,7}, @
)

{5,7}. Each maximum clique can be assigned
to a track.

G H
4

I

A partial solution tree for the channel routing
problem by using A* algorithm.

Chapter 6

Prune-and-Search

A simple example: Binary
search

= sorted sequence : (search 9)
1 4 5 7 9 10 12 15
step 1)
step 2 T
step 3 T

= After each comparison, a half of the data set are
pruned away.

= Binary search can be viewed as a special divide-
and-conguer method, since there exists no
solution in another half and then no merging is
done.

The selection problem

= Input: A set S of n elements
= Output: The kth smallest element of S
= The median problem: to find the [3|-th
smallest element.
= The straightforward algorithm:
= step 1: Sort the n elements
= step 2: Locate the kth element in the sorted list.
= Time complexity: O(nlogn)

Prune-and-search concept for
the selection problem

= S={a,,a,, .., a,}
= Let p € S, use p to partition S into 3 subsets S, , S, ,
Ss:
= S;={ala<p,1l<i<n}
« S;5={a|a=p,1<i<n}
« S;={a|a>p,1<i<n}
= 3 cases:
« If [S,| > k, then the kth smallest element of S is
in'S;, prune away S, and S;.
» Else, if [S,| + |S,| > k, then p is the kth smallest
element of S.
= Else, the kth smallest element of S is the (k - |S,|
- |S,])-th smallest element in S;, prune away S,
and S,.

How to select P?

= The n elements are divided into (ﬂl subsets.

(Each subset has 5 elements.)

At least 1/4 of S known to be less than or equal to P.

-gouanbas

SuISBOIOOP-UOU UI PYIOS

| T

e o o o e o et M

of [0
°

SI JSqQNS JUSWD[-G Yory

'T At least 1/4 of S known to be
greater than or equal to P.

Prune-and-search approach

= Input: A set S of n elements.
» Output: The kth smallest element of S.

Step 1: Divide S into [n/5 | subsets. Each subset
contains five elements. Add some dummy oo
elements to the last subset if n is not a net
multiple of S.

Step 2: Sort each subset of elements.

Step 3: Recursively, find the element p which is
the median of the medians of the [n/5]
subsets..

Step 4: Partition Sinto S, S, and S;, which
contain the elements less than, equal to, and
greater than p, respectively.

Step 5: If |S;|= k, then discard S, and S; and
solve the problem that selects the kth
smallest element from S, during the next
iteration;

else if |S,| + [S,|> k then p is the kth smallest
element of S;

otherwise, let k' = k - |S,] - |S,], solve the
problem that selects the k'th smallest element
from S; during the next iteration.

Time complexity

= At least n/4 elements are pruned away during

each iteration.

= The problem remaining in step 5 contains at
most 3n/4 elements.
= Time complexity: T(n) = O(n)
= step 1: O(n)
= step 2: O(n)
» step 3: T(n/5)
= step 4: O(n)

step 5: T(3n/4)
T(n) = T(3n/4) + T(n/5) + O(n)

Let T(n) =a,+an+a,n?+.. ,a,#0

T(3n/4) = a, + (3/4)a,;n + (9/16)a,n? + ...

T(n/5) = a, + (1/5)a;n + (1/25)a,n? + ...

T(3n/4 + n/5) = T(19n/20) = a, + (19/20)a;n +
(361/400)a,n? + ...

T(3n/4) + T(n/5) < a, + T(19n/20)

= T(n) <cn + T(19n/20)
<cn + (19/20)cn +T((19/20)2n)

<cn + (19/20)cn + (19/20)%cn + ... +(19/20)Pcn +
T((19/20)P*+1n) , (19/20)P+n< 1 < (19/20)Pn

19
— 1- (== p+l
G

1-=
20

<20cn +b
= 0(n)

cn+b

The general prune-and-search

= It consists of many iterations.

= At each iteration, it prunes away a fraction,
say f, 0</<1, of the input data, and then it
invokes the same algorithm recursively to
solve the problem for the remaining data.

= After piterations, the size of input data will
be g which is so small that the problem can
be solved directly in some constant time ¢

Time complexity analysis

= Assume that the time needed to execute the
prune-and-search in each iteration is O(nk)
for some constant & and the worst case run
time of the prune-and-search algorithm is
T(n). Then

T(n) = T((1-f) n) + O(n¥)

= We have
7(n) < T(1-F) n) + cr* for sufficiently large n.
< (A -1)2n) + ek + a1 - F)knk

SC+Henf+ dl1-H)knk+ d1-F)%nf+ ... + d1-F)Pknk
=C+af(1+(1-H+ Q-+ ...+ (1-F)~Pk.
Sincel-f<1,as n— oo,
- T(n) = O(nk)
= Thus, the time-complexity of the whole prune-

and-search process is of the same order as the
time-complexity in each iteration.

Linear programming with two
variables

= Minimize ax + by

subjecttoax +by>¢c ,i=1,2,..,n
= Simplified two-variable linear programming

problem:
Minimize y

subjecttoy >ax+b,i=1,2,..,n

= The boundary F(x):

F(X) = max {aix+Db;}

I<i<n

= The optimum solution x,:

F(x) = min F(x)

—0< X<

/

agX + by

X<

ax+b,

agx +bg

a,x+b,
ax+b,

a;x + b,

asX + bs

May be deleted

a;x +b,

Constraints deletion

« If X, < x,, and the
intersection of a;x +
b; and a,x + b, is
greater than x, then
one of these two
constraints is always
smaller than the
other for x < x..
Thus, this constraint
can be deleted.

= It is similar for x, >

X

Determining the direction of the
optimum solution

Suppose an x., is known.
How do we know whether
§Q<xmorxg>xm?

= Lety, = F(X,) = max@ax +b
= Case1l:y ison

only one constraint.

= Let g denote the

slope of this
constraint.

= If g > 0, then x, <
X

= If g <0, then x, >
X

The cases where x, is on only
. one constrain.

= Case 2:y,_ isthe
intersection of several
constraints.
" Orax= 11]1ax{a1- lax, +h =F0x,)}
max. slope

Case 2a: X, min. S|0p

coser W dnin > 0 G > 0,

then X, < X,

- If Gmin < 0, Omax < 0,
then x, > X,

o If Imjn < 0, Omax ~ 0,
then (x., Y,,) Is the

*mt Fm2 ¥m3 optimum solution.
Cases of x,, on the intersection of several
constraints.

oy =N 12 13, b, = F ()]

How to choose x_?

= We arbitrarily group the n constraints
into n/2 pairs. For each pair, find their
intersection. Among these n/2
intersections, choose the median of
their x-coordinates as X....

Prune-and-Search approach

= Input: Constraints S: ax + b, i=1, 2, ..., n.

= Output: The value x, such that y is minimized at
X, subject to the above constraints.

Step 1: If S contains no more than two constraints,
solve this problem by a brute force method.

Step 2: Divide S into n/2 pairs of constraints
randomly. For each pair of constraints ax + b
and axx + b;, find the intersection p; of them and
denote its x-value as x;.

Step 3: Among the x;s, find the median x...

Step 4: Determine y,,, = F(x,,) = max (2%, +b}

9rin = min & laxX, +b = F(x,)}
1<i<n
g = max @ lax,+b=F(x,)}
max 1<i<n
Step 5:

Case 5a: If g, and g,,,., are not of the same
sign, y,, is the solution and exit.

Case 5b: otherwise, x, < x.,, if g.... > 0, and X,
>Xy if 9 < 0.

Step 6:

Case 6a: If x, < x.,, for each pair of constraints
whose x-coordinate intersection is larger than x,
prune away the constraint which is always
smaller than the other for x < x_..

Case 6b: If x, > x.,, do similarly.

Let S denote the set of remaining constraints. Go
to Step 2.

= There are totally [n/2] intersections. Thus, | n/4.
constraints are pruned away for each iteration.

= Time complexity:
T(n) = T(3n/4)+0(n)
= 0O(n)

The general two-variable
linear programming problem

{Minimize ax + by
subjecttoax+by=>c ,i=1,2,..,n
Let x" = x
y' = ax + by
U
Minimize y’
subjecttoax"+b'y'>¢’ ,i=1,2,..,n
where a’ = a, —ba/b, b/ = b/b, ¢/ = ¢

Change the symbols and rewrite as:
Minimize y y
subjecttoy>ax + b, (iel,)

y<ax+b(iel))

)

Ve ~
a<x<b e P
Define: ><
F,(x) =max{ax+b ,iel} Fit) >
F,(x) = min {ax + b, , i € L} ™

U

/

Minimize F,(x)
subject to F,(x) < F,(x),a<x<b
Let F(x) = F,(x) - F5(x)

= If we know x, < x., then a,x + b, can be deleted
because a,x + b, < a,x + b, for x< x_...
= Define:
= g, =Min{a |iel,ax,+b =F(x,)} min. slope
= O = Max{a | i e I, ax, + b, = F,(x,,)}, max. slope
» h,,=min{a |iel,ax,+b,=F,(x,)} min. slope
= h,=max{a | iel, ax, + b, = F,(x,)} max. slope

Determining the solution

= Case 1: If F(x) <0, then x_, is feasible.

Case l.a: If g, > O,

Case 1.b: If g, < O,

Onax = 0, then Xg < X Gimax < 0, then Xo > Xme
Y y
V><
é%—’\) gmax
Xo < Xy X

Case 1.c: If g;, < 0, 9., > O, then x_ is the
optimum solution.

4>F2®<

Emin Emax

y

Xm = Xo

= Case 2: If F(x,,) > 0, x,, is infeasible.

Case 2.a: If g, > h
then x, < X,

Case 2.b: If g, < h
then x, > x,.

max’/

max/

Case 2.c: If ., < O @Nd g, > D, then

no feasible solution exists.

% (Emax
4%< b

X

min/

Prune-and-search approach

= Input: Constraints:
[ry2ax+b,i=1,2,..,n
L:y<ax+b,i=n+1,n+2,..,n
as<x<b
= Output: The value x, such that
y is minimized at x,
subject to the above constraints.

Ste% 1: Arrange the constraints in I, and I, into

arbitrary disjoint pairs respectively. For each
pair, if ax + b, |s parallel to ax + b, delete
ax+b |fb < b, for i, jel, of b, >’b, for i,
jeL,. Otherwise, find the intersection P, of y
=ax+bandy—ax 5Lett'|11ex-
coordinate of p; be ;.

Step 2: Find the median x,, of x;'s (at most{ J
points).

Step 3:
a. If x_, is optimal, report this and exit.

b. If no feasible solution exists, report this
and exit.

c. Otherwise, determine whether the
oPtimum solution lies to the left, or right,

.
Step 4: Discard at least 1/4 of the constraints.
Go to Step 1.

= Time complexity:
T(n) = T(3n/4)+0(n)
= 0(n)

The 1-center problem

= Given n planar points, find a smallest
circle to cover these n points.

The pruning rule

L, ,: bisector of segment connecting p, and p, ,
L, ,: bisector of segments connecting p; and p,
P, can be eliminated without affecting our solution.

The area where the y
center.of the optimum

circle is located.
Ps3 0 L,
Ly, °

/1:2
o Dy °
X

The constrained 1-center
problem

= The center is restricted to lying on a
straight line.

Prune-and-search approach

= Input : n points and a straight liney =y’

» Output: The constrained center on the
straight liney =y".

Step 1: If n is no more than 2, solve this problem by a
brute-force method.

Step 2: Form disjoint pairs of points (p;, p,), (Ps
P4)s --/(Pnys Pp)- If there are odd number of points,
just let the final pair be (p,, p,).

Step 3: For each pair of points, (p,, p,.,), find the point
Xi+1 ON the line y =y’ such that d(p;, X;;,;) = d(pi,y

Xii+1):

Step 4: Find the median of the EJ X;;+1'S- Denote it as
X,

Step 5: Calculate the distance between p, and x, for all
i. Let p; be the point which is farthest from x. Let x;
denote the projection of p; onto y = y". If x; is to the
left (right) of x_,, then the optimal solution, x*, must
be to the left (right) of x....

Step 6: If x* < x, for each x;;,; > x, prune the point
p; if p; is closer to x., than p;,, otherwise prune the
point p;

If X* > x,, do similarly.
Step 7: Go to Step 1.
= Time complexity
T(n) = T(3n/4)+0(n)

= 0(n)

The general 1-center problem

= By the constrained 1-center algorithm, we can
determine the center (x,0) on the line y=0.
= We can do more
= Let (x,, y,) be the center of the optimum circle.
= We can determine whether y, >0, y, <0 or y,=0.
= Similarly, we can also determine whether x,>0, x, <0

orx,=0
@ -

The sign of optimal y

= Let I be the set of points which are farthest
from (x*, 0).
= Case 1: I contains one point P = (x,, Y,).
¥ has the same sign as that of y,..

p
1
1
1
|
|
1
!
X

= y=()

= Case 2 : I contains more than one point.
Find the smallest arc spanning all points in I.

Let P, = (x,, ¥,) and P, = (x,, Y,) be the two
end points of the smallest spanning arc.

If this arc > 180°, then y, = 0.
else y, has the same sign as that of #2= .

(a (b)
(See the figure on the next page.)

Optimal or not optimal

= an acute triangle: = an obtuse triangle:

The circle is optimal. The circle is not optimal.

An example of 1-center problem

m

Ym

= One point for each of n/4 intersections of L, and L_
is pruned away.

= Thus, n/16 points are pruned away in each iteration.

Prune-and-search approach

= Input: AsetS ={p,, p, ..., P} Of N points. Step 3: Compute the median of s,’s, and denote
= Output: The smallest enclosing circle for S. it by s,

Step 1: If S contains no more than 16 points, Step 4: Rotate the coordinate system so that
solve the problem by a brute-force method. the x-axis coincide with y = s_x. Let the set
Step 2: Form disjoint pairs of points, (p,, p,), of L 's with positive (negative) slopes be I* (I’

(P3s P4)s --(Ppys Pp)- FOr each pair of points,). (Both of them are of size n/4.)
(py Piyq1), find the perpendicular bisector of Step 5: Construct disjoint pairs of lines, (L., L)

line segment PiP.. .Denote them as L ,, for i =
2, 4, ..., n, and compute their slopes. Let the
slope of L, be denoted as s, for k = 1, 2,

fori=1,2,..n/4 whereL, eI*andL_e
I". Find the intersection of each pair and
denote it by (a, b)), fori =1, 2, ..., n/4.

3, ..., /2.

= Step 8: If y, > y*, find the median of as for
those (a, b;)’s where b, < y*. If y, < y*, find the
median of a/s of those t hose (a,, b,)’s where b, >
y*. Denote the median as x*. Apply the
constrained 1-center algorithm to S, requiring
that the center of circle be located on x = x*. Let
the solution of this contained 1-center problem
be (x*, y').

= Step 9: Determine whether (x*, y") is the
optimal solution. If it is, exit; otherwise,
record x, > x* and x, < x*.

Step 6: Find the median of b/s. Denote it as y*.
Apply the constrained 1-center subroutine to
S, requiring that the center of circle be
located on y=y*. Let the solution of this
constrained 1-center problem be (X', y*).

Step 7: Determine whether (X, y*) is the
optimal solution. If it is, exit; otherwise,
record y, > y* or y, < y*.

Step 10:
= Case 1: x, < x*and y, < y*.
Find all (a,, b,)’s such that a, > x* and b, > y*. Let
(a, b;) be the intersection of L, and L,.. Let L, be
the bisector of p; and p,. Prune away p,(p,) if p;(py)
is closer to (x*, y*) than p(p;).

= Case 2: x, > x* and y, > y*. Do similarly.
= Case 3: x, < x* and y, > y*. Do similarly.
= Case 4: x, > x* and y, < y*. Do similarly.
Step 11: Let S be the set of the remaining points. Go to
Step 1.
= Time complexity :
T(n) = T(15n/16)+0(n)
= 0(n)

Chapter 7

Dynamic Programming

Fibonacci sequence (1)

«0,1,1,2,3,5,8,13,21,34,...

= Leonardo Fibonacci (1170 -1250)
MARETERTHVEE
FHEEA T EE—H
RFHAER, FB—EHF E4E, HARET

gFE 01123 ..
E1 12358 ..

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

7 -2

Fibonacci sequence (2)
=« 0,1,1,2,3,58,13,21,34,...

Fibonacci sequence and
golden number
« 0,1,1,2,3,5,8,13,21,34,...

f =0 ifn=0
{fn 1 ifn=1
f=Ff_ +Ff_,ifnx2

f, _1+\/§
2

= Golden number

Computation of Fibonacci sequence

0
1
i

=-h
S

o

S

+ = =
= 5

[|
U
N I

=]

- =
=1
-

fn22

n

n-1

= Solved by a recursive program:

= Much replicated computation is done.
= It should be solved by a simple loop.

Dynamic Programming

= Dynamic Programming is an algorithm
design method that can be used when
the solution to a problem may be
viewed as the result of a sequence of

decisions

The shortest path

= To find a shortest path in a multi-stage graph

3 2 7

e‘e‘e 5 G

6

5
= Apply the greedy method :
the shortest path from Sto T :
1+42+5=8

The shortest path in
multistage graphs

= €.0. -

= The greedy method can not be applied to this
case: (S5,A, D, T) 1+4+18 = 23.
= The real shortest path is:
(S,C,FET) 5+2+42=09.

Dynamic programming approach

= Dynamic programming approach (forward approach):

11 9
2 5 13
<<@ z
5 @ﬁ

= d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

4
= d(A,T) = min{4+d(D,T), 11+d(E,T)} %@\\d\m
= min{4+18, 11+13} = 22, . e

d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F. T)}
= min{9+18, 5+13, 16+2} = 18.

@ ~ d(D T)

dlC, T)=min{2+d(F T) } =24+2=4

d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}
= min{1+22, 2+18, 5+4} = 9.

The above way of reasoning is called

backward reasoning.

Backward approach
(forward reasoning)
d(s, B)

@<§@ G
d(s, C) = 5

= d(S,D)=min{d(S,A)+d(A,D), d(S,B)+d(B,D)}
=min{ 144,249} =5
d(S,E)=min{d(S,A)+d(A,E), d(S,B)+d(B,E)}
=min{ 1+11,2+5} =7
d(S,F)=min{d(S,B)+d(B,F), d(S,C)+d(C,F)}
= min{ 2+16, 5+2 } =7

= d(S, A)

= d(5,T) = min{d(S, D)+d(D, T), d(S,E)+
d(E, T), d(S, F)+d(F, T)}
= min{ 5+18, 7+13, 7+2 }

=9 4
°
1 %\
11 9

— GO

Principle of optimality

= Principle of optimality: Suppose that in solving
a problem, we have to make a sequence of
decisions D,, D,, ..., D,. If this sequence is
optimal, then the Iast K decisions, 1 <k <n
must be optimal.

= e.g. the shortest path problem

If i, iy, i, ..., J is @ shortest path from i to j,
then iy, I, ..., j must be a shortest path from i,
to j

= In summary, if a problem can be described by a

multistage graph, then it can be solved by
dynamic programming.

Dynamic programming

Forward approach and backward approach:

= Note that if the recurrence relations are
formulated using the forward approach then the
relations are solved backwards . i.e., beginning
with the last decision

= On the other hand if the relations are formulated
using the backward approach, they are solved
forwards.
= T0 solve a problem by using dynamic
programming:
= Find out the recurrence relations.
= Represent the problem by a multistage graph.

The resource allocation
problem

= M resources, n projects
profit P, ; : j resources are allocated to project
i
maximize the total profit.

Resource
Project 1 2 3
1 2 8 9
2 5 6 7
3 4 4 4
4 2 4 5

The multistage graph solution

= The resource allocation problem can be described as a
multistage graph.

= (i, j) : i resources allocated to projects 1, 2, ..., j

e.g. node H=(3, 2) : 3 resources allocated to projects 1, 2.

= Find the longest path from Sto T :
S, C, H, L, T), 8+5+0+0=13
2 resources allocated to project 1.
1 resource allocated to project 2.
0 resource allocated to projects 3, 4.

The longest common
subsequence (LCS) problem

= Astring: A=bacad

= A subsequence of A: deleting 0 or more
symbols from A (not necessarily consecutive).

e.g. ad, ac, bac, acad, bacad, bcd.
= Common subsequences of A=bacadand
B=accbadcb: ad, ac, bac, acad.

= The longest common subsequence (LCS) of A
and B:

a cad.

The LCS algorithm

= letA=3a,a,...a,andB=Db; b, ... b,
= Let L;; denote the length of the longest

common subsequence of a, a, ... a,and b, b,
.. b;

j.
n Li,j = Li-l,j-l +1 if ai=bj
max{ L.y L1 } if azb,

Loo = Lo = Lo =0 for 1<i<m, 1<j<n.

= The dynamic programming approach for
solving the LCS problem:

IN I
I

L3,1

!

N

= Time complexity: O(mn)

Tracing back in the LCS algorithm 0/1 knapsack problem

=eg. A=bacad,B=accbadcb _ _
g = n objects, weight W, W,, ...,W_

os]

a ccbadcehb profit P, P,, ...,P,
0000O0GO0GO0O0 O v M
b|0O OO0 O 1 1 1 1 1 capa_at_y ™
al 0 Dednl 1 2 2 2 2 maximize &z,
Aclo 1 2\@}2 2 23 3 subject to 2Wx <M
a0 b2 2 23 3 x.=Oor11S'S1nsisn
dl o 1 2 2 2 3 @x4<4a ! !
"% _ i | w o»
= After all L, ’s have been found, we can trace 1 10 20 M=10
back to find the longest common subsequence 2 3 20
of A and B. 3 5 30
The dynamic programming
The multistage graph solution approach

= The 0/1 knapsack problem can be The longest path represents the optimal
described by a multistage graph. solution:
X;=0, x,=1, x;=1
2. PXi= 20430 = 50
Let f(Q) be the value of an optimal solution
to objects 1,2,3,...,i with capacity Q.
fi(Q) = max{ fi-l(Q)/ fi-l(Q'Wi)+Pi }

The optimal solution is f (M).

Optimal binary search trees

= e.g. binary search trees for 3, 7, 9, 12;

(D (D (12)
®» O O © (9
O, OO
O,
(b) (©) (d)

Optimal binary search trees

= n identifiers : a, <a, <a;<...< a,

P, 1<i<n : the probability that a, is searched.

Q, O<i<n : the probability that x is searched
where a, < X < a, (ag=-», a,,,=).

R+2.Q =1
=l 0

= Identifiers : 4, 5, 8, 10, 11,
12, 14

= Internal node : successful
search, P,

~ = External node :
unsuccessful search, Q

= The expected cost of a binary tree:

n

D P *level(a,) + iQi *(level(E,) - 1)

n=l

s The level of the root : 1

The dynamic programming
approach

= Let C(i, j) denote the cost of an optimal binary

search tree containing CIHRE_

= The cost of the optimal binary search tree with a,
as its root :

C(l,n):Eqkig{Pk{QO+kz_]:(Pm+Qm)+C(l,k—1)}+{Qk+ > (P, +Q,)+Clk+1,n)

m=k+1

Q- Qy

. Ay, A,

C(1k-1) C(k+1,n)

I

General formula

C(@, j) —ml_n{P J{ 11+Z)+C(,k - 1)}

J{Qk + Z(Pm +Q,)+ C(k+l,j)}}

m=k+1

- min{C(i,k ~1)+Clk+1,3)+Qyy + 2 (P, + Qm)}

i<k<j

NS

C(ik-1) C(k+1,)

a..q,

Computation relationships of

subtrees
= e.g.n=4 C(1.4)
C(1,3) C(2,4)
C(1,2) C(2,3) C(3,4)

= Time complexity : O(n3)
(n-m) C(i, j)’s are computed when j-i=m.
Each C(i, j) with j-i=m can be computed in O(m) time.

O(Y m(n—m))=0(n’)

1<m<n

Matrix-chain multiplication

= N matrices A, A,, ..., A, with size
pO>< pll pl>< pZI pZX p3l SRRy pn-l>< pn
To determine the multiplication order such that # of
scalar multiplications is minimized.

= To compute A x A ;, we need p,;p,p;;; Scalar
multiplications.

e.g.n=4, A;: 3 x5, A5x4, A3:4x2,A;i2%x5
((A; x Ay) x A3) x A4, # of scalar multiplications:
3*¥5%44+3*%4*%24+3%2*%5=114
(A; x (A, x A3)) x A,, # of scalar multiplications:
3*¥5%24+5%4*%24+3*%2*5=100
(A; x Ay) x (A; x A,), # of scalar multiplications:
3*¥5*%44+3%4*x54+4%*%2*%5=160

= Let m(i, j) denote the minimum cost for computing

Aix Ai+1>< oo X A]
Qi) 0 ifi=]
m(1,]) =
: g}i}ll{m(l) +mk+ 1) +PopD;) ifi<j

= Computation sequence :

/N N

m(1,2) m(2,3) m(3.,4)

= Time complexity : O(n3)

Single step graph edge searching

= fugitive: can move in any speed and is hidden
in some edge of an undirected graph G=(V,E)

= edge searcher(quard): search an edge (u, v)
from u to v, or stay at vertex u to prevent the
fugitive passing through u

= Goal: to capture the fugitive in one step.

= NO extra guards needed extra guards needed

= cost of a searcher from u to v: wt(u)
a guard staying at u: wt(u)

= Cost of the following: 2wt(a)+wt(b)+wt(b)
(one extra guard stays at b)

/x
o)

)

= Problem definition: To arrange the searchers
with the minimal cost to capture the fugitive
in one step.

= NP-hard for general graphs; P for trees.

The weighted single step graph
edge searching problem on trees

Total cost =26 Total cost = 13
= T(v): the tree includes v;, v (parent of ;) and all descendant
nodes of v;.
= C(T(V)), V;,V;): cost of an optimal searching plan with
searching from v;to ;.
m C(T(Vy), Vg,V)=5 C(T(Vy), V5,4)=2
s C(T(vy), v,V =6 C(T(v,), Vi ,V,)=9

The dynamic programming
approach

= Rule 1: optimal total cost
C(T(r)) =min{C(T(r),F), C(T(r),n)},
where C(T(r),T):no extra guard at root r
C(T(r),r):one extra guard at root r

= Rule 2.1 : no extra guard at root r: All children must
have the same searching direction.

S CT ML),
C(T(r),r)=min i;l

ZC(T(Vi)’Vi’r)

= Rule 2.2: one extra guard at root r: Each child can
choose its best direction independently.

® (An extra guard here)

C(T(r),r)=wt(r)+ Zm:min{C(T v,),r,v,), C(T(v,),v,,r}

i=l

= Rule 3.1 : Searching to an internal node u from its
parent node w

C(T (u),w,u) =min{C(T (u),w,u,u), C(T (u),w,u,u)}, where
C(T(u),w,u,U) = wt(w) + iC(T (v,),v,,u)

C(T(u),w,u,u) =wt(w)+wt(u)+ imin{C(T (v),V;,u), C(T(v,),u,v,)}

where U means no extra guard at U and U means one extra guard at u.

= Rule 3.2 : Searching from an internal node u to its
parent node w

ﬁ () () (o) = (o)

C(T(u),u,w)=min{C(T (u),u,w,t), C(T (u),u,w,u)}, where
C(T(u),u,w,U)=wt(u)+ iC(T(vi),u,vi)

C(T(u),u,w,u)=2wt(u) + imin{C(T V), V;,u), C(T (v;),u,v,)}

i=1

= Rule 4: A leaf node u and its parent node w.

° C(T(u),w,u) =wt(w)
() C(T (u),u,w) = wt(u)

= the dynamic programming approach: working from
the leaf nodes and gradually towards the root

= Time complexity : O(n)
computing minimal cost of each sub-tree and
determining searching directions for each edge

Chapter 8

The Theory of NP-Completeness

= e

P: the class of problems which can be solved
by a deterministic polynomial algorithm.

NP : the class of decision problem which can
be solved by a non-deterministic polynomial
algorithm.

NP-hard: the class of problems to which every
NP problem reduces.

NP-complete (NPC): the class of problems
which are NP-hard and belong to NP.

NP-hard

Some concepts of NPC

= Definition of reduction: Problem A reduces to
problem B (A o B) iff A can be solved by a
deterministic polynomial time algorithm using
a deterministic algorithm that solves B in

polynomial time.

= Up to now, none of the NPC problems can be
solved by a deterministic polynomial time
algorithm in the worst case.

= It does not seem to have any polynomial time
algorithm to solve the NPC problems.

The theory of NP-completeness always
considers the worst case.

The lower bound of any NPC problem seems
to be in the order of an exponential function.
Not all NP problems are difficult. (e.g. the
MST problem is an NP problem.)

If A, B € NPC, then A o« B and B « A.

Theory of NP-completeness:

If any NPC problem can be solved in polynomial
time, then all NP problems can be solved in
polynomial time. (NP=P)

Decision problems

= The solution is simply “Yes” or “No”.
= Optimization problems are more difficult.
= e.g. the traveling salesperson problem
= Optimization version:
Find the shortest tour
= Decision version:

Is there a tour whose total length is less than
or equal to a constant ¢?

Solving an optimization problem by a
decision algorithm :

= Solving TSP optimization
problem by a decision algorithm :

= Give ¢, and test (decision algorithm)
Give ¢, and test (decision algorithm)

Give c,and test (decision algorithm)

= We can easily find the smallest ¢,

The satisfiability problem

= The satisfiability problem
= The logical formula :
X; VX,V Xy

& - x;

&-x,
the assignment :

Xy —F, X —F, X;<T

will make the above formula true .
(-X;, X5 , X3) represents X, «— F , X, «— F , X; T

» If there is at least one assignment which
satisfies a formula, then we say that this
formula is satisfiable; otherwise, it is
unsatisfiable.

= An unsatisfiable formula :
X, VX,
& X; VX,
& -X; VX,
& -x; vV -X,

= Definition of the satisfiability problem: Given
a Boolean formula, determine whether this
formula is satisfiable or not.

= A literal : x; or -x;

= Aclause : x; VX,V -X;=C

= A formula : conjunctive normal form (CNF)
C&C&...&C,

The resolution principle

= Resolution principle
C, X VX,
C, 1 X, VX5
= C5 1%, VX5

= From C; &C,, we can
obtain C;, and C; can

be added into the
formula.

= The formula becomes:
q&g&g

Xg | % | %5 C&C, |G
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

= Another example of resolution principle
Ci X VXV Xy
G ixX; VX,
=G X VX3V X,

= If no new clauses can be deduced, then
it is satisfiable.

X, VX, VX5 (1)
Xy (2)
X5 (3)
(1) & (2) X, V X5 4)
(4) & (3) X3 ©)

(1) & (3) X; V X5 (6)

= If an empty clause is deduced, then it is

unsatisfiable.

=X,V Xy V X5

X,V X,

X3

- X,

U deduce

(1) & (2) X, V X5
BH&E) %

(6) & (3) []

(1)
(2)
(3)
4)

(5)
(6)
(7)

Semantic tree

= In a semantic tree, each
path from the root to a
leaf node represents a
class of assignments.

= If each leaf node is

attached with a clause,
then it is unsatisfiable.

ey (2) become false
(X, V-, VX)) (X, V-X,)

Nondeterministic algorithms

= A nondeterminstic algorithm consists of

phase 1: guessing

phase 2: checking
= [fthe checking stage of a nondeterministic
algorithm is of polynomial time-complexity, then
this algorithm is called an NP (nondeterministic
polynomial) algorithm.
= NP problems : (must be decision problems)
= e.g. searching, MST
sorting
satisfiability problem (SAT)
traveling salesperson problem (TSP)

Decision problems

= Decision version of sorting:
Given a,, a,,..., @, and ¢, is there a
permutation of a;s (a,, a, , ... ,a,) such
that | a,-a, | + | a;-a, | + ... + a,-a,; |
<c?

= Not all decision problems are NP problems
» E.g. halting problem :

= Given a program with a certain input data, will
the program terminate or not?

|] NP-haI‘d
= Undecidable

Nondeterministic operations
and functions

[Horowitz 1998]

= Choice(S) : arbitrarily chooses one of the elements in set
S

= Failure : an unsuccessful completion
= Success : a successful completion
= Nonderministic searching algorithm:
j < choice(1 : n) /* guessing */
if A(j) = x then success /* checking */
else failure

= A nondeterministic algorithm terminates
unsuccessfully iff there does not exist a set of
choices leading to a success signal.

= The time required for choice(1 : n) is O(1).

= A deterministic interpretation of a non-
deterministic algorithm can be made by
allowing unbounded parallelism in computation.

Nondeterministic sorting

B<0
/* guessing */
fori=1tondo
j <= choice(1 : n)
if B[j] # O then failure
B[j] = Ali]
/* checking */
fori=1ton-1do
if B[1] > BJ[i1+1] then failure
success

Nondeterministic SAT

/* guessing */
fori=1tondo
x; <— choice(true, false)
/* checking */
if E(x, X,, ... ,X,) 1S true then success
else failure

Cook’s theorem

NP = P iff the satisfiability
problem is a P problem.

SAT is NP-complete.

It is the first NP-complete
problem.

Every NP problem reduces
to SAT.

Stephen Arthur Cook

(1939~)
8- 20

Transforming searching to SAT

= Does there exist a number in { x(1),
X(2), ..., X(n) }, which is equal to 77?
= Assume n = 2.
nondeterministic algorithm:

1= choice(1,2)
if x(1)=7 then SUCCESS
else FAILURE

=1 vi=2
&i=l = i1#2
&i=2—i1#1
& x(1)=7 & i=1 — SUCCESS
& x(2)=7 & i=2 — SUCCESS
&x(1)#7 & i=1 — FAILURE
&x2)#F7 & i=2 — FAILURE
& FAILURE — -SUCCESS
& SUCCESS (Guarantees a successful termination)
& x(1)=7 (Input Data)
& x(2)# 1

= CNF (conjunctive normal form) :
i=1vi=2 (1)

i#=1vi#2)
x(1)#7vi#1v SUCCESS 3)
x(2)#7vi#2 v SUCCESS (4)
x(1)=7 vi# 1 v FAILURE (5)
x(2)=7 vi#2 v FAILURE (6)
-FAILURE v -SUCCESS (7)

SUCCESS (8)

x(1)=7 9)
x(2)#7 (10)

= Satisfiable at the following assignment :
=1 satisfying (1)
172 satisfying (2), (4) and (6)
SUCCESS satisfying (3), (4) and (8)
-FAILURE satisfying (7)
x(1)=7 satisfying (5) and (9)
x(2)#7 satisfying (4) and (10)

SUCCESS / \eSUCCESS
: Searching for 7, but x(1)=7, x(2)=7
The semantic tree ., me M sz ' '
K = CNF (conjunctive normal form) :
i=1vi=2 1
;¢1 X :¢2 8 X(1)#7 i=1 v i=2 (1)
x(1)#7 vi#l v SUCCESS (3) izl v i#2 (2)
X(2)#7 v i#2 v SUCCESS (4) (%) x(1)£7 v izl v SUCCESS (3)
iggj MESM i Eg; X(2)= x2#7 v i#2 v SUCCESS (4)
-FAILURE v -SUCCESS 7) (0) x(1)=7 v izl v FAILURE (5)
SUCCESS (8) x(2)=7 v o 1z2 \% FAILURE (6)
x(1)=7 (9) i #1 SUCCESS (7)
x(2)%7 (10) -SUCCESS v -FAILURE (8)
_ x(1) # 7 9)
" {49 x(2) # 7 (10)
(2) 6 (1)
= Apply resolution principle : Searching for 7, where x(1)=7, x(2)=7
9) & (5) i#1 v FAILURE (11) = CNF:
(10) & (6) i#2 v FAILURE (12) =1 v i=2 (1)
(7) & (8) -FAILURE (13) il v i#2 2)
(13) & (11) i1 (14) x(1)27 v i#l v SUCCESS (3)
(13) & (12) i#2 (15) x(2#7 v i#2 v SUCCESS (4)
(14) & (1) i=2 (11) x(1)=7 v izl v FAILURE (5)
(15) & (16) n (17) x(2=7 v i#2 v FAILURE (6)
- SUCCESS (7)
We get an empty cla.us'e = unsatisfiable SUCCESS v -FAILURE ®)
= 7 does not exit in x(1) or x(2). x(1)=7 (9)
x(2)=7 (10)

X(1)=7 X(1)#7

The semantic
tree X(z())’/ X(2)¢ 7
SUCCESS SUCCIEZISOS)
(7)

FAlLURE \-FAILURE

(2) (1)

O\

It implies that both assignments (i=1, i=2) satisfy the
clauses.

The node cover problem

= Def: Given a graph G=(V, E), S is the node

cover if S < V and for every edge (u, v) € E,
eitheru e Sorv e S.

1 2
node cover :
3 (1,3}
{5,2,4}
5 4

= Decision problem: 3S 5> |S|<K ?

Transforming the node cover
problem to SAT

BEGIN
1, < choice({1, 2, ..., n})
1, « choice({1, 2, ..., n} — {i,})

1, < choice({1, 2, ...,n} — {1}, 15, ..., L1 ;}).
For j=l1tomdo
BEGIN

if ¢; is not incident to one of Vi, (1=t<k)
then FAILURE

END
SUCCESS

CNF: =1 v n=2.. v i;=n

(11751—)11:2 v i1:3...V11=n)

i2:1 \' i2:2... A\ i2:n
ik:1 A% ik:2... A\ ik:n
n#l v 1 #1 (i1=1 > 2]l & ... & ik#1)

n#l v i3 =1

k1 #0 V Ik # N

Vil e€Ee Vv Vi2 €¢ V..V Vik € e; v FAILURE
(Vi, ge& Vi ge&&Vj ¢e,— Failure)

Vile €V Viz €€ V..V Vik € e; Vv FAILURE

Vi €emV Vi E€€nV..V Vi Eetn V FAILURE
SUCCESS

(To be continued)

-SUCCESS v -FAILURE
Ve E€e
vV, Ee¢
€ e,

€ e,

V., €e,

Vs, €€y

SAT is NP-complete

(1) SAT has an NP algorithm.

(2) SAT is NP-hard:

= Every NP algorithm for problem A can be
transformed in polynomial time to SAT
[Horowitz 1998] such that SAT is satisfiable
if and only if the answer for Ais “YES”.

= That is, every NP problem oc SAT .
= By (1) and (2), SAT is NP-complete.

Proof of NP-Completeness

= To show that A is NP-complete
(I) Prove that A is an NP problem.
(IT) Prove that 3 B € NPC, B oc A.
= A € NPC

s Why ?

3-satisfiability problem (3-SAT)

= Def: Each clause contains exactly three

literals.
= (I) 3-SAT is an NP problem (obviously)
= (II) SAT oc 3-SAT
Proof:
(1) One literal L, in a clause in SAT :
in 3-SAT :
Livyivy,
Liv-yivy,
Livy; vy,
Lyv-y vy,

(2) Two literals L;, L, in a clause in SAT :
in 3-GAT :
LivL vy,
Livl,v-y,

(3) Three literals in a clause : remain unchanged.

(4) More than 3 literals L, L,, ..., L, in a clause :
in 3-SAT :
LivL, vy,
Ly v 'Y1' vy,

Lo V Yiea V Vi3
Lt V0LV Vi

Example of transforming SAT to 3-SAT

= Aninstance S in SAT : = Theinstance S’ in 3-SAT :
X; VX X, VX VY,
X5 X4 VX, VY,
Xy VX, VX3V X4 V XV Xg X3 VY, Vys;
X5 VY, VY,
X5 Vy, V -y,
X5 VoY, VoY,
X4 V X, VY,
X3 VoY, V Ys
Xy V Ye V Y,
Xs V. Xg V Y
SAT transform 3-SAT
S S

= Proof : S is satisfiable < S’ is satisfiable
R
< 3literalsin S (trivial)
consider > 4 literals
S:LvhLv..vl
S Livlhvy,
Lv-y,vy,
L,Vv-y,Vy;

Lo V Yia V Vi3
Lis VLV -Yis

= Sis satisfiable = atleast L, = T
Assume: Li=F Vj=i

assign: y,=F
y; =T Vj<il
yj=F Vvji>il

(o LvVyiaVYig)
= S’ is satisfiable.
o
If S’ is satisfiable, then assignment satisfying
S’ can not contain y;’s only.
= at least one L, must be true.
(We can also apply the resolution principle).

(13

Thus, 3-SAT is NP-complete.

Comment for 3-SAT

= If a problem is NP-complete, its special cases
may or may not be NP-complete.

Chromatic number decision
problem (CN)

= Def: A coloring of a graph G=(V, E) is a function

f:V—-{1,23,.., k}suchthatif (u, v) € E, then
f(u)=f(v). The CN problem is to determine if G has a
coloring for k.

a b

3-colorable
¢ fla)=1, f(b)=2, f(c)=1
f(d)=2, f(e)=3

<Theorem> Satisfiability with at most 3 literals per
clause (SATY) o CN.

SATY o« CN

Proof :
instance of SATY :

variable : x;, X,, ..., X,,n2>4
clause : ¢y, Co, ..., C;
instance of CN :
G=(V,E)
V={xy, X3, ..., X, }Y{ Xy, Xo, ..., X, }
U{ Yi- Y25 «+-5 ¥n }U{ C, Coy vy Cp }

| —
newly added

E={(x;, x) [1Si<n }VU{(y,y)|i#]}
V(e x) [1#j 39 (v x) [1#])
U (x5 ©) | x; & ¢ 1Y{ (x5, ¢) | -x; & G}

Example of SATY o CN

X; VX, VX5 (1)
Xy V X, VX, 2) True assignment:
U X, =T
N
S S, S~ e .=F
A= -
'/ w‘g»"/ X4=T

B={ (x, -x) | 1<i<n }o{(y,y)i#j}
Ly x) 123 2o (v, %) [T#5}
WL (X, ¢ I % 2 ¢ 3u{ (X, c) | X & ¢}

Proof of SATY « CN

= Satisfiable < n+1 colorable
FR—
() f(y) =1
(2) if x, = T, then f(x,) =i, f(-x) = n+1
else f(x;) = n+1, f(-x) =i
(3)if x; in ¢; and x; = T, then f(c)) = f(x)
if -x, in ¢; and -x; = T, then f(c)) = f(-x)
(at least one such x;)

2

2

Y —
(1) y, must be assigned with color i.
(2) f(x;) = f(-x;)
either f(x) =iand f(-x) = n+1
or f(x)=n+landf(-x) =i
(3) at most 3 literals in ¢; and n > 4
= at least one x;, > X, and -x; are not in ¢
= f(cj) #n+1
“4)if f(c].) =i=1(x), assignx, to T
if f(c;) = i = f(-x), assign -x; to T
(5)iff(c) =i ="f(x) = (¢, x) ¢ E
= X in ¢; = ¢ is true
if f(c;) = i = f(-x;) = similarly

Set cover decision problem

= Def: F={S}={S,,S,, ..., S}
S.LEJFS' ={u,Uu, .., u}

T is a set cover of Fif T F and SILEJTS‘ - SILEJFS‘

The set cover decision problem is to determine if F has
a cover T containing no more than ¢ sets.

= Example
F={(uy, u3), (Uy U,), (Uy us), (uy), (uy, us, uy)}
) S, S; S, Sc
T={s,, 855, setcover
T={s,s,} setcover, exact cover

Exact cover problem

(Notations same as those in set cover.)

Def: To determine if F has an exact cover T,
which is a cover of F and the sets in T are
pairwise disjoint.

<Theorem> CN o« exact cover
(No proof here.)

Sum of subsets problem

= Def: A set of positive numbers A = { a,,
ay ..., }
a constant C
Determineif 3IA' cA > ».,a=C
aehA
meg. A={7V5191,12,8,14}
= C=21, A={714}
= C =11, no solution

<Theorem> Exact cover o« sum of subsets.

Exact cover « sum of subsets

= Proof :
instance of exact cover :
F={SySy .S} US=lutu
instance of sum of subsets :
A={a;,a, ..., a } where
a = Zeij(k+1)j where e = 1if U € S,
I<j<n e; = 0 if otherwise.
C= Y (k+1) =(k+D((k+D)"=1)/k
1I<j<n

[Why k+17? (See the example on the next page.)

Example of Exact cover o« sum of
subsets

= Valid transformation: = Invalid transformation:
Um0 T U NS EC 5,=(6,8), S,={8}, S,=(8},
EC' Sl_{6l8}l SZ_{9}I S _{8 9} K=4
S3={6I9}I S4={819} AT B .
Us, = {U1 0. Un}= (6.8.9) Suppose k-2=2 is used.
S;eF T SS: a1=21+22=6

k=4 a,=2’=4

SS: a;=5'+52=30 a;=2%2=4
a,=53=125 a,=2%+23=12
a;=51+53=130 C=21422423=14

a,=52+53=150
C=51452 453 =155

Partition problem

= Def: Given a set of positive numbers A =
{ay,ay...,.a, },
determine if 3 a partition P, > > a, =) a

me.g. A={3,6,1, 9,4, 11}
partition : {3, 1, 9, 4} and {6, 11}

<Theorem> sum of subsets o partition

Sum of subsets oc partition

proof :
instance of sum of subsets :
A={a,a,...,a,},C
instance of partition :
B= { b], bz, ceey bn+2 }, where bi = 4a;, I<i<n

bn+1 =C+1
bnia = (2 a)+1-C
I<i<n A
C=2a; < (2a;)+byn = (28)tbyn
a;eS a;eS ;¢S

< partition : { b; | ;€S }U{byr}
and { b; | ;¢S }U{bn}

= Why b.,, =C+17? whynotb ,, =C?
= Toavoid b, ,, and b, ,, to be partitioned
into the same subset.

Bin packing problem

= Def: n items, each of sizec,, ¢, > 0
Each bin capacity : C
Determine if we can assign the items into
k bins, > >2¢, < C, 1gj<k.

iebin;

<Theorem> partition o bin packing.

VLSI discrete layout problem

= Given: n rectangles, each with height h, (integer)
width w,
and an area A

Determine if there is a placement of the n
rectangles within the area A according to the rules :

1. Bo_undaries of rectangles parallel to x axis or y
axis.

2. Corners of rectangles lie on integer points.

3. No two rectangles overlap.

4. Two rectangles are separated by at least a unit
distance.

(See the figure on the next page.)

Max cliqgue problem

Tl = Def: A maximal complete subgraph of a graph
G=(V,E) is a cligue. The max (maximum) clique
problem is to determine the size of a largest
clique in G.

= e g : ® maximal cliques :
{a, b}, {a,c,d}
{c,d, e, f}
maximum clique :
(largest)

{c,d, e, f}

A Successful Placement

<Theorem> bin packing « VLSI discrete layout. _ .
<Theorem> SAT o clique decision problem.

Clique decision « node cover

Node cover decision problem decision
= G=(V,E) : clique Q of size k (QcV)
= Def: AsetS < Vis a node cover for a graph I
G = (V, E) iff all edges in E are incident to at G’=(V,E’) : node cover S of size n-k, S=V-Q

least one vertexin S. 35,5 |S|<K?

where E’={(u,v)|ueV, v €V and (u,v)¢E}

<Theorem> clique decision problem oc
node cover decision problem.

(See proof on the next page.)

Hamiltonian cycle problem

= Def: A Hamiltonian cycle is a round trip path
along n edges of G which visits every vertex
once and returns to its starting vertex.

= €.0.
3 4
) g j\;

Hamiltonian cycle : 1, 2,8, 7, 6, 5, 4, 3, 1.
<Theorem> SAT o directed Hamiltonian cycle
(in a directed graph)

Traveling salesperson problem

= Def: A tour of a directed graph G=(V, E)

is a directed cycle that includes every
vertex in V. The problem is to find a tour
of minimum cost.

<Theorem> Directed Hamiltonian cycle «
traveling salesperson decision problem.

(See proof on the next page.)

Proof of Hamiltonian o« TSP

0/1 knapsack problem

= Def: n objects, each with a weight w, > 0
a profit p, > 0
capacity of knapsack : M
Maximize Xpx;
Subject to Xwx; <M
x;=0o0r1,1<i<n
= Decision version :
Given K, 3 2px; > K ?

= Knapsack problem : 0 <x <1, 1<i<n.
<Theorem> partition oc 0/1 knapsack decision
problem.

= Refer to Sec. 11.3, Sec. 11.4 and its exercises
of [Horowitz 1998] for the proofs of more NP-
complete problems.

= [[Horowitz 1998] E. Howowitz, S. Sahni and S.
Rajasekaran, Computer Algorithms, Computer
Science Press, New York, 1998, " &dtE=E | {03,
02-23625376

Chapter 9

Approximation Algorithms

Approximation algorithm

= Up to now, the best algorithm for
solving an NP-complete problem
requires exponential time in the worst
case. It is too time-consuming.

= To reduce the time required for solving
a problem, we can relax the problem,
and obtain a feasible solution “close” to
an optimal solution

The node cover problem

= Def: Given a graph G=(V, E), S is the node
cover if S < V and for every edge (u, v) € E,
eitheru e Sorv e S.

e‘e The optimal solution:

V {vy,Vs}
&) ()

The node cover problem is NP-complete.

An approximation algorithm

= Input: A graph G=(V,E).

= Output: A node cover S of G.

Step 1: S=¢ and E’=E.

Step 2: While B’ = ¢
Pick an arbitrary edge (a,b) in E’.
S=Su{a,b}.
E’=E’-{e| e is incident to a or b}

= Time complexity: O(|E|)

= Example: ﬂ
First: pick (v,,V3) 0‘
)

then S={v,,v; } V
E’={(V1,V5), (V4,V5)}

second: pick (vq,Vs) e 0
then S={v,,v,,v5,Vs}
E=

How good is the solution ?

= |S]| is at most two times the minimum size of
a node cover of G.

= L: the number of edges we pick
M*: the size of an optimal solution

(1) L < M*, because no two edges picked in
Step 2 share any same vertex.

(2) |S| = 2L < 2M*

The Euclidean traveling
salesperson problem (ETSP)

= The ETSP is to find a shortest closed path
through a set S of n points in the plane.

= The ETSP is NP-hard.

7y -
/- Fs P,

Ps

Pa
(k)

Fiz. 9-8 An Eulerian Cvele and the Resulting Approximate Tour

An approximation algorithm for ETSP

= Input: A set S of n points in the plane.

= Output: An approximate traveling salesperson
tour of S.

Step 1: Find a minimal spanning tree T of S.

Step 2: Find a minimal Euclidean weighted
matching M on the set of vertices of odd
degrees in T. Let G=MUT.

Step 3: Find an Eulerian cycle of G and then
traverse it to find a Hamiltonian cycle as an
approximate tour of ETSP by bypassing all
previously visited vertices.

An example for ETSP algorithm

= Stepl: Find a minimal spanning tree.

Ps

Ps
P2

Fiz. 9-6 A Minimal Spanning Tree of Eizht Points

= Step2: Perform weighted matching. The
number of points with odd degrees must be
even because Zn:di —2fg| is even.

Ps
" p \
./ 3
P

P2

Fig. 9-7 A Minimal Weighted Matching of Six Vertices

= Step3: Construct the tour with an Eulerian
cycle and a Hamiltonian cycle.

= Time complexity: O(n3)
Step 1: O(nlogn)
Step 2: O(n3)
Step 3: O(n)

= How close the approximate solution to an
optimal solution?

= The approximate tour is within 3/2 of the optimal
one. (The approximate rate is 3/2.)

(See the proof on the next page.)

Proof of approximate rate

1,
= optimal tour L: j,...i;j,...1505. Iy, .2 [
{iyiy.../lpm}: the set of odd degree vertices in T. 12

2 matchings: M, ={[i;,i,],[i3,1s, - [iome1/oml)2
M2={[i21i3]/[i41i5]/~~~/[i2m/i1]}
length(L)> length(M,) + length(M,) (triangular inequality)
> 2 length(M)
= length(M)< 1/2 length(L)
G=TuUM
= length(T) + length(M) < length(L) + 1/2 length(L)

= 3/2 length(L) O

i

The bottleneck traveling
salesperson problem (BTSP)
= Minimize the longest edge of a tour.
= This is @ mini-max problem.
= This problem is NP-hard.

= The input data for this problem fulfill
the following assumptions:
= The graph is a complete graph.

= All edges obey the triangular inequality
rule.

An algorithm for finding an
optimal solution

Stepl: Sort all edges in G = (V,E) into a
nondecresing sequence |e, [<|e,|<...<|e_]|.
Let G(e,) denote the subgraph obtained from
G by deleting all edges longer than e,

Ste|:_)2: i—1

Step3: If there exists a Hamiltonian cycle in
G(e,), then this cycle is the solution and stop.

Step4: i—i+1 . Go to Step 3.

An example for BTSP algorithm

= There is a Hamiltonian
cycle, A-B-D-C-E-F-G-A, in
G(BD). :
= The optimal solution is 13.

Theorem for Hamiltonian cycles

= Def : The t-th power of G=(V,E), denoted as
Gt=(V,EY), is a graph that an edge (u,v)<Etif

An example for the theorem

there is a path from u to v with at most t / y : ¢
edges in G.
= Theorem: If a graph G is bi-connected, then c : i '
G2 has a Hamiltonian cycle. A
’ . 5 Fiz. 9-13 A Bi-Connected Graoh G2
B A Hamiltonian cycle:

’ *) A-B-C-D-E-F-G-A

not lJi—i;llllt‘C&‘d hifCOllGllhecte(l
An approximation algorithm for BTSP An example

= Input: A complete graph G=(V,E) where all edges
satisfy triangular inequality.

= Output: A tour in G whose longest edges is not
greater than twice of the value of an optimal solution
to the special bottleneck traveling salesperson
problem of G.

Step 1: Sort the edges into |e,|<|e,|<...<|e,].

Step 2:i:=1.

Step 3: If G(e,) is bi-connected, construct G(e;)?, find a
Hamiltonian cycle in G(e;)? and return this as the
output.

Step 4:i:=i+ 1. Go to Step 3.

Add some more edges.
Then it becomes bi-
connected.

= A Hamiltonian
cycle: A-G-F-E-D-

C-B-A.

16
= Time complexity:
polynomial time

Fiz 917 G(FGY"

= The longest edge:

How good is the solution ?

= The approximate solution is bounded by two
times an optimal solution.

= Reasoning:
A Hamiltonian cycle is bi-connected.
e,,: the longest edge of an optimal solution
G(e,): the first bi-connected graph
|eil<legl
The length of the longest edge in G(e)’<2|e|
(triangular inequality) L|e

op|

NP-completeness

= Theorem: If there is a polynomial
approximation algorithm which produces a
bound less than two, then NP=P.

(The Hamiltonian cycle decision problem
reduces to this problem.)
Proof:

For an arbitrary graph G=(V,E), we expand G to a
complete graph G_:

C;=1if(ij) eE

C; = 2 if otherwise

(The definition of C; satisfies the triangular inequality.)

Let V* denote the value of an optimal solution
of the bottleneck TSP of G..

V* = 1 < G has a Hamiltonian cycle

Because there are only two kinds of edges, 1
and 2 in G, if we can produce an
approximate solution whose value is less than
2V*, then we can also solve the Hamiltonian
cycle decision problem.

The bin packing problem

= nitemsa,, a,, ..., a,0<a,<1,1<i<n,to
determine the minimum number of bins of
unit capacity to accommodate all n items.

= E.g.n=5,{0.8, 0.5,0.2,0.3, 0.4}

= The bin packing problem is NP-hard.

An approximation algorithm
for the bin packing problem

= An approximation algorithm:

(first-fit) place a; into the lowest-indexed
bin which can accommodate a..

Theorem: The number of bins used in the
first-fit algorithm is at most twice of the
optimal solution.

Proof of the approximate rate

= Notations:
= 5(a,): the size of item a
= OPT: # of bins used in an optimal solution
= m: # of bins used in the first-fit algorithm
= C(B,): the sum of the sizes of a;’s packed in bin B; in

the first-fit algorithm
= OPT2 2 S(2)
C(B) + C(B,,;) > 1
C(B,)+C(B,)+...+C(B,,) > m/2
—m<2 XCE)=2Y5@) <20PT

m < 2 OPT

The rectilinear m-center problem

The sides of a rectilinear square are parallel
or perpendicular to the x-axis of the
Euclidean plane.

The problem is to find m rectilinear squares
covering all of the n given points such that
the maximum side length of these squares is
minimized.

This problem is NP-complete.

This problem for the solution with error ratio
< 2 is also NP-complete.

(See the example on the next page.)

] Input: P={P1, P2, Y Pn}
= The size of an optimal solution must be equal
to one of the L .(P,P;)’s, 1 <i <j<n, where

L .((Xy,Y1),(X,¥5)) = max{[x;-X,|,|Y1-Y>|}-

An approximation algorithm

= Input: A set P of n points, number of centers: m

= Output: SQ[1], ..., SQ[m]: A feasible solution of the
rectilinear m-center problem with size less than or equal to
twice of the size of an optimal solution.

Step 1: Compute rectilinear distances of all pairs of two points
and sort them together with 0 into an ascending sequence
D[0]=0, D[1], ..., D[n(n-1)/2].

Step 2: LEFT := 1, RIGHT := n(n-1)/2 //* Binary search

Step 3: i :=[(LEFT + RIGHT)/2]1.

Step 4: If Test(m, P, D[i]) is not “failure” then

RIGHT :=i-1
else LEFT :=i+1
Step 5: If RIGHT = LEFT then
return Test(m, P, D[RIGHT])
else go to Step 3.

Algorithm Test(m, P, r)

= Input: point set: P, number of centers: m, size: r.
= Output: “failure”, or SQ[1], ..., SQ[m] m squares of
size 2r covering P.
Step 1: PS:=P
Step 2: Fori:=1tomdo
If PS = & then
p := the point is PS with the smallest
x-value
SQ[i] := the square of size 2r with center
atp
PS := PS -{points covered by SQ[i]}
else SQ[i] := SQ[i-1].
Step 3: If PS = & then return SQ[1], ..., SQ[m]
else return “failure”. (See the example on the next page.)

An example for the algorithm

+
+
+ N +
+ .
4 +
g, N + + .
+ + 4 +
+ + .

Py

The first application of the relaxed test subroutine.

+

+
+
+ +
+ v
+ + 4
N +
Py + +
+
+ " +
+
+ +

The second application of the test subroutine.

+
+
+ +
F v
+ + F
N +
P, + +
4|+ | +
+ 1
+ +

A feasible solution of the rectilinear 5-center problem.

Time complexity

= Time complexity: O(nZlogn)
= Step 1: O(n)
= Step 2: O(1)
= Step 3 ~ Step 5:
O(logn)* O(mn) = O(n2logn)

How good is the solution ?

= The approximation algorithm is of error ratio
2.

= Reasoning: If r is feasible, then Test(m, P, r)
returns a feasible solution of size 2r.

ty The explanation of
‘ S cS/

Chapter 10

Amortized Analysis

An example— push and pop

= A sequence of operations: OP,, OP,, ... OP
OP,: several pops (from the stack) and
one push (into the stack)
t,: time spent by OP;
the average time per operation:

tave = l itl
i=1

m 4

m

= Example: a sequence of push and pop
p: pop, u: push

i 1 2 3 4 5 6 T 8
OP, Iu 1u 2p 1lu Iu 1lu 2p 1p
lu Iu 1lu

1 1 3 1 1 1 3 2

i
t o= (I+1+3+1+1+1+3+2)/8
=13/8

= 1.625

= Another example: a sequence of push
and pop

p: pop, u: push

1 1 2 3 4 5 6 7 8
OP;, Tu Ip Ilu lu lu 1lu 5p lu
lu lu
1 2 1 1 1 1 6 1

t.

1

t o= (1+2+1+1+1+1+6+1)/8
=14/8
=1.75

Amortized time and potential function

a; = ti + (Dl _q)i—l
a; : amortized time of OP;
®;: potential function of the stack after OP;
®; — @,_,: change of the potential
28 =2t +2(P; - D)

i=l1 i=1 i=1

Amortized analysis of the

push-and-pop sequence
a D, :#of elements in the stack

We have ® -, 20

= Suppose that before we execute Op,, there are &
elements in the stack and Op, consists of 7 pops and

m 1 push.
i=1 D, , =k
. t=n+l1
If ® -®, > 0, then Y a; represents an upper Then, ®, =k —n+1
i=1
bound of 3t =t + D —D,
SISO El i =(n+1)+(k-n+1)-k
=2
Skew heaps

" We have () a)/m=2
i=1

Then, t,, <2.

= By observation, at most /77 pops and m
pushes are executed in /m operations. Thus,

t. <2

= meld: merge + swapping

Two skew heaps

Step 1: Merge the right paths.

5 right heavy nodes:

Step 2: Swap the children along the right path.

No right heavy node

Amortized analysis of skew heaps

= meld: merge + swapping
= operations on a skew heap:
» find-min(h): find the min of a skew heap h.
= insert(x, h): insert x into a skew heap h.
= delete-min(h): delete the min from a skew heap h.
= meld(h,, h,): meld two skew heaps h, and h,.
The first three operations can be implemented
by melding.

Potential function of skew heaps

= Wt(x): # of descendants of node x, including
X

= heavy node x: wt(x) > wt(p(x))/2, where
p(x) is the parent node of x.
= light node : not a heavy node

= potential function ®;: # of right heavy nodes
of the skew heap.

= Any path in an n-node tree contains at most

Llog,n light nodes.

light nodes < | log,n]

heavy=k,< [log,n]
possible heavy nodes
of nodes: n

= The number of right heavy nodes attached to

the left path is at most Llog,n .

Amortized time

#light <log,n, | # light <Llog,n, |
#heavy =k, # heavy =k,

heap: h, heap: h,

of nodes: n, # of nodes: n,

a=t+0 -0,
t; : time spent by OP;
t < 2+Llog2nlj+kl+|_log2nzj+k2
(“2” counts the roots of h, and h,)
< 2+2Llog2nj+kl+k2
where n=n,+n,
O, — D, =ks-(k k) < Llogznj_ ki—k;
8 =t+0 -0,
£2+2|_10g2nj+k1Jrk2+|_log2nj—kl—k2
=2+3Llog2nJ
= a; = O(log,n)

AVL-trees

height balance of node v:
hb(v)= (height of right subtree) — (height of left subtree)

= The hb(v) of every node never differ by more than 1.

Fig. An AVL-Tree with Height Balance Labeled

= Add a new node A.

Critical

node ™\ 2

Before insertion, hb(B)=hb(C)=hb(E)=0
hb(I)-0 the first nonzero from leaves.

Amortized analysis of AVL-trees

= Consider a sequence of m insertions on an
empty AVL-tree.
= T,: an empty AVL-tree.
= T;: the tree after the ith insertion.

= L;: the length of the critical path involved in the ith
insertion.

= X;: total # of balance factor changing from 0 to +1
or -1 during these m insertions (the total cost for
rebalancing)

X=>L, ,wewant to find X,.

i=1
Val(T): # of unbalanced node in T
(height balance # 0)

Case 1 : Absorption

= The tree height is not increased, we need not
rebalance it.

L
newly

added Val(T,=Val(T,_)+(L,-1)

Ty

Case 2.1 Single rotation

newly added

Case 2 : Rebalancing the tree

O,
(®) (®
» O © .
right
/ left . \rotation
@ rotation)
@\ ©@ ONYO
& ©® © D
®» © ® ©

Case 2.1 Single rotation

= After a right rotation on the subtree rooted at
D:

Val(T,)=Val(T,_,)+(L.-2)

Case 2.2 Double rotation

Case 2.2 Double rotation

= After a left rotation on the subtree rooted at
B and a right rotation on the subtree rooted

atF: ‘:' 0

Val(T,)=Val(T;))+(L.-2)

0
root

1
root
"1
-1
© newly é

added

= L, is the height of the root.
Val(T,)=Val(T,_))+L.

2

— X, = Val(T,) +2(X,+X:+X,)-X,

Amortized analysis of X,

: # of absorptions in case 1
: # of single rotations in case 2

: # of double rotations in case 2
: # of height increases in case 3

Val(T,) = Val(To)+ 3 L. ~X,-2(X;+X,)

i=1
=0+X,—X,—2(X5+X,)

Val(T,,) £0.618m (proved by Knuth)

<0.618m+2m
=2.618m

A self-organizing sequential
search heuristics

= 3 methods for enhancing the performance of

sequential search

(1) Transpose Heuristics:
Query

> Q00 »OoOw

Sequence
B

DB
DAB
DAB
DAB
DACB
ADCB

(2) Move-to-the-Front Heuristics:

Query

> OO0 0»0Ow

Sequence
B

DB
ADB
DAB
DAB
CDAB
ACDB

(3) Count Heuristics: (decreasing order by the count)

Query
B

> O p» O 0O » U

Sequence
B

BD
BDA
DBA
DBA
DAB
DABC
DABC

Analysis of the move-to-the-
front heuristics

= interword comparison: unsuccessful
comparison

= intraword comparison: successful comparison
= pairwise independent property:
= For any sequence S and all pairs P and Q, # of
interword comparisons of P and Q is exactly # of
interword comparisons made for the subsequence
of S consisting of only P’s and Q’s.

(See the example on the next page.)

Pairwise independent
property in move-to-the-front

e.g.

Query Sequence (A, B) comparison
C

AC

CA

BCA v

CBA

ACB v

> 0w a0

of comparisons made between A and B: 2

Consider the subsequence consisting of A and B:

Query Sequence (A, B) comparison
A A
B B A \
A AB v

of comparisons made between A and B: 2

Query Sequence C A C B C A

(A, B) 0 1 1
(A, C) 0o 1 1 0 1
(B, C) 0 0o 1 1

There are 3 distinct interword comparisons:

(A, B), (A, C)and (B, C)

= We can consider them separately and then
add them up.

the total number of interword comparisons:
0+1+142+14+2 =7

Theorem for the move-to-the-
front heuristics

Cy(S): # of comparisons of the move-to-the-
front heuristics

Co(S): # of comparisons of the optimal static
ordering

Cy (S)<2Co(S)

Proof

Proof:

= Inter,(S): # of interword comparisons of the move to
the front heuristics

= Intery(S): # of interword comparisons of the optimal
static ordering

Let S consist of a A’sand b B’s, a < b.

The optimal static ordering: BA
Intery(S) = a
Inter,(S) < 2a

} = Intery(S) < 2Inter(S)

Proof (cont.)

Consider any sequence consisting of more than two
items. Because of the pairwise independent property,
we have Inter(S) < 2Intery(S)

Intray(S): # of intraword comparisons of the move-
to-the-front heuristics

Intray(S): # of intraword comparisons of the optimal
static ordering

Intray(S) = Intray(S)

Intery(S) + Intray(S) < 2Intery(S) + Intray(S)
= Cy(S) < 2C4(S)

The count heuristics

= The count heuristics has a similar result:

C(S) < 2C4(S), where C(S) is the cost
of the count heuristics

The transposition heuristics

= The transposition heuristics does not possess the
pairwise independent property.

= We can not have a similar upper bound for the cost
of the transposition heuristics.
e.g.
Consider pairs of distinct items independently.
Query Sequence C A C B C A

(A, B) 0 1 1
(A, ©) 0o 1 1 0 1
(B, C) 0 o 1 1

of interword comparisons: 7 (not correct)

the correct interword comparisons:
Query Sequence C A C B C A
Data Ordering C AC CA CBA CBA CAB

Number of Interword () 1 1 2 0 2
Comparisons

Chapter 11

Randomized Algorithms

Randomized algorithms

= In a randomized algorithm (probabilistic
algorithm), we make some random choices.

= 2 types of randomized algorithms:

m For an optimization problem, a randomized
algorithm gives an optimal solution. The average
case time-complexity is more important than the
worst case time-complexity.

m For a decision problem, a randomized algorithm

may make mistakes. The probability of producing
wrong solutions is very small.

The closest pair problem

= This problem can be solved by the divide-and-
conquer approach in O(nlogn) time.

= The randomized algorithm:
= Partition the points into several clusters:

. Xs
Xy °
X,
X,
X,
X, X,

= We only calculate distances among points within
the same cluster.

= Similar to the divide-and-conquer strategy. There
is a dividing process, but no merging process.

A randomized algorithm for
closest pair finding

= Input: A set S consisting of n elements x,, x,,...,
X, where Sc R?.

= Output: The closest pair in S.

Step 1: Randomly choose a set S;={ XXX, }
where m=n?/3. Find the closest pair of S, and
let the distance between this pair of points be
denoted as 6 .

Step 2: Construct a set of squares T with mesh-
Size o.

An example

Step 3: Construct four sets of squares T,, T,, T N
and T, derived from T by doubling the mesh- _ . ol o
size to 25 . - n—272/|:omts. 5 °

Step 4: For each T, find the mduced m=n ol L L L
decomposition S= S,MuUS,Wyu - u SO, 1<i <4, S, = {Xy Xy -os Xo}, . I
where sJ(') iS @ non- empty |ntersect|on of S 5 = d(x,, x,) 3% -
with a square of T.. 1 %2 oo ,® R

Step 5: For each x,, xqu(') compute d(x,, X,)- 28 . . |~

[]
Let x, and x, be the pair of points with the e o
shortest dlstance among these pairs. Return oo o
X, and x, as the closest pair. — e S R T
69 65
[] [] ° [] [
58 58
X, ° ° X; @ [] [] X [) [] X e [®
4 X X o ®X X °
[® ° 2
Tl 3% o x,.‘ ex® T3 ¥ e o X _® °x®
2 [} [} 28 °
° X [] X ° ° X, @ X @
0 o |e® ® X; PY) e | X °
S 26 3% 45 56 65 o 5 28 38 48 58 65_.
66 o ° ° o
58 ° [] []
® X ° ° X o ° ° 58
45 e X ®X ° ° X; @))
' * ° 45 " "
s [e []
T2 3 o0 g ® P T4 33 < ° -
28 e o X, ° ®X
R x®| o e | o 25 . e Py Py X7‘
°[el o% ® 3 o e o b
o) 20 35 45 58 65_

Time complexity

Time complexity: O(n) in average
step 1: O(n)

method : Recursively apply the algorithm once,

i.e. randomly choose (n/)/ —n/
7

it with a straightforward method for the

points from the n”? points, then solve

n% points : O(n%)

step 2 ~ Step 4: O(n) |
step 5: O(n)with probability 1-2e<n*

Analysis of Step 5

= How many distance computations in step 5?
d : mesh-size in step 1
T.: partition in step 5
N(T,): # of distance computations in partitionT;

Fact: There exists a particular partition R,, whose
mesh-size is 3, such that

(1) N(R,) < ¢,n.
(2) the probability that & <+/26, is 1-2¢e” ent

= Construct R;, R,, ..., Ry
mesh-size: 43,

= The probability that each square in T, falls
into at least one square of R;, 1<i<161is

1-2e7"
= The probability that

16 1
N(T) <> N(R) is 1-2¢e™".
i=1

= Let the square in R, with the largest number
of elements among the 16 squares have k
elements.

k(k—-1) YUE) 6 k(16 k —1) ~0(k?)
2 2
= N(R;) < ¢,n => N(R;) <cn
16 /—480\
N(T) <D N(R)=0(n) with | R: 8
i=1

probability 1-2e".

A randomized algorithm to test
whether a number is prime.

= This problem is very difficult and no
polynomial algorithm has been found to
solve this problem

= Traditional method:
use 2,3,...VN to test whether N is prime.
input size of N : B=log,N (binary
representation)
VN =282 exponential function of B

Thus VN can not be viewed as a
polynomial function of the input size.

Randomized prime number
testing algorithm

= Input: A positive number N, and a parameter m.

= Output: Whether N is a prime or not, with
probability of being correct at least 1-¢ = 1-2™™,

Step 1: Randomly choose m numbers b,, b,, ..., b, 1<
b,, by, ..., b, <N, where m>log,(1/¢).

Step 2: For each b,, test whether W(b;) holds where
W(b,) is defined as follows:

(1) bN1t=1 mod N or

(2) 3 j such that 5+ = k is an integer and the
greatest common divisor of (b,)*-1 and N is not 1
or N.

If any W(b,) holds, then return N as a composite
number, otherwise, return N as a prime.

Examples for randomized prime
number testing

= Example 1: N =12
Randomly choose 2, 3, 7
212-1 = 2048 = 1 mod 12
= 12 is a composite number.

= Example 2: N =11

Randomly choose 2, 5, 7
(1) 211-1=1024=1 mod 11
j=1, (N-1)/2i=5
GCD(25-1, 11) = GCD(31,11) = 1
W(2) does not hold .
(2) 5111=9765625=1 mod 11
GCD(5%-1, 11) = GCD(3124,11) = 11
W(5) does not hold .
(3) 7111=282475249=1 mod 11
GCD(75-1, 11) = GCD(16806,11) = 1
W(7) does not hold .
= Thus, 11 is a prime number with the
probability of correctness being at least

1-23=7/8 .

Theorem for number theory

Theorem:

« If W(b) holds for any 1< b<N, then N is a
composite number .

« If N is composite, then
(N-1)/2<|{b] 1< b<N, W(b) holds } |.

Pattern matching

= Pattern string : X length : n
Textstring : Y length: m, m>n
To find the first occurrence of X as a
consecutive substring of Y .
Assume that X and Y are binary strings.

e.g. X=01001 , Y =1010100111

—

X
Straightforward method : O(mn)
Knuth-Morris-Pratt’s (KMP) algorithm : O(m)

The randomized algorithm : O(mk) with a
mistake of small probability. (k:# of testings)

Binary representation

= X =X, X,...X,€{0,1}
Y=V,Y,...Y,{0,1}
Let Y()=Y:Yis1--Yien
A match occurs if X=Y(i) for somei .
= Binary values of X and Y(i):
B(X) = X2 + x,°2"2 + ... + X,
BCY()) = ¥ 2™ 4y, 1224 Yy
1<i<m-n+1

Fingerprints of binary strings

= Let p be a randomly chosen prime number in
{1,2,...,nt?}, wheret =m-n + 1.
= Notation: (x;), = x; mod p
= Fingerprints of X and Y(i):
B,(X) = ((((X1"2),+%;),72),HX3),°2....
B,(Y(D)) = (CC (Y 2)pHYir1)p2HYina)p 2.
= B,(Y(i+1))= ((B,(Y))-2"1y)) -2+Y,,.),
=(((Bp(Y|)_((2n_1)p.Yi)p)p .z)p +Yi+n)p

= If X=Y(i), then B (X) = BR(Y(i)), but not vice
versa. :

Examples for using fingerprints

= Example: X =10110 ,Y = 110110
nN=5, mMm=6,t=m-n+1=2
suppose P=3.

B,(X) = (22);=1

B,(Y(1)) = (27);=0

= X=£Y(1)

B,(Y(2)) = ((0-2%); 2+0); =1
=X =Y(2)

= e.g.X=10110,Y = 10011,P =3
B,(X) = (22);= 1
B,(Y(1)) = (19),= 1
— X=Y(1) WRONG!

= If B(X) = B(Y(i)), then X = Y(i) .
= If B,(X) = B,(Y(i)), we may do a bit by bit
checking or compute k different fingerprints

by using k different prime numbers in
{1,2,...nt%} .

A randomized algorithm for
pattern matching

= [Input: A pattern X = x; X,...x, atextY =y,
Y,...Y,and a parameter k.

s Output:
(1) No, there is no consecutive substring in Y which
matches with X.

(2) Yes, Y(i) = VY, Yi;1----Yiin.g Matches with X which is
the first occurrence.
If the answer is “No” , there is no mistake.

If the answer is “Yes” , there is some
probability that a mistake is made.

Step 1: Randomly choose k prime numbers p,, p,, ...,
p,from {1,2,...,nt>}, wheret =m-n + 1.
Step 2:i = 1.
Step 3:j = 1.
Step 4: If B(X)p; = (B(Y})),; then go to step 5.
If j = k, return Y(i) as the answer.
j=j+ 1.
Go to step 4.

Step5: If i = t, return “No, there is no consecutive
substring in Y which matches with X.”

i=i+ 1.
Go to Step 3.

An example for the algorithm

= X=10110,Y =100111,P,=3,P,=5
By(X) = (22);= 1
Bs(X) = (22); = 2
By(Y(2)) = (7);= 1
By(Y(2)) = (7)s = 2
Choose one more prime number, P; =7
B,(x) = (22),=1
B,(Y(2)) = (7),= 0
=X=Y(2)

How often does a mistake
occur?

= If a mistake occurs in X and Y(i), then
B(X) - B(Y(i)) # 0, and
p; divides | B(X) - B(Y(i)) | for all p;’s.
= LetQ = I [B(X)=B(Y (i)
i where p; divides|B(X)-B(Y (i))|
- Q<2n(m-n+1)
reason: B(x)<2", and at most (m-n+1) B(Y(i))’s
2n2n 2"

—_———
m-n+1

Theorem for number theory

Theorem: If u>29 and q<2Y, then q has fewer than rn(u)
diffferent prime number divisors where r(u) is the
number of prime numbers smaller than u.

Assume nt > 29 .

Q < 2n(m-n+1) = Jnt

= Q has fewer than =(nt) different prime number
divisors.

If p; is a prime number selected from {1, 2, ..., M},

the probability that p, divides Q is less than % .

If k different prime numbers are selected from {1,
2, ...nt2} , the probability that a mistake occurs is less
than (z(nt) jk provided nt > 29.

z(nt?)

An example for mistake probability

k
= How do we estimate (”(mz) j
z(nt)

= Theorem: Forallu>17, L < 7m(u)<1.25506 b
Inu Inu

2
7(M) 1 25506. " In(ML)
z(nt”) Innt nt

_ 125506, In(t)
t In(nt)
« Example: n=10, m=100,t=m-n+1=91

z(nt)
z(nt?)

Let k=4 (0.0229)4~2.75x107 // very small

<0.0229

Interactive proofs: method I

= Two persons: A : aspy
B : the boss of A

When A wants to talk to B , how does B know
that A is the real A, not an enemy imitating A ?

s Method I : a trivial method

B may ask the name of A’s mother (a private
secret)

= Disadvantage:

The enemy can collect the information, and
imitate A the next time.

Interactive proofs: method II

s Method II:

B may send a Boolean formula to A and ask A to
determine its satisfiability (an NP-complete problem).

It is assumed that A is a smart person and knows
how to solve this NP-complete problem.

B can check the answer and know whether A is the
real A or not.

= Disadvantage:

The enemy can study methods of mechanical
theorem proving and sooner or later he can imitate A.

= In Methods I and II, A and B have revealed too much.

A randomized algorithm for
interactive proofs

s Method III:

B can ask A to solve a quadratic nonresidue
problem in which the data can be sent back and
forth without revealing much information.

= Definition:
GCD(x, y) = 1, y is a quadratic residue mod x if
z2=y mod x for some z, 0 < z < X, GCD(x, z) = 1,

and y is a quadratic nonresidue mod x if otherwise.

(See the example on the next page.)

An example for quadratic
residue/nonresidue

s Let
QR ={(x,y) | y is a quadratic residue mod x}
QNR = {(x, y) | y is a quadratic nonresidue mod x}
» Trytotestx=9,y=7:
12=1mod 9 22=4mod 9
32=0mod 9 42=7 mod 9
52=7 mod 9 62 =0 mod 9
72=4 mod 9 82=1mod 9
= We have (9,1), (9,4), (9,7) € QR
but (9,5), (9,8) € QNR

Detailed method for
interactive proofs

1) A and B know x and keep x confidential .
B knows .

2) Action of B:

Step 1: Randomly choose m bits: b, b,, ..., b
where m is the length of the binary
representation of x.

m/

Step 2: Find z,, z,, ..., z, s.t. GCD(z;, x)=1 for all i .

Step 3:Compute w,, w,, ..., W,
w,«z2mod xif b=0 //(X, W) e QR
W< (z2y) mod x if b=1 //(X, W) € QNR

Step 4: Send w,, w,, ..., W to A

3)

4)

Action of A:
Step 1: Receive w,, W, ..., w, from B.
Step 2: Compute ¢, C,, ..., C.:
¢ «0if (x,w) € QR
¢ «1if (x, w,) € QNR
Send ¢, C,, ..., C,, to B.
Action of B:
Step 1: Receive ¢, C,, ..., C,, from A.

Step 2: If (x, y) € QNR and b, = ¢, for all i, then A'is
the real A (with probability 1-2-m),

