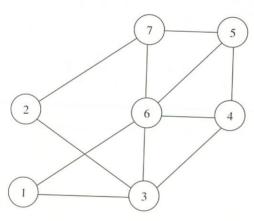
(1993); and Han, Hartmann and Mehrotra (1998). Related work can be found in Hu and Tucker (1971).

5-15 Further Reading Materials

Tree searching techniques are quite natural and very easy to apply. For average case analysis of tree searching algorithms, we recommend Brown and Purdom (1981); Huyn, Dechter and Pearl (1980); Karp and Pearl (1983); and Purdom and Brown (1985). For branch-and-bound algorithms, we recommend Boffey and Green (1983); Hariri and Potts (1983); Ibaraki (1977); Sen and Sherali (1985); Smith (1984); and Wah and Yu (1985). For A* algorithms, we recommend Bagchi and Mahanti (1983); Dechter and Pearl (1985); Nau, Kumar and Kanal (1984); Pearl (1983); and Srimani (1989).

For recent results, consult Ben-Asher, Farchi and Newman (1999); Devroye (2002); Devroye and Robson (1995); Gallant, Marier and Storer (1980); Giancarlo and Grossi (1997); Kirschenhofer, Prodinger and Szpankowski (1994); Kou, Markowsky and Berman (1981); Lai and Wood (1998); Lew and Mahmoud (1992); Louchard, Szpankowski and Tang (1999); Lovasz, Naor, Newman and Wigderson (1995); and Meleis (2001).

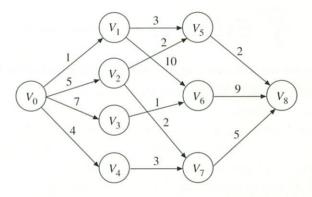

Exercises

in on be

ng 5) ve ng

en

5.1 Consider the following graph. Find a Hamiltonian cycle by some kind of tree searching technique.


5.2 Solve the 8-puzzle problem which tests with the following initial state.

2	3		
8	1	4	
7	5	6	

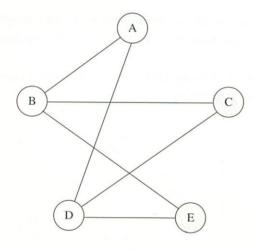
Note that our final goal is

	1 2		3	
8			4	
	7	6	5	

5.3 Find the shortest path from v_0 to v_8 by the branch-and-bound strategy.

5.4 Solv follo

- 5.5 Solve 5, 8} a branch
- 5.6 Solve search


initial

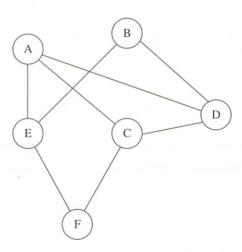
bound

5.4 Solve the traveling salesperson problem characterized by the following distance matrix by the branch-and-bound strategy.

i j	1	2	3	4	5
1	∞	5	61	34	12
2	57	∞	43	20	7
3	39	42	∞	8	21
4	6	50	42	∞	8
5	41	26	10	35	∞

- 5.5 Solve the following sum of subset problem. $S = \{7, 1, 4, 6, 14, 25, 5, 8\}$ and M = 18. Find a sum whose elements add up to M. Use the branch-and-bound strategy.
- 5.6 Solve the vertex cover problem of the following graph by some tree searching technique.

5.7 Determine the satisfiability of the following Boolean formulas by tree searching technique.


(a)
$$-X_1 \lor X_2 \lor X_3$$

 $X_1 \lor X_3$
 X_2

(b)
$$-X_1 \lor X_2 \lor X_3$$
$$X_1 \lor X_2$$
$$-X_2 \lor X_3$$
$$-X_3$$

(c)
$$X_1 \lor X_2 \lor X_3$$

 $-X_1 \lor -X_2 \lor -X_3$

(d)
$$X_1 \vee X_2 \\ -X_2 \vee X_3 \\ -X_3$$

- 5.8 Consider the graph in Problem 5.6. Is this graph 2-colorable? Answer this question by some kind of tree searching technique.
- 5.9 Consider the following graph. Prove that this graph contains a 3-clique by tree searching.

5.10 Design algorithic branch-a

5.10 Design an experiment to test the average case performance of the algorithm solving the traveling salesperson problem based upon the branch-and-bound strategy.

ble?

s by

a 3-