
1-Fair Alternator Designs for the de Bruijn Network

Hsu-Shen Lin, Chang-Biau Yang† and Kuo-Tsung Tseng
Department of Computer Science and Engineering

National Sun Yat-sen University, Kaohsiung, Taiwan
†cbyang@par.cse.nsysu.edu.tw

Abstract

In a 1-fair alternator of a network of concurrent proces-
sors, no processor executes the critical step twice when one
or more other processors have not executed the critical step
yet. In this paper, two algorithms are proposed to solve the
coloring (1-fair alternator design) problem on the de Bruijn
network. The first one uses2⌈log2 k⌉+1 colors to color the
k-ary de Bruijn graph with two digits, while the second one
usesp + 1 only colors, where

(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

.

The second coloring method is optimal whenk =
(

p
⌊p/2⌋

)

.
Furthermore, the extension of our coloring method can be
applied to thek-ary de Bruijn graph with three or more dig-
its.

1. Introduction

A de Bruijn graph[1, 2, 3, 4, 12, 11, 8, 9]dB(k, m)
consists ofkm nodes, where each node is labeled by
an m-vector in thek-ary number system. Nodev =
vmvm−1 · · · v1 in a directed de Bruijn graph connects to
nodevm−1vm−2 · · · v1c, wherec is an arbitraryk-ary digit,
0 ≤ c ≤ k − 1. If the de Bruijn graph is an undirected one,
then nodev would also connects to nodescvmvm−1 . . . v2.
In this paper, we shall focus on undirected de Bruijn net-
works only. Figure 1 shows the undirected de Bruijn graph
dB(3, 2), where self-loops are removed and parallel edges
are merged.

The routing and broadcasting algorithms on the de
Bruijn network have been extensively studied [2, 10]. Mao

1 1


1 2


2 1


0 2


2 0


1
0


0 1


2 2


0 0


Figure 1. The undirected dB(3, 2) graph.

and Yang [8] first proposed a shortest path routing algo-
rithm for the binary de Bruijn network. They also presented
a fault tolerant routing method that two node disjoint paths
are provided, one of them is the shortest one and the other
one is of length at mostm + log2 m + 4.

A network of concurrent processors is called anal-
ternator, proposed by Gouda and Haddix [5], for a self-
stabilizing system, if the following two conditions hold.
(1) If one processor executes the critical step, then none
of its neighbors executes the critical step at the same time.
(2) Each processor executes the critical step infinitely often
along any concurrent execution. And it is said to be1-fair
if condition (2) is changed as: A processor can execute the
critical step again only if all other processors have executed
the critical step once.

Condition (1) may be taken as the exclusive property of
the coloring problem. In other words, the set of nodes with
the same color can execute the critical step concurrently
since they are not adjacent. The performance of a 1-fair
alternator design depends on how often each processor can
execute the critical step, i.e. the number of colors used.

For alternator design, Gouda and Haddix [5] proposed
a simple method for a multiprocessor system. Huang and
Chen [6] proposed an approach for designing optimal 1-fair
alternators for hypercubes and forD × D mesh with odd
D. Mao and Yang [9] proposed a 1-fair alternator design
for the binary de Bruijn graphdB(2, m). It is optimal and
each processor executes the critical step in every three steps.
Mao [7] also provided a design fordB(k, m) which allows
each processor executes the critical steps in everyk + 1
steps. In other words, the number of colors used to color
dB(k, m) is k + 1.

In this paper, two algorithms are proposed to solve the
coloring problem on de Bruijn graphs. The rest of this paper
is organized as follows. In Section 2, we shall propose an
algorithm which uses2⌈log2 k⌉+1 colors to colordB(k, 2).
In Section 3, an improved algorithm uses onlyp + 1 colors
to color dB(k, 2), where

(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

. In
Section 4, our coloring method are extended fromdB(k, 2)
to dB(k, m) for anym ≥ 3 without requiring more colors.



Finally, we give some conclusions in Section 5.

2. A Coloring Method with 2 log
2
k + 1 Colors

We shall apply the divide-and-conquer strategy to
solve the problem. First, we partition thek numbers
{0, 1, · · · , k − 1} into two disjoint setsS0 andS1 arbitrar-
ily. Then the nodes indB(k, 2) can be divided into four
groups, which are labeled as 00, 01, 10, and 11, and each
of them can be viewed as asupernodein dB(2, 2). The
nodev = v2v1 belongs to the supernodeij if v2 ∈ Si

andv1 ∈ Sj , wherei, j ∈ {0, 1}. TakedB(4, 2) for ex-
ample, suppose we divide{0, 1, 2, 3} into two disjoint sets
S0 = {0, 1} andS1{2, 3} arbitrarily. Then, the nodes in
each supernode are listed as follows:

Supernode 00 = {00, 01, 10, 11}
Supernode 01 = {02, 03, 12, 13}
Supernode 10 = {20, 21, 30, 31}
Supernode 11 = {22, 23, 32, 33}

Figure 2 shows the relationship betweendB(4, 2) and
dB(2, 2). A node in dB(2, 2) has a self-loop if and
only if edges exist within the corresponding supernode in
dB(k, 2). Thus, if a node indB(2, 2) has no self-loop, then
the corresponding supernode indB(k, 2) forms an indepen-
dent set.

It is clear that both supernodes 01 and 10 are independent
sets and they can be colored with two colors, one for each
supernode. Supernodes 00 and 11 are nodes with self-loop
in dB(2, 2), so they are not independent sets and none of
them can be colored with one color. However, these can be
viewed as subproblems, to which the same algorithm can be
applied recursively. Note that supernodes 00 and 11 are two
disjoint subgraphs and a color used in one graph can be used
in the other one as well. Finally, when we reach the end of
the recursion, each supernode would contain only one node,
and all these supernodes can be colored with the same color.
Our coloring algorithm fordB(k, 2) is given as follows.

Algorithm 1. 2⌈log2 k⌉ + 1 Coloring Algorithm
Input: The de Bruijn graphdB(k, 2).

Output: A valid coloring ondB(k, 2) where2⌈log2 k⌉+
1 colors are used.

Step 1: Divide {0, 1, · · · , k − 1} into S0 =
{0, 1, · · · , ⌈k

2 ⌉ − 1} and S1 = {⌈k
2 ⌉, ⌈

k
2 ⌉ +

1, · · · , k − 1}.

Step 2: Assign one colorA to all nodes in supernode 01.
Assign another colorB to all nodes in supernode
10. These two colors must not be used before.

Step 3: Renumber the elements inS1 to {0, 1, · · · , k −
⌈k

2 ⌉−1}. Accordingly, the node labels in supernode
11 are changed. Then solve the coloring problem on
supernode 00 and supernode 11 independently and

Table 1. The divide-and-conquer coloring
method for dB(8, 2).

0 1 2 3 4 5 6 7
0 G E C C A A A A
1 F G C C A A A A
2 D D G E A A A A
3 D D F G A A A A
4 B B B B G E C C
5 B B B B F G C C
6 B B B B D D G E
7 B B B B D D F G

Table 2. The dividing information in Table 1.
0 1 2 3 4 5 6 7

A, B 0 0 0 0 1 1 1 1
C, D 0 0 1 1 0 0 1 1
E, F 0 1 0 1 0 1 0 1

recursively. Note that the colors used in supernodes
00 and 11 could be the same, but cannot be colors
A andB.

As an example, Table 1 shows how this algorithm solves
the coloring problem ondB(8, 2) recursively. A nodev2v1

represented by the intersection of rowv2 and columnv1,
and the symbol on the intersection is the color of that node.
For example, nodes 25 and 23 are colored with colorsA and
E, respectively. When we reach the end of the recursion,
each supernode corresponds to one node on the diagonal
line. As we can see that these nodes on the diagonal line are
colored with the same color.

Theorem 1. Algorithm 1 uses2⌈log2 k⌉+1 colors to color
de Bruijn graphdB(k, 2).

All proofs in this paper are omitted because of the page
number limit.

3. An Improved Coloring Method

In the previous section, we dividek into two disjoint
sets. Actually, if we keep the result how we divide in each
subproblem (supernode), the records would form another
table, as shown in Table 2. Each row can be viewed as
a way to dividek into disjoint setsS0 and S1. For ex-
ample, the first row represents the way of dividingk into
S0 = {0, 1, 2, 3} andS1 = {4, 5, 6, 7}. Besides, supern-
odes 01 and 10 are colored with colorsA andB, respec-
tively. Supernodes 00 and 11 are further divided recursively
in the second row. Note that the coloring information for
nodeaa, 0 ≤ a ≤ k − 1, is not shown in Table 2, since it is
a special case.

Since each group of each row in Table 2 represented su-
pernodes 01 and 10, colored with two colors, we further



0 0
 0 1


0 2
 0 3


1 0
 1 1


1 2
 1 3


2 0
 2 1


2 2
 2 3


3 0
 3 1


3 2
 3 3


0 0
 1 1


0 1


1 0


(a)

0 0
 0 1


0 2
 0 3


1 0
 1 1


1 2
 1 3


2 0
 2 1


2 2
 2 3


3 0
 3 1


3 2
 3 3


0 0
 1 1


0 1


1 0


(b)

0 0


0 1


1 0


1 1


(c)

Figure 2. The relationship between dB(4, 2) and dB(2, 2). (a) Connections between supernodes. (b)
Connections within supernodes. (c) The directed de Bruijn graph dB(2, 2).

Table 3. The independence table extended
from Table 2.

0 1 2 3 4 5 6 7
A L L L L R R R R
B R R R R L L L L
C L L R R L L R R
D R R L L R R L L
E L R L R L R L R
F R L R L R L R L

extend each row into two rows, each for one supernode, as
shown in Table 3, theindependence table. Each supern-
ode, which corresponds to one group in one row, consists
the node set{v2v1| v2 is a digit marked withL, andv1 is
a digit marked asR}. For example, the supernode in the
fourth row, one supernode consists of{20, 21, 30, 31}, and
the other supernode consists of{64, 65, 74, 75}. Still note
that all nodesaa, 0 ≤ a ≤ k − 1, are not shown in Table 3.

In Table 3, each supernode forms an independent set.
And furthermore, Table 3 reveals more information for in-
dependent sets. It is clear that the setWi = {v2v1| v2 and
v1 are two digits marked withL andR, respectively, in row
i } must be an independent set since no left (marked asL)
digit is the same as a right (marked asR) digit. Thus, only
one color is needed for coloring the nodes in one row. Note
thatWi contains more nodes than the supernodes indicated
in row i. With this observation, we can rearrange the mark-
ersL andR in each row such that each node, except node
aa, appears in at least one row. This new rearrangement
corresponds to a new coloring way.

Now we formally define theindependence tableT for
dB(k, 2), which contains some rows andk columns, where
each entry is of value eitherL orR. Each rowr corresponds
to the node set{ij|Tr,i = L and Tr,j = R}. A tableT is
valid if and only if for all nodesab ∈ dB(k, 2), a 6= b,

there exists at lease one rowr in T such thatTr,a = L and
Tr,b = R. The nodesaa, 0 ≤ a ≤ k − 1, are not illustrated
in T . Since the nodes in each row form an independent set,
each row needs only one unique color. And one extra color
is needed for nodesaa. By summing up above statement,
we get a conclusion as follows.

Theorem 2. The de Bruijn graphdB(k, 2) is p + 1 col-
orable if there exists a valid independence table withp rows
andk columns.

Our job for coloringdB(k, 2) now becomes to design a
valid independence table with minimum number of rows.
Our algorithm cannot tell how many colors are required for
dB(k, 2) directly. But for a given number of colors, we can
tell the maximum value ofk in dB(k, 2) we can reach. If we
havep + 1 colors, let each column correspond to a unique
combination ofp elements. To make it valid, we only use a
subset of combinations,q elements chosen from p elements,
whose size is

(

p
q

)

. To maximizek, we letq = ⌊p/2⌋. Thus

we can usep + 1 colors to colordB(
(

p
⌊p/2⌋

)

, 2). In other
words,dB(k, 2) can be colored withp + 1 colors where
(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

.
Let F be the color assignment function such thatF (v) is

the color assigned to nodev. Assume the color index begins
at 0. Our algorithm is given as follows.

Algorithm 2. p + 1 Coloring Algorithm
Input: The de Bruijn graphdB(k, 2).

Output: The coloring ofdB(k, 2) with p + 1 colors
where

(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

Step 1: Findp where
(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

Step 2: For the nodev = v2v1, wherev2 = v1, let
F (v) = p.

Step 3: For the nodev = v2v1, v2 6= v1, do the follow-
ing.



Step 3.1: Find thev2th andv1th combinations of
(

p
⌊p/2⌋

)

in lexical order.

Step 3.2: Find the indexr where therth element ofv2th
combination isL andrth element ofv1th combina-
tion is R. Let F (v) = r. If more than one suchr
exists, arbitrarily assign any one suchr to F (v).

Theorem 3. The chromatic number ofdB(k, 2) is p + 1
whenk =

(

p
⌊p/2⌋

)

.

4 Extension to dB(k, m)

Here we propose an extension scheme which allows us
to color adB(k, m) graph,m ≥ 3, based on any given valid
coloring ofdB(k, 2) without requiring more colors.

Let F (v) denote the color assigned to nodev =
vmvm−1 . . . v1 in dB(k, m). Let G(x, y) be the color look-
up function whereG(x, y) is the color of the node labeled
asxy in the given coloreddB(k, 2). In dB(k, m), for each
nodev = vmvm−1 . . . v1, we use a 3-tuple(bv, δv, av) to
representv, whereav = v1, bv = vδv+1 is the right-
most digit such thatbv 6= v1. In other words,av is
the rightmost repeated digit andδv is the repeated length
(av = v1 = v2 = . . . = vδv

). For example, node. . . 13333
is encoded as the 3-tuple(1, 4, 3).

Our algorithm for extending the coloring ofdB(k, 2) to
dB(k, m), m ≥ 3, is given as follows:

Algorithm 3. Extending Algorithm
Input: A valid coloring of dB(k, 2) and an uncolored

dB(k, m).

Output: A valid coloring of dB(k, m) with the same
number of colors used indB(k, 2).

Step 1: For each nodev, find (bv, δv, av)

Step 2: For each nodev,
If δv is odd, thenF (v) = G(bv, av);

otherwiseF (v) = G(av, av);

For example, node. . . 2111 is encoded as(2, 3, 1) and
thus colored as node21 in dB(k, 2) since itsδ value is odd.
Similarly, node. . . 13333 is encoded as(1, 4, 3) and colored
as node33 in dB(k, 2).

Theorem 4. Algorithm 3 assigns different colors to each
pair of adjacent nodes indB(k, m), m ≥ 3.

5. Conclusions and Future Works

In this paper, we first proposed two coloring algorithms
to color the nodes in de Bruijn graphdB(k, 2). One needs
2⌈log2 k⌉ + 1 colors and the other needsp + 1 only col-
ors, where

(

p−1
⌊(p−1)/2⌋

)

< k ≤
(

p
⌊p/2⌋

)

. It is optimal for

dB(k, 2) whenk =
(

p
⌊p/2⌋

)

. We also proposed an exten-
sion algorithm to colordB(k, m) for m ≥ 3, based on a
coloreddB(k, 2) without increasing the number of colors.
By combining the extension and the second coloring algo-
rithm, we solved the coloring problem onk-ary de Bruijn
graphs withp + 1 colors.

However, we are not sure if the method, combining the
second coloring algorithm and the extension algorithm, is
optimal for thedB(k, m) graphs,m ≥ 3. Even if this
method is optimal fordB(k, 2), to find the optimal solu-
tion for thedB(k, m) graph still remains an open problem.
Related proofs are also worthy of further study.

References

[1] M. Beale and S. M. S. Lau. Complexity and auto-correlation
properties of a class of de Bruijn sequence.Electronics Let-
ters, 22(20):1046–1047, May 1986.

[2] J. C. Bermond and P. Fraigniaud. Broadcasting and gossip-
ing in de Bruijn networks. SIAM Journal on Computing,
23(1):212–225, Feb. 1994.

[3] J. Bruck, R. Cypher, and C. T. Ho. Fault-fault de Bruijn and
shuffle-exchange networks.IEEE Transactions on Parallel
and Distributed Systems, 5(5):548–553, May 1994.

[4] A. H. Esfahanian and S. L. Hakimi. Fault-tolerant routing in
de Bruijn communication networks.IEEE Transactions on
Computers, C-34(9):777–788, Sept. 1985.

[5] M. G. Gouda and F. F. Haddix. The alternator. InICDCS
’99: Workshop on Self-stabilizing Systems, pages 48–53,
Washington, DC, USA, 1999. IEEE Computer Society.

[6] S.-T. Huang and B.-W. Chen. Optimal 1-fair alternators.
Information Processing Letters, 80(3):159–163, 2001.

[7] J.-W. Mao. The Coloring and Routing Problems on de
Bruijn Interconnection Networks. Ph.D. Dissertation, Na-
tional Sun Yat-Sen University, Kaohsiung, Taiwan, July
2003.

[8] J.-W. Mao and C.-B. Yang. Shortest path routing and
fault-tolerant routing on de Bruijn networks.Networks,
35(3):207–215, 2000.

[9] J.-W. Mao and C.-B. Yang. A design for node coloring and
1-fair alternator on de Bruijn networks. InProceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications, volume 4, pages
1872–1878, Las Vegas, Nevada, USA, 2003.

[10] D. K. Pradhan and S. M. Reddy. A fault-tolerant communi-
cation architecture for distributed systems.IEEE Transac-
tions on Computers, 31(9):863–870, Sept. 1982.

[11] M. A. Sridhar. The undirected de Bruijn graph: Fault tol-
erance and routing algorithms.IEEE Transactions on Cir-
cuits and Systems I-Fundamental Theory and Applications,
39(1):45–48, 1992.

[12] M. A. Sridhar and C. S. Raghavendra. Fault-tolerant net-
works based on the de Bruijn graph.IEEE Transactions on
Computers, 40(10):1167–1174, Oct. 1991.


