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Abstract and Yang [8] first proposed a shortest path routing algo-
rithm for the binary de Bruijn network. They also presented
In a 1-fair alternator of a network of concurrent proces- a fault tolerant routing method that two node disjoint paths
sors, no processor executes the critical step twice when oneare provided, one of them is the shortest one and the other
or more other processors have not executed the critical stepone is of length at most: + log, m + 4.
yet. In this paper, two algorithms are proposed to solve the A network of concurrent processors is called an
coloring (1-fair alternator design) problem on the de Bruij  ternator, proposed by Gouda and Haddix [5], for a self-
network. The first one us@slog, k| + 1 colors to colorthe  stabilizing system, if the following two conditions hold.
k-ary de Bruijn graph with two digits, while the second one (1) If one processor executes the critical step, then none
usesp + 1 only colors, where( .77, ) <k < (,7,).  ofits neighbors executes the critical step at the same time.

The second coloring method is optimal wher= (Lpl/)z J), (2) Each processor executes the critical step infinitelgroft

Furthermore, the extension of our coloring method can be along any concurrent execution. And it is said tolbfair

applied to thek-ary de Bruijn graph with three or more dig-  if condition (2) is changed as: A processor can execute the
its. critical step again only if all other processors have exatut

the critical step once.

Condition (1) may be taken as the exclusive property of
the coloring problem. In other words, the set of nodes with
the same color can execute the critical step concurrently
since they are not adjacent. The performance of a 1-fair
alternator design depends on how often each processor can
execute the critical step, i.e. the number of colors used.

For alternator design, Gouda and Haddix [5] proposed
a simple method for a multiprocessor system. Huang and
Chen [6] proposed an approach for designing optimal 1-fair
alternators for hypercubes and fbr x D mesh with odd
D. Mao and Yang [9] proposed a 1-fair alternator design
for the binary de Bruijn grapiB(2, m). It is optimal and
each processor executes the critical step in every thrps.ste
Mao [7] also provided a design faB(k, m) which allows
each processor executes the critical steps in ekefy1
steps. In other words, the number of colors used to color
dB(k,m)isk + 1.

In this paper, two algorithms are proposed to solve the
coloring problem on de Bruijn graphs. The rest of this paper
is organized as follows. In Section 2, we shall propose an
algorithm which useg[log, k]+1 colors to colow B(k, 2).

In Section 3, an improved algorithm uses oply- 1 colors
to color dB(k, 2), where(L(p’jl)l/QJ) <k < (u}jQJ). In
Section 4, our coloring method are extended fud{k, 2)
Figure 1. The undirected dB(3,2) graph. to dB(k, m) for anym > 3 without requiring more colors.

1. Introduction

A de Bruijn graph[1, 2, 3, 4, 12, 11, 8, 9B(k,m)
consists ofk™ nodes, where each node is labeled by
an m-vector in thek-ary number system. Node =
UmUm—1+--v1 iN a directed de Bruijn graph connects to
nodev,,_1v,,_2 - - - v1¢, Wherec is an arbitraryk-ary digit,

0 < ¢ < k — 1. If the de Bruijn graph is an undirected one,
then nodev would also connects to nodes,, v,,,_1 . .. va.

In this paper, we shall focus on undirected de Bruijn net-
works only. Figure 1 shows the undirected de Bruijn graph
dB(3,2), where self-loops are removed and parallel edges
are merged.

The routing and broadcasting algorithms on the de
Bruijn network have been extensively studied [2, 10]. Mao




Finally, we give some conclusions in Section 5.
Table 1. The divide-and-conquer coloring

2. A Coloring Method with 21log, % + 1 Colors method for d5(s, 2).
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We shall apply the divide-and-conquer strategy to o LS I e A
solve the problem. First, we partition the numbers 2D D[G[E|A A A A
H icini i _ 3 D D F G|A A A A

_{0, 1,---,k—1}into two disjoint setsSy a_n_dSl ;_irbltrar il == | ETGTETC C
ily. Then the nodes inlB(k,2) can be divided into four 5/B B B B[F[G|]C C
groups, which are labeled as 00, 01, 10, and 11, and each °lg 8 B B2 DLE I S

of them can be viewed assupernodean dB(2,2). The
nodev = wyv; belongs to the supernodg if v, € S;
andv; € S;, wherei,j € {0,1}. TakedB(4,2) for ex-

ample, suppose we divid®, 1,2, 3} into two disjoint sets Table 2. The dividing information in Table 1.

So = {0,1} and 51{2, 3} arbitrarily. Then, the nodes in e
each supernode are listed as follows: CD|O0 0 1 1J]0 0 1 1
Supernode 00 = {00,01,10,11} EEF[0 10 1]0 1]J0 1

Supernode 01 = {02, 03,12, 13}
Supernode 10 = {20,21, 30,31}

Supernode 11 = {22, 23,32, 33} recursively. Note that the colors used in supernodes

Figure 2 shows the relationship betweéB(4,2) and
dB(2,2). A node indB(2,2) has a self-loop if and
only if edges exist within the corresponding supernode in
dB(k,2). Thus, if anode irlB(2, 2) has no self-loop, then
the corresponding supernodei (%, 2) forms an indepen-
dent set.

00 and 11 could be the same, but cannot be colors
A andB.

As an example, Table 1 shows how this algorithm solves
the coloring problem od B(8, 2) recursively. A nodesv,
represented by the intersection of rew and columnuy,

Itis clear that both supernodes 01 and 10 are independen"li”d the symbol on the intersection is the colpr of that node.
sets and they can be colored with two colors, one for eachFOr €xample, nodes 25 and 23 are colored with caloasid
supernode. Supernodes 00 and 11 are nodes with self-loog’» "esPectively. When we reach the end of the recursion,
in dB(2,2), so they are not independent sets and none oféach supernode corresponds to one node on the diagonal
them can be colored with one color. However. these can bellnN€- As we can see that these nodes on the diagonal line are
viewed as subproblems, to which the same algorithm can bef0lored with the same color.
a_ppligd recursively. Note that superr_mdes 00 and 11 are twoT heorem 1. Algorithm 1 useg[log, k] + 1 colors to color
disjoint subgraphs and a color used in one graph can be usege Bruijn graphd B(k, 2)
in the other one as well. Finally, when we reach the end of o )
the recursion, each supernode would contain only one node, All proofs in this paper are omitted because of the page
and all these supernodes can be colored with the same coloffumber limit.

Our coloring algorithm forl B(k, 2) is given as follows.

: _ _ 3. An Improved Coloring Method
Algorithm 1. 2[log, k] + 1 Coloring Algorithm

Input: The de Bruijn graplB(k, 2).
Output: Avalid coloring ond B(k, 2) where2[log, k]+
1 colors are used.

Step 1: Divide {0,1,---,k 1}
{07]-;"') (%1 - 1} and S
1,--- k—1}.

Step 2: Assign one color to all nodes in supernode 01.
Assign another coloB to all nodes in supernode

In the previous section, we divide into two disjoint
sets. Actually, if we keep the result how we divide in each
subproblem (supernode), the records would form another
table, as shown in Table 2. Each row can be viewed as
a way to dividek into disjoint setsS; and .S;. For ex-
ample, the first row represents the way of dividiagnto
So = {0,1,2,3} andS; = {4,5,6,7}. Besides, supern-
odes 01 and 10 are colored with colotsand B, respec-
tively. Supernodes 00 and 11 are further divided recungivel

10. These two colors must not be used before. in the second row. Note that the coloring information for
Step 3: Renumber the elements 8y to {0,1,---,k — nodeaa, 0 < a < k — 1, is not shown in Table 2, since itis

(%1 —1}. Accordingly, the node labels in supernode a special case.

11 are changed. Then solve the coloring problemon  Since each group of each row in Table 2 represented su-

supernode 00 and supernode 11 independently andbernodes 01 and 10, colored with two colors, we further

into Sy
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Figure 2. The relationship between dB(4,2) and dB(2,2). (a) Connections between supernodes. (b)
Connections within supernodes. (c) The directed de Bruijn graph dB(2, 2).

there exists at lease one revin 7 such thatZ, , = L and
Table 3. The independence table extended 7T.» = R. The nodesia, 0 < ¢ < k — 1, are not illustrated
from Table 2. in 7. Since the nodes in each row form an independent set,
each row needs only one unique color. And one extra color
is needed for nodesa. By summing up above statement,
we get a conclusion as follows.

Theorem 2. The de Bruijn graphdB(k,2) is p + 1 col-
orable if there exists a valid independence table witbws
andk columns.
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Our job for coloringd B(k, 2) now becomes to design a
extend each row into two rows, each for one supernode, as/alid independence table with minimum number of rows.
shown in Table 3, théndependence tableEach supern- ~ Our algorithm cannot tell how many colors are required for
ode, which corresponds to one group in one row, consistsdB(k, 2) directly. But for a given number of colors, we can
the node sefv,v; | vs is a digit marked withZ, anduv, is tell the maximum value of in dB(k, 2) we can reach. If we
a digit marked ask}. For example, the supernode in the havep + 1 colors, let each column correspond to a unique
fourth row, one supernode consists{@0, 21, 30, 3}, and combination ofp elements. To make it valid, we only use a
the other supernode consists{@&4, 65, 74, 75. Still note subset of combinationg.elements chosen from p elements,
that all nodesia, 0 < a < k — 1, are not shown in Table 3. Whose size if})). To maximizek, we letq = [p/2]. Thus

In Table 3, each supernode forms an independent setwe can use + 1 colors to colordB((Lp’/’QJ),Q). In other
And furthermore, Table 3 reveals more information for in- words, dB(k,2) can be colored wittp + 1 colors where
dependent sets. It is clear that the B§t= {v5v1| v2 and (L(pffl)l/%) <k< <Lp72J)'
vy are two digits marked wittl. and R, respectively, in row Let I be the color assignment function such thd) is
i } must be an independent set since no left (marketl)as  the color assigned to node Assume the color index begins

digit is the same as a right (marked &y digit. Thus, only at 0. Our algorithm is given as follows.
one color is needed for coloring the nodes in one row. Note

thatT¥; contains more nodes than the supernodes indicatecf"gomh_m 2. p+ 1 Coloring Algorithm
in row i. With this observation, we can rearrange the mark- ~ |nput: The de Bruijn grapki B(, 2).
ersL and R in each row such that each node, except node Output: The coloring ofdB(k,2) with p + 1 colors
- . _1 9
zg;rzggsstrjss Lr; :tnls\;a\\/séo?gﬁngovvzéyThls new rearrangement where( " 77/5)) <k < (,02))
: g Step 1: Findpwhere(, ?71,. ) <k < (. b
Now we formally define théndependence tablg for ® P (L(P*U/?J) < (/)

dB(k,2), which contains some rows aictolumns, where Step 2: For the nodev = wpv1, Wherevy = vy, let
each entry is of value eithdror R. Each row- corresponds F(v) =p.
to the node sefij|7,; = Land 7,; = R}. AtableT is Step 3: For the nodey = vev1, v2 # v1, do the follow-

valid if and only if for all nodesab € dB(k,2),a # b, ing.



Step 3.1: Find thev,th andv; th combinations of 7, )
in lexical order.

Step 3.2: Find the index- where therth element ofoth
combination isL andrth element ofy;th combina-
tion is R. Let F(v) = r. If more than one such
exists, arbitrarily assign any one sucto F(v).

Theorem 3. The chromatic number ofB(k,2) isp + 1
whenk = (Lp72J)'

4 ExtensiontodB(k,m)

Here we propose an extension scheme which allows us
to color ad B(k, m) graph,m > 3, based on any given valid

coloring of d B(k, 2) without requiring more colors.
Let F(v) denote the color assigned to node =
UmUm—1 - .. v1 INdB(k,m). LetG(z,y) be the color look-

up function whereZ(z, y) is the color of the node labeled

asxy in the given coloredB(k, 2). In dB(k, m), for each
nodev = v,Um_1...v1, We use a 3-tupléb,, é,, a,) to
representw, wherea, = v1, b, = vs5,41 IS the right-
most digit such that, # wv;. In other words,a, is

the rightmost repeated digit arid is the repeated length

(ay =v1 =v9 = ... = vs,). For example, node. . 13333
is encoded as the 3-tup(é, 4, 3).

Our algorithm for extending the coloring dB (%, 2) to
dB(k,m), m > 3, is given as follows:

Algorithm 3. Extending Algorithm
Input: A valid coloring of dB(k,2) and an uncolored
dB(k,m).

Output: A valid coloring of dB(k,m) with the same
number of colors used B (k, 2).

Step 1: For each node, find (b, ., a,)

Step 2: For each node,
If &, is odd, thenF' (v) = G(b,, a,);
otherwiseF (v) = G(ay, a,);

For example, node..2111 is encoded a$2,3,1) and
thus colored as nodd in dB(k, 2) since itsy value is odd.
Similarly, node . . 13333 is encoded afl, 4, 3) and colored
as node33 in dB(k, 2).

Theorem 4. Algorithm 3 assigns different colors to each

pair of adjacent nodes idB(k, m), m > 3.

5. Conclusions and Future Works

In this paper, we first proposed two coloring algorithms

to color the nodes in de Bruijn graptB(k,2). One needs
2[log, k] + 1 colors and the other neegs+ 1 only col-

ors, where(L(p’fl)l/QJ) < k< (Lp72j)' It is optimal for

dB(k,2) whenk = (

I_pz/)QJ)' We also proposed an exten-

sion algorithm to colok/B(k, m) for m > 3, based on a
coloredd B(k, 2) without increasing the number of colors.
By combining the extension and the second coloring algo-
rithm, we solved the coloring problem dnary de Bruijn
graphs withp + 1 colors.

However, we are not sure if the method, combining the
second coloring algorithm and the extension algorithm, is
optimal for thedB(k, m) graphs,m > 3. Even if this
method is optimal forlB(k, 2), to find the optimal solu-
tion for thed B(k, m) graph still remains an open problem.
Related proofs are also worthy of further study.
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