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1 Introduction

In order to get more efficiency of those computers, using distributed systems is a good
choice. Thus, the mutual exclusion problem in distributed systems is an important issue.
One of the ways to solve the mutual exclusion problem is the coterie protocol, which
was proposed by Garcia-Molina and Barbara [2]. A coterie under U (U is the collection
set of all the nodes in the distributed system) consists of a set of quorums in which each
quorum is a subset of U , and the intersection of any pair of quorums is nonempty. It is
called the intersection property. The other property of quorums is minimality that no
quorum contains another quorum. With these two properties, a coterie can be used to solve
the mutual exclusion problem in a distributed system. Any node which wants to enter
the critical section must have the permissions of all nodes in a quorum, and release the
permissions when the node leaves the critical section. The permission can be given to at
most one node in the distributed system at a time. Because of the intersection property, no
node can enter the critical section if there is another node in the critical section at that time.

With a well designed coterie, we can have less communication cost and tolerate some
nodes failure. Many researchers proposed some methods for constructing coteries or inves-
tigated the properties of coteries [3–7].

2 Previous Work

Maekawa proposed a � N algorithm for mutual exclusion in decentralized systems [6].
It is actually a � N coterie using the concept of f inite pro jective plane. A finite projective
plane of order p is formally defined as a set of p � p � 1 ��� 1 points with the following
properties:

1. Any two points determine a line,

2. Any two lines determine a point,

3. Every point has p � 1 lines on it, and
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4. Every line contains p � 1 points.

In a finite projective plane of order p, there are p � p � 1 � � 1 lines. It is clear that a finite
projective plane is a coterie if we take each line as a quorum. It has been proved if p is a
power of a prime, there exists a finite projective plane of order p. If either p � 1 or p � 2 is
divisible by 4 and p is not a sum of two integral squares (p

�� a2 � b2), there exists no finite
projective plane of order p [1].

Maekawa pointed out the relationship between a finite projective plane and a coterie,
however, how to construct a finite projective plane or to generate a coterie is not very clear.
Thus, in this paper, we shall propose a method for generating a coterie with quorum size
p � 1, where p is a prime.

3 A Generating Method

In this section, we shall propose a simple method to generate coteries. The method
can be applied when the quorum size of the coterie is equal to p � 1, where p is a prime
number, and the number of members in the coterie is n � p � p � 1 � � 1, and n is also the
coterie size (number of quorums in a coterie). For example, if the quorum size is p � 1 � 6,
then n � 5 � 5 � 1 � � 1 � 31. We will use this example to explain how the method works
(see Table 1).

We divide the coterie into p � 1 quorum matrices, denoted as M � p � 1 ��� � p � 1 �
1 , Mp � � p � 1 �

2 ,

Mp � � p � 1 �
3 , 	
	
	 , Mp � � p � 1 �

p � 1 . Let mx
i � j denote an element in matrix Mx. The method for gener-

ating the quorum matrices is as follows:

m1
i � j � � 1 if j � 1,

� i � 1 � p � j if otherwise,

where 1 
 i � j 
 p � 1.
For other matrices Mx � 2 
 x 
 p � 1, the generating method is more complicated. We

use some generating matrices Gp � p
2 , Gp � p

3 , 	
	
	 , Gp � p
p � 1 , to guide the construction of those

matrices. Let gx
i � j denote an element in matrix Gx. The generating matrices are defined as

follows:

gx
i � j � � � x � 2 � � j � 1 � � � i � 1 ��� mod p �

where 2 
 x 
 p � 1 � 1 
 i � j 
 p.
Now, we define the other quorum matrices in our coterie as follows:

mx
i � j � � x if j � 1,

m1
j � 2 � gx

i � j � 1 if otherwise,

where 2 
 x 
 p � 1 � 1 
 i 
 p � 1 
 j 
 p � 1.

Lemma 1 In each quorum matrix, mx
i1 � j1 �� mx

i2 � j2 � 1 
 x 
 p � 1, if and only if � i1 � j1 � ��
� i2 � j2 � , 2 
 j1 � j2 
 p � 1.
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Table 1: Our Coterie with p � 5

1 2 3 4 5 6
1 7 8 9 10 11
1 12 13 14 15 16
1 17 18 19 20 21
1 22 23 24 25 26
1 27 28 29 30 31

(a)M6 � 6
1

2 7 (0) 12 (0) 17 (0) 22 (0) 27 (0)
2 8 (1) 13 (1) 18 (1) 23 (1) 28 (1)
2 9 (2) 14 (2) 19 (2) 24 (2) 29 (2)
2 10 (3) 15 (3) 20 (3) 25 (3) 30 (3)
2 11 (4) 16 (4) 21 (4) 26 (4) 31 (4)

(b)M5 � 6
2 � G5 � 5

2 �

3 7 (0) 13 (1) 19 (2) 25 (3) 31 (4)
3 8 (1) 14 (2) 20 (3) 26 (4) 27 (0)
3 9 (2) 15 (3) 21 (4) 22 (0) 28 (1)
3 10 (3) 16 (4) 17 (0) 23 (1) 29 (2)
3 11 (4) 12 (0) 18 (1) 24 (2) 30 (3)

(c)M5 � 6
3 � G5 � 5

3 �

4 7 (0) 14 (2) 21 (4) 23 (1) 30 (3)
4 8 (1) 15 (3) 17 (0) 24 (2) 31 (4)
4 9 (2) 16 (4) 18 (1) 25 (3) 27 (0)
4 10 (3) 12 (0) 19 (2) 26 (4) 28 (1)
4 11 (4) 13 (1) 20 (3) 22 (0) 29 (2)

(d)M5 � 6
4 � G5 � 5

4 �

5 7 (0) 15 (3) 18 (1) 26 (4) 29 (2)
5 8 (1) 16 (4) 19 (2) 22 (0) 30 (3)
5 9 (2) 12 (0) 20 (3) 23 (1) 31 (4)
5 10 (3) 13 (1) 21 (4) 24 (2) 27 (0)
5 11 (4) 14 (2) 17 (0) 25 (3) 28 (1)

(e)M5 � 6
5 � G5 � 5

5 �

6 7 (0) 16 (4) 20 (3) 24 (2) 28 (1)
6 8 (1) 12 (0) 21 (4) 25 (3) 29 (2)
6 9 (2) 13 (1) 17 (0) 26 (4) 30 (3)
6 10 (3) 14 (2) 18 (1) 22 (0) 31 (4)
6 11 (4) 15 (3) 19 (2) 23 (1) 27 (0)

(f)M5 � 6
6 � G5 � 5

6 �
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Proof: Let a � mx
ia � ja � b � mx

ib � jb , 1 
 x 
 p � 1 � 1 
 ia � ib 
 p (if x � 1, 1 
 ia � ib 
 p � 1),
2 
 ja � jb 
 p � 1, ia

�� ib or ja
�� jb.

(1) If x � 1, ia � ib, then it is clear that a
�� b if ja

�� jb.
(2) If x � 1, ia � ib, then b � a � � ib � ia � p � � jb � ja ��� 0 since ib � ia � 0 � 1 � p 

jb � ja 
 p � 1. That is, a

�� b.
(3) If 2 
 x 
 p � 1, ja � jb, then

b � a � m1
jb � 2 � m1

ja � 2 � � gx
ib � jb � 1

� gx
ia � ja � 1 �� � jb � ja � p � � gx

ib � jb � 1
� gx

ia � ja � 1 �
� 0

since jb � ja � 0 � 1 � p 
 gx
ib � jb � 1

� gx
ia � ja � 1 
 p � 1. It implies that a

�� b.
(4) If 2 
 x 
 p � 1, ja � jb, then

b � a � gx
ib � jb � 1

� gx
ia � ja � 1� � ib � ia � mod p�� 0

We have that a
�� b.

Theorem 2 Any pair of nodes (a, b) appear on exactly one row in all quorum matrices.

Proof: Let � a � b � be any pair of nodes, without loss of generality, a � b.
(1) If 1 � a � b 
 p � p � 1 � � 1. It is clear that the pair � a � b � can only appear in M1, and
each b (2 
 b 
 p � p � 1 � � 1) appears exactly once in M1, so that the pair � a � b � appears
exactly on one row in M1.
(2) If 2 
 a � b 
 p � 1. As one can see that the pair � a � b � appears exactly once on row 1
of M1.
(3) If 2 
 a 
 p � 1 � b 
 p � p � 1 � � 1. The pair � a � b � must appear on some row(s) of
Ma. Since each b (p � 1 � b 
 p � p � 1 � � 1) appears exactly once in Ma, the pair � a � b �
appears exactly on one row of Ma.
(4) If p � 1 � a � b 
 p � p � 1 � � 1. Suppose there are two rows (or more) which the pair
� a � b � appears on, say A and B, A

�� B. If A is a row of M1, since there is no replica of a or
b in M1, B can not be in M1. It is clear that if the pair � a � b � appears on a row of M1, � a � b �
will not be in the same row of Mx, 2 
 x 
 p � 1, which means there is no such row B of
Mx, 2 
 x 
 p � 1, contains the pair � a � b � . If neither A nor B is a row of M1, suppose the
pair � a � b � appears on column j1 � j2 of row i1 of Mx1 and on column j1 � j2 of row i2 of
Mx2 , 2 
 j1 � j2 
 p � 1, 1 
 i1 � i2 
 p, 2 
 x1 � x2 
 p � 1. (If the pair � a � b � appears on
some row of some quorum matrix and appears on another row of another quorum matrix,
the columns which � a � b � are on should be the same.)

� a � b � � � m1
j1 � 2 � gx1

i1 � j1 � 1 � m1
j2 � 2 � gx1

i1 � j2 � 1 �� � m1
j1 � 2 � gx2

i2 � j1 � 1 � m1
j2 � 2 � gx2

i2 � j2 � 1 �
We can ignore the m-parts since they are the same.

� a
� � b
�
� � � gx1

i1 � j1 � 1 � gx1
i1 � j2 � 1 �� � gx2

i2 � j1 � 1 � gx2
i2 � j2 � 1 �
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extracting the g-parts, then:

� a
� � b
�
� � � � � x1

� 2 � � j1 � 1 � � � i1 � 1 ��� mod p � � � x1
� 2 � � j1 � 1 � � � i1 � 1 ��� mod p �� � � � x2

� 2 � � j1 � 1 � � � i2 � 1 ��� mod p � � � x2
� 2 � � j2 � 1 � � � i2 � 1 ��� mod p �

then we know that: � � j1 � 1 � � x1
� x2 � � � i1 � i2 ��� mod p � 0 �� � j2 � 1 � � x1
� x2 � � � i1 � i2 ��� mod p � 0 �

Since j1
�� j2 (2 
 j1 � j2 
 p � 1) and p is a prime, the two equations above can not both

be 0, which means that there are no two rows in quorum matrices contain the same pair
� a � b � . That is, the pair � a � b � appears on exactly one row in all quorum matrices.

Theorem 3 The intersection of the members on any two rows in all quorum matrices is
nonempty.

Proof: Let A and B be any two rows in all quorum matrices, A
�� B.

(1) If A and B are in the same Mx, 1 
 x 
 p � 1. A intersects B on column 1 by definition.
(2) If A is row i1 of M1, and B is row i2 of Mx, 1 
 i1 
 p � 1 � 1 
 i2 
 p � 2 
 x 
 p � 1.

A � � 1 � i1 p � � p � 2 � � i1 p � � p � 2 � � 1 � 	
	
	 � i1 p � � p � 2 � � � p � 1 � � �
B � � x � � p � 2 � � gx

i2 � 1 � � 2p � 2 � � gx
i2 � 2 � 	
	
	 � � pp � 2 � � gx

i2 � p � �
If i1 � 1, then A � � 2 � 3 � 	
	
	 � p � 1 � , since x � B � 2 
 x 
 p � 1, Intersection of A and B is
x. Otherwise, i1

�� 1, then we may find an element E of B, and E � � i1
� 1 � p � 2 � gx

i2 � i1 � 1
�

i1 p � � p � 2 � � gx
i2 � i1 � 1, since 0 
 gx

i2 � i1 � 1 
 p � 1, intersection of A and B is E.
(3) If A

�� M1 and B
�� M1. Suppose that A is row i1 of Mx1 , and B is row i2 of Mx2 ,

1 
 i1 � i2 
 p � 2 
 x1 � x2 
 p � 1 � x1
�� x2, then A and B can be represented as:

A � � x1 � m1
2 � 2 � gx1

i1 � 1 � m1
3 � 2 � gx1

i1 � 2 � 	
	
	 � m1
p � 1 � 2 � gx1

i1 � p � �
B � � x2 � m1

2 � 2 � gx2
i2 � 1 � m1

3 � 2 � gx2
i2 � 2 � 	
	
	 � m1

p � 1 � 2 � gx2
i2 � p � �

We are trying to prove that the intersection of A and B is nonempty, since that x1
�� x2 and

the m-parts of A and B are the same, we may concentrate on g-parts of them, so that:

A
� � � � x1

� 2 � � j1 � 1 � � � i1 � 1 ��� mod p � 2 
 j1 
 p � 1 �
B
� � � � x2

� 2 � � j2 � 1 � � � i2 � 1 ��� mod p � 2 
 j2 
 p � 1 �
If there exists J � j1 � j2 (since we have ignored m-parts, A and B intersects if some g-part
is the same. Let it be J.) such that:

� � � x1
� 2 � � J � 1 � � � i1 � 1 ��� � � � x2

� 2 � � J � 1 � � � i2 � 1 ����� mod p � 0 �
then the intersection of A and B is nonempty. It can be rewritten as

� � x1
� x2 � J � � i1 � x1

� i2 � x2 ��� mod p � 0 �
5



without loss of generality, let C1
� x1

� x2 � C2
� i1 � x1

� i2 � x2 � C1 � C2 are constants and
C1

�� 0, then:

C1J � C2 mod p � 0 �
Since p is a prime, and 2 
 J 
 p � 1, there exists J such that C1J � C2 mod p � 0. The
intersection of A and B is nonempty.

Theorem 4 Our method can generate a coterie if and only if p is a prime.

Proof: By Theorem 3, it satisfies the intersection property, and it is clear that it satisfies the
minimality property. Thus, it can do generate a coterie. If p is not a prime, in case 3 of the
proof of Theorem 3, let C1 = some factor of p and C2

� 1. It is clear that C1J � C2 mod p
��

0 � 2 
 J 
 p � 1, which means that the intersection of some rows (A and B) is empty. It
will not satisfy the intersection property.
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