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ABSTRACT
Given two sequences with lengths m and n, the edit distance is

the minimum cost required to transform one into the other. The

classical operations involved in the traditional edit distance problem

include insertion, deletion and replacement. In 2004, Gao et al. [5]
proposed an algorithm for calculating the edit distance with non-

overlapping inversion, where an inversion may overlap the classical

operations, but not another inversion. The time complexity of their

algorithm is O(m2n2). In this paper, we introduce a new variant of

the traditional edit distance problem, the edit distance with non-

overlapping inversion (EDI) problem, which is to determine the

minimum edit distance with four operations: insertion, deletion,

replacement and inversion. The used operations cannot overlap

one another. We propose an efficient algorithm for the EDI problem.

The time complexity is O(m2n) in the worst case and O(mn) in the

average case.
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1 INTRODUCTION
Given two sequences (strings), one can be transformed into the

other by inserting, deleting, or replacing some characters. The edit

distance is the total cost of these insertions, deletions and replace-

ments used in the transformation. The traditional edit distance
problem is to find the used edit operations, consisting of inser-

tions, deletions and replacements, with the minimal cost. When

the cost of one insertion or deletion is one, and the cost of one re-

placement is two, the edit distance problem becomes to finding the

minimal number of insertions and deletions, without considering

replacements.

Levenshtein [11] presented an algorithm to calculate the edit

distance of two sequences with three classical operations, insertion,
deletion and replacement in 1966. In 1970, Needleman and Wunsch

[13] presented a dynamic programming algorithm to align biologi-

cal sequences such as DNA sequences or protein sequences. The

alignment score can be seen as the similarity (opposite aspect of

distance) of two biological sequences.

The similarity of DNA sequences is an important issue in bioin-

formatics. In the genome rearrangement problem, it finds the mini-

mum mutation operations for the genome blocks. Besides the clas-

sical operations (insertion, deletion and replacement), there are

some special operations for DNA sequences, such as reversal, inver-

sion, and transposition. The genome rearrangement problem with

overlapping operations has been proved to be NP-hard [4] and NP-

complete [15]. Some approximate algorithms for the overlapping

operations were proposed in the 1990s, such as 2-approximation for

overlapping reversals with O(n2) time [9], 1.75-approximation for

overlapping reversals with O(n2) time [3], and 2.25-approximation

for overlapping transpositions with O(n2) time [20].

In 2004, Gao et al. [5] improved the algorithm presented by

Schöniger andWaterman [14] and defined a new problem with non-

overlapping inversions. Their problem allows inserting or deleting

characters after a substring is inverted, so the classical operations

may overlap an inversion but an inversion cannot overlap another

inversion. The time complexity of their algorithm is O(m2n2), where
m and n denote the lengths of the two given sequences. In 2016,

Ta et al. [16] proposed an algorithm for computing the mutation

distance (including non-overlapping inversions and transpositions)

of two sequences with the same length n. Hsu [6] improves the

algorithm of Ta et al. by reducing the time complexity to O(n2).
In the past, the longest common subsequence (LCS) (the oppo-

site aspect of edit distance) and its variants have been studied

extensively. Some examples include block edit distance [1], block

https://doi.org/10.1145/3330431.3330437
https://doi.org/10.1145/3330431.3330437
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Figure 1: An example for transforming A = agcacgag into
B = agatcgtggc with the edit cost 3ωins + ωdel + ωr .

alignment [18], constrained LCS [2], merged LCS [17], and so on.

A comprehensive survey on the edit distance and related variants

can be found in the article of Lin et al. [12].
In this paper, we define a new variant of the edit distance problem,

the edit distance with non-overlapping inversion (EDI) problem

(including non-overlapping insertions, deletions, replacements and

inversions), and propose an efficient algorithm for solving it.

The organization of this paper is given as follows. Some prelim-

inaries are described in Section 2. We first present a brute-force

algorithm for the EDI problem with O(m2n) time and space in Sec-

tion 3. Then, one more efficient algorithm is presented in Section 4.

There are two phases in the algorithm. We first build the needed

tables for the inversions of the substrings, and then calculate the

EDI distance by using these tables. The required time is O(m2n) in
the worst case. The analysis of the average time complexity O(mn)
and experimental results are given in 5. Finally, the conclusions are

given in Section 6.

2 PRELIMINARIES
Suppose we are given two sequences A = a1a2 · · ·am and B =
b1b2 · · ·bn with lengths |A| = m and |B | = n, respectively, where
m ≤ n. ai denotes the ith character of A. The substring of A from

positions i to j, aiai+1 · · ·aj , is denoted by Ai ..j . In this paper, A
and B are over a finite alphabet Σ = {a, t, g, c}. Characters a and t
are said to be complementary to each other, and so are g and c. The
complement of the character ai is denoted by ai . In other words,

a = t, t = a, g = c and c = g.
Traditionally, to transform sequence A into B can be considered

as inserting/deleting/replacing some characters of A in the proper

positions to make A and B identical. The cost of each insertion,

deletion and replacement is denoted by ωins , ωdel and ωr , respec-
tively. The edit distance ofA and B is the minimum cost to transform

A into B [19]. Figure 1 shows an example for A = agcacgag and

B = agatcgtggc. 3 insertions, 1 deletion and 1 replacement are used

to make them identical. Thus edit cost for this transformation from

A to B is 3ωins + ωdel + ωr . When it is set that ωins = ωdel = ωr ,
this cost is the minimum and thus it is the edit distance of A and B.

Let ED(i, j) denote the edit distance (minimum cost) to transform

A1..i intoB1..j . The dynamic programming (DP) formula for solving

the edit distance problem is given in Equation 1 [19].

g	-


g	c


a	g	-
𝐴


a	g	a
𝐵


c a c g a


t c g t g


Deletion Inversion Insertion Insertion Inversion Insertion

Figure 2: An example of the EDI cost for A = agcacgag and
B = agatcgtggc, which is 2ωins + ωinv .

ED(i, j) =min


ED(i − 1, j − 1) + ω(ai ,bj ),
ED(i − 1, j) + ωins ,
ED(i, j − 1) + ωdel ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(1)

In Equation 1, the function ω(a,b) denotes the cost when a and b
are aligned together, given as follows.

ω(a,b) = min

{
0 if a = b,
ωr if a , b .

(2)

In this paper, we define a new variant of the edit distance problem,

called the edit distance with non-overlapping inversion (EDI) problem,

which involves four operations: insertion, deletion, replacement and

inversion. An inversion is a special operation for DNA sequences.

The inverse of sequence S is denoted by S . The inversion operation

is not only reversing the order of characters, but also replacing

characters with their complements. For example, suppose that S =

acaaca. Then S3..6 = aaca, and its inverse S3..6 = s6 s5 s4 s3 =
tgtt.

Definition 1. (inversion) Given a sequence S = s1s2s3 · · · sn ,
an inversion operation from positions i to j is to reverse the order of
substring Si ..j and replace each character with its complement. After
the inversion is done, the result is S1..i−1 Si ..j Sj+1..n =
s1s2· · · si−1sj sj−1 · · · si+1 sisj+1 · · · sn , where 1 ≤ i ≤ j ≤ n.

Note that, in some researches [3, 7, 8], the operation that reverses

the order of characters without replacing them by their comple-

ments is called a reversal.

Definition 2. (edit distance with non-overlapping inversion

problem) Given two sequences A and B with lengths m and n, re-
spectively, the edit distance with non-overlapping inversion (EDI)

problem is to determine the minimum cost required to transform A
into B with the four operations: insertion, deletion, replacement and
inversion. The used operations cannot overlap one another and their
costs are denoted by ωins , ωdel , ωr and ωinv , respectively.

Using the same sequences A and B in Figure 1, we give an exam-

ple of the EDI problem in Figure 2 with EDI cost 2ωins + ωinv . If
the cost of each operation is one, the EDI distance is 3, while the

traditional edit distance is 5.

It is interesting that the score (cost) of the replacement operation,

or called the alignment, is not a constant in the alignment problem

for biosequences. A score table, such as PAM250 or BLOSUM100,

records the score of every protein replacement (alignment). The
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Figure 3: The extension of an inversion set.

goal of the alignment problem is to align two given biosequences

with the maximum score [18].

3 A BRUTE-FORCE ALGORITHM
In this section, we first present a brute-force algorithm for the EDI

problem with O(m2n) time and space. This algorithm can guide

readers to understand the concept of our latter algorithm.

Definition 3. (inversion set) Given two sequences A and B with
lengthsm and n, respectively, the inversion set Ii , j = {k | Ai−k+1..i =

Bj−k+1..j , 1 ≤ k ≤ min{i, j}}, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For example, suppose A = acaaca and B = tgttgt. There are

two inversions ending at a5 and b6, which are A1..5 = B2..6 and

A4..5 = B5..6. Thus, we have I5,6 = {2, 5}.

Definition 4. (extension of an inversion set) Given an inversion
set Ii , j , the extension of Ii , j (to obtain Ii+1, j or Ii , j+1) is to extend
the lengths in Ii , j by attaching one more character ai+1 or bj+1.
ext(Ii , j ,A) = {k + 1 | k ∈ Ii , j ∪ {0} and ai+1 = bj−k }. ext(Ii , j ,B) =
{k + 1 | k ∈ Ii , j ∪ {0} and ai−k = bj+1}.

Figure 3 illustrates the extension of an inversion set. With the

extension concept, we have the following lemma.

Lemma 1. Ii , j = ext(Ii−1, j ,A) = ext(Ii , j−1,B).

Proof. ext(Ii−1, j ,A) = {p | p−1 ∈ Ii−1, j∪{0} and ai = bj−p+1},

that is, Ai−p+1..i = Bj−p+1..j . Assume that д ∈ ext(Ii−1, j ,A). Then

Ai−д+1..i = Bj−д+1..j and we have д ∈ Ii , j . Thus, ext(Ii−1, j ,A) ⊆
Ii , j .

Assume that f ∈ Ii , j . Then Ai−f +1..i = Bj−f +1..j and ai =

bj−f +1. Ai−f +1..i = Ai−f +1..i−1 + ai and Bj−f +1..j =

bj−f +1 + Bj−f +2..j = Bj−f +2..j + bj−f +1. We have Ai−f +1..i−1 =

Bj−f +2..j . The length of Ai−f +1..i−1 is f − 1 and then f − 1 ∈

Ii−1, j ∪ {0}. Thus, f ∈ ext(Ii−1, j ,A) and then Ii , j ⊆ ext(Ii−1, j ,A).
Combining the two facts, we get Ii , j = ext(Ii−1, j ,A). That Ii , j =
ext(Ii , j−1,B) can be proved similarly. Therefore, the lemma holds.

�

Before calculating the distance, we build an inversion length

table Θ that stores the lengths in all inversion sets. That is, we

have to find every element k in Ii , j for any i and j. Θ is a three-

dimensional matrix. If Ai−k+1..i = Bj−k+1..j , we assign Θ(i, j,k)
to 1; and Θ(i, j,k) = 0 if otherwise. That is, Θ(i, j,k) = 1 if and

only if k ∈ Ii , j . Procedure 1 describes our method for building the

inversion length table Θ by Lemma 1.

LetD(i, j) denote the EDI betweenA1..i andB1..j .D(i, j) depends
not only on insertions and deletions but also on inversions ending

Procedure 1 Computation of the inversion length table Θ.

1: Θ(i, j,k) := 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ min{i, j}.
2: for i := 1 →m do
3: for j := 1 → n do
4: if ai = bj then
5: Θ(i, j, 1) = 1

6: for k := 1 → min{i − 1, j − 1} do
7: if Θ(i − 1, j,k) = 1 and ai = bj−k then
8: Θ(i, j,k + 1) = 1 // ext(Ii−1, j ,A)

at ai and bj . With the inversion length table Θ, we can calculate D
with the dynamic programming approach given in Equation 3. Our

brute-force algorithm is presented in Algorithm 1.

D(i, j) = min


D(i − 1, j − 1) + ω(ai ,bj ),
D(i − 1, j) + ωins ,
D(i, j − 1) + ωdel ,
D(i − k, j − k) + ωinv ,∀k s.t. Θ(i, j,k) = 1 .

(3)

Algorithm 1 The brute-force algorithm for EDI

1: Compute Θ
2: for i := 1 →m do
3: for j := 1 → n do
4: d := min{D(i − 1, j − 1) + ω(ai ,bj ),D(i − 1, j) +

ωins ,D(i, j − 1) + ωdel }
5: for k := 1 → min{i, j} do
6: if Θ(i, j,k) = 1 then
7: d := min{d,D(i − k, j − k) + ωinv }

Since there are three for-loops in Procedure 1, the time com-

plexity of building the inversion length table Θ is O(m2n), where
|A| =m ≤ |B | = n. Therefore, the time complexity of Algorithm 1

(brute-force for EDI) is O(m2n) and the space complexity is O(m2n).

4 AN IMPROVED ALGORITHM
In this section, we improve the method for establishing the inver-

sion length table to reduce the time complexity. Some new defini-

tions are given for this improvement.

Definition 5. (longest common proper prefix-suffix, LCPPS)

Given a sequence S with length n, the common proper prefix-suffix

(CPPS) is the prefix and suffix of S with length p < n which are equal.
That is, S1..p = Sn−p+1..n . The longest common proper prefix-suffix

(LCPPS) is the longest one in CPPS. If the LCPPS does not exist, the
length of LCPPS is 0.

For example, the CPPS’s of acaaca are a and aca and its LCPPS

is aca with length 3. The LCPPS of aaaaac does not exist, so the

length of LCPPS is 0.

Given a sequence S , the prefix function of the KMP algorithm

[10] f (j) = ℓ calculates the largest ℓ less than j such that S
1..ℓ =

Sj−ℓ+1..j . For example, Figure 4 shows the results of the prefix

function for acaacaca. That is, the result of the prefix function f (j)
is exactly the LCPPS of S1..j . Let δ (i, j) denote the LCPPS length



ICEMIS’19, June 6–8, 2019, Astana, Kazakhstan Lee, Yang and Tseng

Figure 4: An example for the prefix function f (j) of the KMP
algorithm [10], which is δ (1, j) in our notation.

Procedure 2 Computing the δ table for string A = a1a2 · · ·am

1: δ (i, j) := 0, for 1 ≤ i, j ≤ m.
2: for i := 1 →m − 1 do
3: for j := i + 1 →m do
4: ℓ := δ (i, j − 1)

5: while ℓ > 0 and aj , ai+ℓ do
6: ℓ := δ (i, i + ℓ − 1)

7: if aj = ai+ℓ then
8: ℓ := ℓ + 1

9: δ (i, j) := ℓ

of Ai ..j . We modify the prefix function [10] to calculate δ (i, j), as
shown in Procedure 2.

The time required for calculating the prefix function of a se-

quence S with lengthm is O(m) [10]. Procedure 2 calculates the

prefix function for every suffix Ai ..m . There are O(m) suffixes of A.
Thus, the time required for building δ is O(m2).

Definition 6. (leftmost inversion) Given an inversion set Ii , j ,
the leftmost inversion ending at ai and bj , denoted by λ(i, j), is the
inversion with maximum length in Ii , j . That is, λ(i, j) = max{ℓ | ℓ ∈

Ii , j }.

Instead of trying all possible lengths to check whether they

could be inversions or not, we store only the leftmost inversion

with which we can find all other inversions. For example, suppose

A = acaaca and B = tgttgt. There are two inversions ending at

a5 and b6, which are A1..5 = B2..6 and A4..5 = B5..6. So λ(5, 6) =
max{I5,6} = max{2, 5} = 5, which is the length of A1..5.

There is a relationship between the leftmost inversion λ and the

LCPPS length δ . Figure 5 illustrates an example of the relationship.

Suppose that A = acaaca and B = tgttgt. λ(5, 6) = 5. Then

λ(6, 6) = 6 since a6 = b1. As another example, suppose that A =

acaaca and B = cgttgt. λ(5, 6) = 5 but a6 , b1. Then λ(6, 6) is the
LCPPS length of A1..6. That is, λ(6, 6) = δ (1, 6) = 3.

Lemma 2. Suppose that λ(i − 1, j) = α . If ai = bj−α , then λ(i, j) =
α + 1. Otherwise, λ(i, j) = δ (i − α, i).

Proof. By definition, λ(i, j) = max{Ii , j } = max{ext(Ii−1, j ,A)}.

Ai−α ..i−1 = Bj−α+1..j since λ(i − 1, j) = α ∈ Ii−1, j . That is,

ai−α+k = bj−k for 0 ≤ k ≤ α − 1. The prefix of Ai−α ..i−1 with

length x can be denoted by Ai−α ..i−α+x−1, 1 ≤ x ≤ α .

Ai−α ..i−α+x−1 = Bj−x+1..j .Ai−ℓ..i−1 = Bj−ℓ+1..j = Ai−α ..i−α+ℓ−1
for ℓ ∈ Ii−1, j , ℓ < α . Ai−α ..i−α+ℓ = Ai−α ..i−α+ℓ−1 + ai−α+ℓ =

Bj−ℓ+1..j + bj−ℓ = Bj−ℓ..j .

Figure 5: An example for the relationship between the left-
most inversion λ and the LCPPS δ .

If ai = bj−ℓ and ℓ ∈ Ii−1, j , then ℓ + 1 ∈ Ii , j , that is, Ai−ℓ..i =

Bj−ℓ..j = Ai−α ..i−α+ℓ . Therefore, ℓ + 1 is the length of the CPPS

of Ai−α ..i . Let ℓm = max{ℓ | ℓ < α ∈ Ii−1, j and Ai−ℓ..i =
Ai−α ..i−α+ℓ}. ℓm + 1 ∈ Ii , j . ℓm + 1 is the length of the LCPPS

of Ai−α ..i . If ai = bj−α , then max{ext(Ii−1, j ,A)} = α + 1. Oth-

erwise, max{ext(Ii−1, j ,A)} is the LCPPS length of Ai−α ..i , that is
δ (i − α, i). �

By Lemma 2, we can build the leftmost inversion table λ with

the recursive formula in Equation 4, where α = λ(i − 1, j).

λ(i, j) = max


α + 1 if ai = bj−α ,

δ (i − α, i) if α > 1,

1 if ai = bj ,
0 otherwise.

(4)

Although we can find the leftmost inversions efficiently, we

cannot calculate the EDI only with these leftmost inversions. For

example, supposeA =agcagag and B = ctgctct. The EDI between

A and B should be 2ωinv which is A1..5 = B1..5 and A6..7 = B6..7.
However,A6..7 = B6..7 is not a leftmost inversion. Note thatA4..7 =

B4..7 is the leftmost inversion ending at a7 and b7. Therefore, we
need to consider all inversions to get the correct EDI answer.

Given a leftmost inversion, we can find all other inversion lengths

in the inversion set with LCPPS. For example, suppose that A =
acaaca and B = tgttgt (see Figures 4 and 5). Then, λ(6, 6) = 6.

The LCPPS length of A1..6 is δ (1, 6) = 3 ∈ I6,6. The LCPPS length
of A4..6 is δ (4, 6) = 1 ∈ I6,6. That is, I6,6 = {1, 3, 6}.

We have the following theorem for describing the CPPS relation-

ship. And, Figure 6 illustrates the CPPS relationship in Theorem

1.

Theorem 1. Let Ii , j = {ℓ1, ℓ2, ℓ3, · · · , ℓk−1, ℓk } be an inversion
set, where ℓ1 < ℓ2 < ℓ3 < · · · < ℓk−1 < ℓk . Then, ℓt−1 is the LCPPS
length of Ai−ℓt+1..i for 2 ≤ t ≤ k . That is, ℓt−1 = δ (i − ℓt + 1, i).

Proof. Let x ∈ Ii , j . That is,Ai−x+1..i = Bj−x+1..j . If there exists

y ∈ Ii , j and y < x , then Ai−y+1..i = Bj−y+1..j = Ai−x+1..i−x+y
sinceAi−x+1..i = Bj−x+1..j . Then,y is the CPPS length ofAi−x+1..i .
Therefore, for any x,y ∈ Ii , j and y < x , y is the length of CPPS
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Figure 6: The CPPS relationship in Theorem 1.

of Ai−x+1..i . The CPPS lengths of Ai−ℓt+1..i areℓ1, ℓ2, ℓ3, · · · , and
ℓt−1. Thus, ℓt−1 is longest CPPS length (LCPPS length) ofAi−ℓt+1..i
for 2 ≤ t ≤ k . �

By Theorem 1, the improved algorithm for calculating the EDI

with the inversion table λ and the LCPPS length table δ is presented

in Algorithm 2.

Algorithm 2 An improved algorithm for EDI

1: Compute δ
2: Compute λ
3: for i := 1 →m do
4: for j := 1 → n do
5: d := min{D(i − 1, j − 1) + ω(ai ,bj ),D(i − 1, j) +

ωins ,D(i, j − 1) + ωdel }
6: if ℓ := λ(i, j) > 0 then
7: d := min{d,D(i − ℓ, j − ℓ) + ωinv }
8: while ℓ := δ (i − ℓ + 1, i) > 0 do //Consider every

inversion in Ii , j
9: d := min{d,D(i − ℓ, j − ℓ) + ωinv }

10: D(i, j) := d

Every entry of the λ table can be calculated in constant time.

The time required for building λ is O(mn). In Algorithm 2, Line 5

includes the classical operations, which require O(mn) total time.

Lines 6 through 9 include the inversion operations, which requires

O(K) total time, where K denotes the number of inversions in se-

quencesA and B. Therefore, the total time complexity of Algorithm

2 is O(mn + K). The space complexity is O(mn).

5 ANALYSIS OF THE TIME COMPLEXITY
We first analyze the number of inversions in sequences A and B,
denoted by K .

Definition 7. (substring pair) Given two sequences A and B
with lengthsm and n, respectively, a substring pair with length ℓ is
Ai ..i+ℓ−1 and Bj ..j+ℓ−1 for 1 ≤ i, i+ℓ−1 ≤ m and 1 ≤ j, j+ℓ−1 ≤ n.
The total number of all substring pairs with length ℓ is denoted by
N (ℓ).

Lemma 3. Given two sequences with lengthsm and n,m ≤ n, there
are O(m2n) substring pairs.

Figure 7: The inversion set for A = agagag and B = ctctctct.
For example, I3,6 = {1, 3}, where A1..3 = B4..6 and A3..3 =

B6..6.

Proof. N (i) = (m − i + 1)(n − i + 1), for 1 ≤ i ≤ min{m,n} =m.

The number of all substring pairs is

∑m
i=1 N (i) =

∑m
i=1(m−i+1)(n−

i+1)=
∑m
i=1[m−(i−1)][n−(i−1)]=

∑m
i=1[mn−(m+n)i+(m+n)+(i−

1)2]=m2n−(m+n)m(m+1)
2
+(m+n)m+ (m−1)m(2m−1)

6
=O(m2n). �

Figure 7 shows the elements in every inversion set for A =
agagag and B = ctctctct. There are totally 68 inversions in this

example. The value of K is the maximum when every substring

pair is an inversion. Accordingly, the time complexity of Algorithm

2 is O(mn + K) = O(m2n) in the worst case.

Theorem 2. Given two sequences over alphabet Σ with lengthsm
and n, the average number of inversions K =O(mn

σ ), where σ = |Σ|.

Proof. To estimate the average value of K , it is assumed that

each character appearing at every string position is independent and

random. We have to consider the probability whether a substring

pair is an inversion or not. The probability that a substring pair

with length ℓ is an inversion is ( 1σ )
ℓ
. The expected number of inver-

sions with length ℓ is
N (ℓ)
σ ℓ . Then, the average value of K equals to∑m

i=1
N (i)
σ i =

∑m
i=1

(m−i+1)(n−i+1)
σ i ≤

∑m
i=1

mn
σ i =

mn
σm

∑m
i=1 σ

m−i=
mn
σm × σm−1

σ−1 = O(mn
σ ). �

According to Theorem 2, the average time complexity of Algo-

rithm 2 is O(mn).
Finally, we perform an experiment with random sequences to

illustrate the efficiency of our algorithms in the real execution. The

execution time of our algorithms is shown in Table 1 and Figure 8.

The two input sequences are randomly generated with the same

length from 200 to 2000.

6 CONCLUSION
In this paper, we define the edit distance with non-overlapping

inversion (EDI) problem, which involves four operations, including

insertion, deletion, replacement and inversion. The used operations
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Table 1: The execution time of our algorithms in seconds.

String length Algorithm 1 (brute-force) Algorithm 2 (improved)

200 0.035 0.002

400 0.254 0.009

600 0.819 0.019

800 1.903 0.034

1000 3.655 0.053

1200 6.253 0.077

1400 9.889 0.105

1600 15.027 0.134

1800 20.779 0.17

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

5

10
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30
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i
m
e
(
s
)

Algorithm 1

Algorithm 2

Figure 8: The execution time of our algorithms.

cannot overlap one another.We first present a brute-force algorithm

for EDI with O(m2n) time. Then, we propose an efficient algorithm

for the EDI problem which relies on the common proper prefix-

suffix. The time complexity of the algorithm is O(mn+K), where K
is the number of all inversions between two sequences. Although

the time complexity is O(m2n) in the worst case, the average time

complexity is O(mn).
In the future, we may add transposition or other special op-

erations for DNA sequences into the problem. We hope that our

algorithm could not only discover the appropriate similarity be-

tween DNA sequences but also calculate the similarity efficiently.

REFERENCES
[1] Hsing-Yen Ann, Chang-Biau Yang, Yung-Hsing Peng, and Bern-Cherng Liaw.

2010. Efficient Algorithms for the Block Edit Problems. Information and Compu-
tation (March 2010), 221–229. Issue 3.

[2] Hsing-Yen Ann, Chang-Biau Yang, and Chiou-Ting Tseng. 2014. Efficient

Polynomial-Time Algorithms for the Constrained LCS Problem with Strings

Exclusion. Journal of Combinatorial Optimization 28, 4 (November 2014), 800–

813.

[3] Vineet Bafna and Pavel A Pevzner. 1996. Genome rearrangements and sorting

by reversals. SIAM J. Comput. 25, 2 (1996), 272–289.
[4] Alberto Caprara. 1997. Sorting by reversals is difficult. In Proceedings of the First

Annual International Conference on Computational Molecular Biology. ACM, Santa

Fe, New Mexico, USA, 75–83.

[5] Yong Gao, Zhi-Zhong Chen, Guohui Lin, Robert Niewiadomski, Yang Wang, and

Junfeng Wu. 2004. A space-efficient algorithm for sequence alignment with

inversions and reversals. Theoretical Computer Science 325, 3 (2004), 361–372.
[6] Tzu-Chiang Hsu. 2017. An Algorithm for Computing the Distance of the Non-

overlapping Inversion and Transposition. Master thesis, Department of Computer
Science and Engineering, National Sun Yat-sen University, Taiwan (2017).

[7] Yen-LinHuang andChin Lung Lu. 2010. Sorting by Reversal, Generalized Transpo-

sitions, and Translocations Using Permutation Groups. Journal of Computational
Biology 17, 5 (2010), 685–705.

[8] John Kececioglu and David Sankoff. 1993. Exact and approximation algorithms for

the inversion distance between two chromosomes. In Proceedings of the Annual
Symposium on Combinatorial Pattern Matching. Springer, 87–105.

[9] John Kececioglu and David Sankoff. 1995. Exact and approximation algorithms

for sorting by reversals, with application to genome rearrangement. Algorithmica
13, 1-2 (1995), 180–210.

[10] Donald E. Knuth, JamesH.Morris, Jr., and Vaughan R. Pratt. 1977. FAST PATTERN

MATCHING IN STRINGS. SIAM J. Comput. 6, 2 (1977), 323–350.
[11] Vladimir Levenshtein. 1966. Binary Codes Capable of Correcting Deletions,

Insertions and Reversal. Soviet Physics Doklady 10, 8 (1966), 707–710.

[12] Shian-Liang Lin, Chiou-Ting Tseng, and Chang-Biau Yang. 2018. A Survey on the

Algorithms of the Edit Distance Problem, the Genome Rearrangement Problem

and Related Variants. In Proceedings of the 35th Workshop on Combinatorial
Mathematics and Computation Theory. Taichung, Taiwan, 65–89.

[13] Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable

to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453.

[14] Michael Schöniger and Michael S. Waterman. 1992. A Local Algorithm for DNA

Sequence Alignment with Inversions. Bulletin of Mathematical Biology 54 (1992),

521–536. Issue 4.

[15] Dana Shapira and James A Storer. 2002. Edit distance with move operations.

In Proceedings of the Annual Symposium on Combinatorial Pattern Matching.
Springer, Fukuoka, Japan, 85–98.

[16] Toan Thang Ta, Cheng-Yao Lin, and Chin Lung Lu. 2016. An Efficient Algorithm

for Computing Non-overlapping Inversion and Transposition Distance. Inform.
Process. Lett. 116 (2016), 744–749. Issue 12.

[17] Kuo-Tsung Tseng, De-Sheng Chan, Chang-Biau Yang, and Shou-Fu Lo. 2018. Ef-

ficient Merged Longest Common Subsequence Algorithms for Similar Sequences.

Theoretical Computer Science 7 (January 2018), 75–90.

[18] Kuo-Tsung Tseng, Chang-Biau Yang, Kuo-Si Huang, and Yung-Hsing Peng. 2008.

Near-optimal Block Alignments. IEICE Transactions on Information and Systems
E91-D, 3 (2008), 789–795.

[19] Robert A Wagner and Michael J Fischer. 1974. The string-to-string correction

problem. J. ACM 21, 1 (1974), 168–173.

[20] Maria Emilia MT Walter, Zanoni Dias, and João Meidanis. 2000. A new approach

for approximating the transposition distance. In Proceedings of the International
Symposium on String Processing and Information Retrieval. La Coruna,Spain, 27–
29.


	Abstract
	1 Introduction
	2 Preliminaries
	3 A Brute-force Algorithm
	4 An Improved Algorithm
	5 Analysis of the Time Complexity
	6 Conclusion
	References

