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Abstract

The multiple sequence alignment (MSA) is a fun-
damental technique of molecular biology. Biological
sequences are aligned with each other vertically in
order to show the similarities and differences among
them. In this paper, we first propose an efficient
group alignment method to perform the alignment be-
tween two groups of sequences. Its time complexity
is O

�
mnL1L2 � , where m and n are the number of se-

quences in the two groups, L1 and L2 are the length of
the sequences in the two groups. Then we propose a
clustering method to build the tree topology for merg-
ing, which is a top-down heuristics. The clustering
method is based on the concept that the two sequences
having the longest distance should be split into two
clusters. The time complexity of our MSA algorithm is
O

�
n3L2 � , where n is the number of sequences and L is

the maximum length of all sequences. By our exper-
iments, both the alignment quality and required time
of our algorithm are better than Clustal W algorithm
(using the neighboring joining method).

1 Introduction

Multiple sequence alignment (MSA) is important in
functional, structural and evolutionary studies of bio-
logical sequences [5,6,8]. Due to its importance, many
algorithms have been proposed [9, 11, 19, 21, 22]. The
multiple sequence alignment problem is to obtain the
alignment of a set of sequences with the best score
based on some given scoring criteria [6]. A biologi-
cal sequence is a string consisting of characters cho-
sen from a set of alphabets ∑, where ∑ contains the 4
nucleotides � A, C, G, T � for nucleic acid sequences,
or ∑ contains the 20 amino acids � A, R, N, D, C, Q,
E, G, H, I, L, K, M, F, P, S, T, W, Y, V � for protein
sequences. The gap is represented by the dash symbol
(-).�

This research work was partially supported by the National Sci-
ence Council of the Republic of China under contract NSC-89-2218-
E-110-021.

The simplest case of multiple sequence alignment
involves only two sequences. The basic idea of the
multiple sequence alignment is to construct a global
alignment so as to maximize similarities, or minimize
distance, among all sequences. The dynamic program-
ming is well-known for the alignment problems. Find-
ing the optimal alignment with dynamic programming
for a pair of sequences can be done in O

�
n2 � time [20],

where n is the length of the two strings. Unfortunately,
for the general problem of aligning k sequences, O

�
nk �

time is required [13].

Many criteria were proposed to measure the good-
ness of various multiple sequence alignments. One of
the popular criteria is the sum of pairs. It generates a
score for each pairwise alignment with a Dayhoff [7]
or Blosum [2] matrix, and creates a score for the mul-
tiple sequence alignment by summing all scores of the
pairwise alignments.

In this paper, we propose a clustering method and a
group alignment method for multiple sequence align-
ment as a practical method. In the group alignment
method, given two disjoint sets (groups) of sequences,
we want to merge them into one group, so that each
gap is inserted simultaneously in the same position of
each sequence in one group. The time complexity of
our group alignment is O

�
mnL1L2 � , where m and n are

the number of sequences in the two groups, L1 and L2

are the length of the sequences in the two groups. As
the clustering method, the main idea is that two se-
quences with the longest distance should be put in two
clusters, and its time complexity is O

�
n3L2 � , where n is

the number of sequences and L is the maximum length
of all sequences. The experimental results show that
both the alignment quality and required time of our
algorithms are better than Clustal W algorithm (using
the neighboring joining method).

The rest of this paper is organized as follows. Sec-
tion 2 gives the definition of the multiple sequence
alignment problem, a brief survey on some previous
algorithms and the complexity of the MSA problem.
Our group alignment method is given in Section 3.
We present our new approach based on the clustering
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method in Section 4 and our experimental results are
shown in Section 5. Finally Section 6 ends the paper
with our conclusion and future works.

2 Preliminary

There are two kinds of multiple sequence align-
ment. One is the global alignment [15], which con-
structs an alignment throughout the whole sequences.
It seeks to line up the sequences so that the similarity
in the alignment is maximized. The other is the local
alignment [2], which only attempts to identify an or-
dered series of motifs, or homologous regions. It seeks
to line up a subsequence from the sequences such that
they yield the highest scoring region. In this paper, we
study only the global alignment.

A (global) multiple sequence alignment of a set of
sequences is obtained by inserting gap character ’-’
into each sequence so that all resulting sequences have
the same length and no column has only gap character.

Definition 1 Given strings S1 � S2 ��������� Sk, a (global)
multiple alignment maps them to strings A1 � A2 ��������� Ak

that may contain spaces, where

1.
�
A1

��� �
A2

��� ����� � �
Ak

�
,

2. Ai by removing all ”-” gap characters is equal to
Si,

3. no column has only gap character.

We want to find the alignment with the best score,
where the score of MSA is the sum of the scores
of all columns. In a pairwise alignment, we simply
sum the similarity scores of corresponding characters.
The score of the MSA is the sum of the scores of all
columns. There are two kinds of input sequence data:
DNA sequence and protein sequence. The simplest
cost function for two DNA sequences is the edit dis-
tance as follows:

δ
�
x � y � � ��
	 c1 i f x

�
y �

c2 i f x �� y �
c3 i f x

�
gap or y

�
gap �

where c1 and c2 denote the cost of one match and one
substitution, respectively, and c3 denotes the value of
affine gap cost [1].

For the protein sequences, a substitution matrix DM
are used as follows:

δ
�
x � y � ���
	 DM

�
x � y � i f x �� gap and y �� gap �

0 i f x
�

gap and y
�

gap �
affine gap cost i f x

�
gap or y

�
gap �

DM is one Dayhoff [7, 18] or Blosum [2] matrix.
In the multiple sequence alignment, there are vari-

ous scoring methods aimed at satisfying various goals.
Formally, we can express the multiple sequence align-
ment problem as an optimization problem. Sum-of-
pairs (SP) measure, tree alignment and star alignment
are three metrics used to evaluate each column. The
SP, tree alignment and star alignment costs for the
same column may be very different [3].

In the star alignment, the score is the sum of the
pairwise alignments between all sequences and the
chosen consensus sequence (center sequence). In the
tree alignment, it is also possible to compute score in
an evolutionary tree by summing up the pairwise score
on each edge in the tree, which represents the evolu-
tionary distance between two nodes. Hence, this scor-
ing method tries to explain the evolution process by
minimizing the evolutionary distance.

The formal definition of the SP measure is as fol-
lows:

Definition 2 The sum-of-pairs score for a multiple se-
quence alignment A of k sequences is the sum of the
scores of all � k2 
 pairwise alignments of A.

Figure 1 shows an example of the above scoring
rule: If a column has two identical characters, it re-
ceives value 0; otherwise, it receives value 1.

A gap is caused by a mutation which removes a
sequence of residues. Indels (insertions or deletions)
should appear less frequently. Therefore a long gap is
often more suitable than several segments of gaps.

The penalty for a gap has two parts: a penalty Pg is
related to the initiation of a gap, and another penalty
Pe is related to the length of a gap. That is, the gap
penalty is Pg � kPe, called affine gap penalty, where Pg

and Pe are both constants, Pg � 0, Pe � 0, and k � 1 is
the length of the gap.

The problem of finding an alignment with an affine
gap penalty can also be solved by the dynamic pro-
gramming approach [6]. Suppose the two input se-
quences are a1a2 ����� an and b1b2 ����� bm. Some notations
are given as follows.

1. A
�
i � j � is the score of an optimal alignment of

a1a2 ����� ai and b1b2 ����� b j.

2. V
�
i � j � is the score of an optimal alignment of

a1a2 ����� ai and b1b2 ����� b j whose last pair matches
ai with b j.

3. D
�
i � j � is the score of an optimal alignment of

a1a2 ����� ai and b1b2 ����� b j whose last pair matches
ai with a space.

2



A


A


A
 C


G


G
 A


A


A
 C


G


G


A


A
 A


C


G


G


G

C


(a)
 (b)
 (c)


A

A


A


Figure 1: Alignment of six sequences A, A, A, G, G, C. (a) The star alignment, cost=3. (b) The SP (sum of pairs)
alignment, cost=11. (c) The tree alignment, cost=2.

4. I
�
i � j � is the score of an optimal alignment of

a1a2 ����� ai and b1b2 ����� b j whose last pair matches
a space with b j.

The dynamic programming method has the follow-
ing initialization:

A
�
0 � 0 � �

0,
A

�
i � 0 � � �

Pg
�

iPe, for i
� 0,

A
�
0 � j � � �

Pg
�

jPe, for j
� 0,

D
�
i � 0 � � �

∞, for i
� 0,

I
�
0 � j � � �

∞, for j
� 0.

Then the following computations for i
� 0 and j

� 0
are performed:

A
�
i � j � �

max � V
�
i � j � � D �

i � j � � I
�
i � j � � ,

V
�
i � j � �

A
�
i
�

1 � j
�

1 � � δ
�
ai � b j � ,

D
�
i � j � �

max � D
�
i
�

1 � j � �
Pe � A

�
i
�

1 � j � �
Pg

�
Pe � ,

I
�
i � j � �

max � I
�
i � j

�
1 � �

Pe � A
�
i � j

�
1 � �

Pg
�

Pe � .

The SP alignment and the tree alignment on a
fixed binary tree topology have been shown to be
NP-complete [13]. A polynomial time approximation
scheme has been presented [12]. An optimal align-
ment of k sequences can be obtained by dynamic pro-
gramming in O

� �
2n � k � with O

�
nk � space [13], where

n is the maximum length over all sequences. The al-
gorithms proposed by Carillo and Lipman [5] and Ke-
cecioglu [14] can reduce the time for finding an exact
solution by reducing the search space with an upper
bound.

For the SP alignment, Gusfield [10] presented a�
2

�
2 � k � -approximation algorithm, and Pevsner [16]

reduced the approximation factor to
�
2
�

3 � k � . Bafna
et al. [4] presented a

�
2

�
l � k � -approximation algo-

rithm, for any fixed constant l. For the tree alignment,
Gusfield [10] showed that the cost of the minimum
spanning tree of the sequences is at most twice the cost

of optimal multiple alignment. For a fixed tree topol-
ogy, Jiang and Lawler et al. [12] presented a

�
1 � ε � -

approximation scheme with polynomial time for small
ε.

3 The Group Alignment Method

In this section, we propose our group alignment
method, and give an example to show how our algo-
rithm works. Given two sets of sequences, in which
each set of sequences have been aligned (by some
other algorithms or ours), our group alignment method
is to combine the two sets into one set and align all se-
quences. Our main idea is that each gap is inserted
simultaneously in the same position of each sequence
in one group. The method is as follows.

Algorithm: Group Alignment

Input: Two alignments X
� � X1 � X2 ��������� Xm � and

Y
� � Y1 � Y2 ��������� Yn � , where each Xk, 1 � k � m,

or Yl , 1 � l � n, denotes one sequence with some
possible gaps within it, created by the alignment
in its group(set).

Output: A multiple alignment of X and Y .

Notations: Let sequence Xk, 1 � k � m, be denoted
as Xk1Xk2 ����� XkL1

, and sequence Yl , 1 � l � n, be
denoted as Yl1Yl2 ����� YlL2

, where L1 and L2 are the
lengths of each sequence in X and Y , respectively.
w

� � denotes an entry of the score matrix (such as
PAM-250) we are using and α denotes affine gap
penalty, which can be adjusted.

Step 1: Compute the following:

Di � j �
min

�
Di � 1 � j � n∑m

k 	 1 w
�
Xki � � � �

Ti � 1 � j � n∑m
k 	 1 w

�
Xki � � � � α �

Ii � j �
min

�
Ii � j � 1 � m∑n

l 	 1 w
�
� � Yl j � �

Ti � j � 1 � m∑n
l 	 1 w

�
� � Yl j � � α �
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Ti � j �
min

�� 	 Ti � 1 � j � 1 � ∑m
k 	 1 ∑n

l 	 1 w
�
Xki � Yl j � �

Di � j �
Ii � j �

where 1 � i � L1, 1 � j � L2.

Step 2: After TL1 � L2 has been found, we can trace back
to find the multiple sequence alignment of X and
Y .

The time complexity of the above group alignment
algorithm is O

�
mnL1L2 � . The distance between a

sequence Sk and a set of sequences G, denoted as
d

�
Sk � G � , is defined as the smallest among the distances

between Sk and all sequences in G.
We now consider the construction of the fi-

nal multiple sequence alignment on Group X and
Group Y (X � Y have been aligned by our meth-
ods.) by our group alignment method (Algorithm
Group Alignment). Suppose that in the score function,
α

�
0, the costs of a match, a mismatch and an indel

are 0, 1 and 1, respectively.

Group X :
� �

S1 � AAGGCCTT�
S5 � -AGGGCTT�
S3 � -AGGGA-T

Group Y :
� �

S2 � -CGATT�
S4 � TCGA--

Clearly, m=3, n=2, L1
�

8, L2
�

6.

Initial case:
T0 � 0 �

0.
Ti � j �

Ti � j � 1 + m∑n
l 	 1 w(-,Yl j),

i
�

0 � 1 � j � 6.
Ti � j �

Ti � 1 � j + n∑m
k 	 1 w(Xki,-),

1 � i � 8 � j
�

0 �
Other case:

Ti � j �
min

�� 	 Ti � 1 � j � 1 � ∑m
k 	 1 ∑n

l 	 1 w(Xki,Yl j) �
Ti � 1 � j � n∑m

k 	 1 w(Xki,-) �
Ti � j � 1 � m∑n

l 	 1 w(-,Yl j) �
where 1 � i � 8 � 1 � j � 6.

The complete result of our group alignment is
shown in Figure 2. The computations of some of en-
tries are shown as follows.

T0 � 1 �
T0 � 0 � 3w(-,-) � 3w(-,T)�

3 �
T0 � 5 �

T0 � 4 � 3w(-,T) � 3w(-,-)�
24 �

T1 � 0 �
T0 � 0 � 2w(A,-) � 2w(-,-) � 2w(-,-)�

2 �
T7 � 0 �

T6 � 0 � 2w(T,-) � 2w(T,-) � 2w(-,-)�
36 �
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Figure 2: The group alignment method on Group X(2)
and Group Y(3).

T1 � 1 �
min

��������
������
	

T0 � 0 � w(A,-) � w(A,T) �
2w(-,-) � 2w(-,T) �
T0 � 1 � 2w(A,-) � 4w(-,-) �
T1 � 0 � 3w(-,-) � 3w(-,T) ��

4 �
T1 � 2 �

min

������
����
	

T0 � 1 � 2w(A,C) � 4w(-,C) �
T0 � 2 � 2w(A,-) � 4w(-,-) �
T1 � 1 � 3w(-,C) � 3w(-,C) ��

9 �
T7 � 5 �

min

����������
��������
	

T6 � 4 � 2w(T,T) � 2w(T,-) �
w(-,T) � w(-,-) �
T6 � 5 � 2w(T,-) � 2w(T,-) �
2w(-,-) �
T7 � 4 � 3w(-,T) � 3w(-,-) ��

27 �
In Figure 2, we can track back from the right lower

corner to get the alignment. An up arrow means that a
gap is inserted into all sequences of Group Y and a left
arrow means that a gap is inserted into all sequences of
Group X. For example, when we track back from T8 � 6
to T7 � 5, it represents the following alignment:

Group X T
T
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T
Group Y T

-

The alignment of backtracking from T6 � 4 to T5 � 3 is
as follows:

Group X CTT
CTT
A-T

Group Y ATT
A--

Finally, backtracking from T1 � 0 to T0 � 0 indicates the
following alignment:

Group X AAGGCCTT
-AGGGCTT
-AGGGA-T

Group Y --CG-ATT
-TCG-A--

The final multiple sequence alignment is given as
follows:

S1
�
AAGGCCTT

S2
�
--CG-ATT

S3
�
-AGGGA-T

S4
�
-TCG-A--

S5
�
-AGGGCTT

4 The Clustering Method

Since our group alignment method is introduced,
we would like to show our CMSA (Clustering Mul-
tiple Sequence Alignment) algorithm. The tree based
method uses a technique of ”once a gap, always a gap”.
Our main idea is to reduce the number of gaps in each
group. Thus, if we put the two sequences of the longest
distance in two distinct groups, we can get a better
multiple sequence alignment when the input set of se-
quences are very similar. The detail of our CMSA is
as follows.

Algorithm: CMSA
(Clustering Multiple Sequence Alignment)

Input: A set of sequences S
� � S1 � S2 ��������� Sn � .

Output: A multiple sequence alignment of S.

Step 1: If
�
S
� � 1, then stop.

Step 2: Compute the optimal alignment on each pair
of sequences in S. Then construct the distance
matrix for S.

Step 3: Sort all entries in the distance matrix into non-
increasing order.

Step 4: Create a set of sequences R
�

S.

Step 5: In R, select a pair of sequences Si and S j such
that Si and S j have the longest distance.

Step 6: Let G1
� � Si � and G2

� � S j � . R
�

R
�

� Si � S j � .
Perform the following substeps until R becomes
empty.

Step 6.1: Select Sk
�

R such that
min � d

�
Sk � G1 � � d

�
Sk � G2 � � is the minimum.

Step 6.2: If d
�
Sk � G1 � � d

�
Sk � G2 � , then

G1
�

G1 � � Sk � ; otherwise G2
�

G2 � � Sk � .

Step 6.3: R
�

R
� � Sk � .

Step 7: Recursively apply this algorithm (Algorithm
CMSA) by setting the input S

�
G1.

Recursively apply this algorithm (Algorithm
CMSA) by setting the input S

�
G2.

Step 8: Perform our group alignment method (Algo-
rithm Group Alignment) on G1 and G2.

Let L
�

max � �
S1

� � �
S2

� � ����� � �
Sn

� � , where
�
Si

�
de-

notes the length of Si. The complexity of each step is
as follows.

Step 2: O
�
n2L2 � .

Step 3: O
�
n2 logn � .

Step 6: O
�
n � .

Step 8: O
�
n2L2 � .

The time required for one recursion is O
�
n2L2 � ,

since L
�

n in almost all practical cases. Combining
with the recursive work in Step 7, we obtain the time
complexity of the algorithm is O

�
n3L2 � .

We now explain our algorithm step by step. Let us
consider the following five sequences. Suppose that
in the score function, α

�
0, the costs of a match, a

mismatch and an indel are 0, 1 and 1, respectively.

S1
�
AAGGCCTT

S2
�
CGATT

S3
�
AGGGAT

S4
�
TCGA

S5
�
AGGGCTT

In Step 2, we obtain a distance matrix, as shown in
Table 1. Our job is to divide the five sequences into two
groups in Steps 5 and 6. The dividing process is shown
in Figure 3. The first sequence put in each group is
represented by a gray node. The number associated
with each node represents the order that the sequence
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Table 1: The distance matrix for five sequences.

S1 S2 S3 S4 S5

S1 - 5 4 7 2
S2 - 4 3 4
S3 - 4 2
S4 - 6
S5 -
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Figure 3: The clustering method.

is added. The solid line denotes the distance between
the sequence and that group. Figure 3 (b) and (c) are
divided from Figure 3 (a). Initially, G1

� � S1 � and
G2

� � S4 � because S1 and S4 have the longest distance
7. S5 is the closest to G1. Thus S5 is added to G1 and
G1

� � S1 � S5 � . We also find that S3 is close (similar)
to S5. Thus S3 is added to G1 and G1

� � S1 � S5 � S3 � .
Finally, S2 is close (similar) to S4. Thus S2 is added to
G2. The final clustering result is G1

� � S1 � S3 � S5 � and
G2

� � S2 � S4 � .
Since the number of sequences in � S1, S3, S5 � is

greater than 2, we divide G1 again, as shown in Figure
3 (d) and (e). In Figure 3 (d) and (e), G �1

� � S1 � and
G �2

� � S3 � because S1 and S3 have the longest distance
4. S5 is the closest to G �1. Thus S5 is added to G �1
and G �1

� � S1 � S5 � . Now we have three groups G �1
�

� S1 � S5 � , G �2
� � S3 � and G2

� � S2 � S4 � .
In Step 8, we perform our group alignment method

to construct the multiple sequence alignment. The or-
der of the alignment is as follows:
1. Align S1 and S4 in G �2. The resulting alignment is

denoted as Group 1.
2. Align S2 with Group 1. The resulting alignment is
denoted as Group 2(X).
3. Align S3 and S5. The resulting alignment is denoted
as Group 3(Y).
4. Align Group 2(X) and Group 3(Y), as shown in Fig-
ure 2.

5 Experimental Results

In this section, we will show our experimental re-
sults and analyze the performance of our algorithm.
Our algorithm is implemented by GCC on PC with
AMD Duron processor 750 MHZ and 256 MB RAM.
All test sequences are protein sequences and real bio-
logical sequences, that is,

�
∑

� �
20. We use the sum

of pairs measure to determine the goodness of multi-
ple sequence alignment. The score matrix we use is
PAM-250, as shown in Table 2.

Clustal W is one of the famous software packages
to do the multiple sequence alignment, and it can be
found in the Internet [21]. Clustal W algorithm is
a bottom-up method, while our clustering method is
a top-down method. Clustal W applies the neighbor
joining (NJ) algorithm [17] to construct a binary tree
topology (clustering process), then uses the consensus
alignment method with automatically turning the gap
cost on the tree topology.

In this paper, we propose one clustering method and
one group alignment method. To obtain the perfor-
mance of our algorithm, we compare three algorithms:
(1) our algorithm, (2) Clustal W, and (3) the mixed
algorithm. The mixed algorithm consists of the NJ al-
gorithm and our group alignment. Thus, in our ex-
perimental results, we can see the performance of two
aligning processes and two clustering processes.

Table 3 shows the scores and computing time of the
three algorithms on real biological sequences. We can
see that our algorithm is faster than Clustal W and the
scores of our algorithm are better than those of Clustal
W (We get worse scores in only few test cases). Com-
paring with the mixed algorithm, our algorithm spends
almost the same time as the mixed algorithm and our
algorithm has better scores. It can be concluded that
our algorithm is more suitable for real biological se-
quences as compared with Clustal W algorithm. In ad-
dition, our group alignment method is more efficient
than Clustal W. The possible reason is that we do not
turn gap cost. The sources of real biological sequences
are shown in Table 4.
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Table 2: PAM-250 score matrix.

A C D E F G H I K L M N P Q R S T V W Y
A 2
C -2 12
D 0 -5 4
E 0 -5 3 4
F -3 -4 -6 -5 9
G 1 -3 1 0 -5 5
H -1 -3 1 1 -2 -2 6
I -1 -2 -2 -2 1 -3 -2 5
K -1 -5 0 0 -5 -2 0 -2 5
L -2 -6 -4 -3 2 -4 -2 2 -3 6
M -1 -5 -3 -2 0 -3 -2 2 0 4 6
N 0 -4 2 1 -3 0 2 -2 1 -3 -2 2
P 1 -3 -1 -1 -5 0 0 -2 -1 -3 -2 0 6
Q 0 -5 2 2 -5 -1 3 -2 1 -2 -1 1 0 4
R -2 -4 -1 -1 -4 -3 2 -2 3 -3 0 0 0 1 6
S 1 0 0 0 -3 1 -1 -1 0 -3 -2 1 1 -1 0 2
T 1 -2 0 0 -3 0 -1 0 0 -2 -1 0 0 -1 -1 1 3
V 0 -2 -2 -2 -1 -1 -2 4 -2 2 2 -2 -1 -2 -2 -1 0 4
W -6 -8 -7 -7 0 -7 -3 -5 -3 -2 -4 -4 -6 -5 2 -2 -5 -6 17
Y -3 0 -4 -4 7 -5 0 -1 -4 -1 -2 -2 -5 -4 -4 -3 -3 -2 0 10

6 Conclusion

In this paper, we proposed an efficient heuristics
algorithm to solve the multiple sequence alignment
problem, which consists of the clustering method and
the group alignment method. Both of our algorithm
and Clustal W algorithm are the tree based method.
The main difference is that our algorithm is a top-down
method, while Clustal W is a bottom-up method. In
our algorithm, we first compare all sequences pairwise
by the dynamic programming algorithm, then perform
cluster analysis on the pairwise data to generate a tree
hierarchy for alignment. This is a fast method, but it
may produce low-quality alignment. The reason is that
any error which occurs in the pairwise alignment can-
not be corrected; it will be carried to the final align-
ment. Thus, our algorithm is more suitable for real
biological sequences or very similar sequences.

Experimental results show that our method is bet-
ter than the Clustal W for almost all sequences with
high similarity. In some cases, it is still better than the
Clustal W for the sequences with low similarity. To
build a practical MSA software package, we should
consider the way to turn gap penalties and choose
proper score matrices, such as Dayhoff or Blosum ma-
trix.

With dynamic programming, finding the optimal
alignment for a pair of sequences can be done in O

�
L2 �

time, where L is the length of the two strings. And, it
is well known that for the general optimization prob-

lem of aligning n sequences of length L, O
�
Ln � time

is required. Based on the idea of our group alignment
method, we can develop an algorithm to solve the op-
timal MSA problem in O

�
2nL2 � time. We have written

a program to verify the algorithm and we do not find
any counter test case until now. We are now trying to
prove its correctness.
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Table 4: The source of real biological test data.
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data4 Accession of NCBI: NP 008345, NP 008215, NP 008228, BAA95619, AAK38692, AAB00992
data5 Accession of NCBI: AAK08554, AAK08578, NP 071645, NP 068785, NP 007371, NP 008098, NP 007384
data6 Accession of NCBI: AAK14328, AAK14327, AAG49582, NP 008649, NP 008279, AAK00949
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data16 Accession of NCBI: AAK08547, AAK08571, NP 07164, NP 06878, NP 06655, NP 11213, BAB40348
data17 Accession of NCBI: NP 008342, NP 008225, NP 008212, NP 007381, NP 007368, NP 008095,

AAD34185, NP 008043
data18 Accession of NCBI: AAK08547, AAK08571, NP 071642, NP 068782, AAK53588, NP 059474, NP 008289,

NP 008659
data19 Accession of NCBI: NP 066223, AAG60030, NP 066216, NP 066201, NP 065428, AAK53588, NP 059474,

NP 008289, NP 008659
data20 Accession of NCBI: LGHO2, S33878, S14719, S11538
data21 Accession of NCBI: P14315, P47757, P47756, P34686, P13021, P48603, P13517
data22 Accession of NCBI: G29501, H29501, E29501, B29501, C29501, A32654, A29501, F29501, I29501,

C28854, B28854, A28854
data23 Accession of NCBI: NP 007567, CAC36948, NP 007373, NP 008100, NP 007386, NP 008217, NP 008230,

NP 008048, AAG28221, BAA95621, AAK38694, NP 115355, NP 115433, NP 071647, NP 068787
data24 Accession of NCBI: NP 007566, CAC36947, NP 007372, NP 008099, NP 007385, NP 008216, NP 007839,
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data30 Accession of NCBI: HBAQ, HBCQ, B26543, HBGO, 223012, HBOR, P02067
data31 Accession of NCBI: NP 007563, NP 112523, NP 007369, NP 008096, NP 007382, BAA85278, NP 008226,
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10


