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ABSTRACT

In 2018, Chen et al. proposed the minimum first
method (MFM) [1] to speed up the calculation of dy-
namic time warping (DTW), which is a well-known
and essential step for solving the time series clas-
sification (TSC) problem. By simply rearranging
the calculation order, MFM returns the optimal an-
swer as the original DTW does with less calcula-
tion time. MFM is effective in most of experimental
datasets, but it may be worse than the original DTW
in some other datasets. In this paper, we present
two quantitative indicators, including standard devi-
ation of variations and wave oscillation, to automat-
ically determine that which datasets are suitable for
MFM. The most of suitability prediction accuracies
are higher than 80%. Furthermore, we apply MFM
with other DTW related methods to design hybrid
methods, including DTW with band constraints and
AWarp: warping distance for sparse time series and
discuss their time efficiencies of those hybrid meth-
ods. In all experiments, our hybrid methods save dif-
ferent amount of time, from 4% to 62%.

Keywords: time series, classification problem, dy-
namic time warping, minimum first method, quantita-
tive indicator

1. INTRODUCTION

Nowadays, many various forms of data are generated.
Therefore, how to quickly transform these data into use-
ful information is a critical issue for study. Time series
is a sequence of numerical data in chronological order,
such as stock indices, exchange rates and electrocardio-
grams (ECG). In our daily life, there are a large amount
of time series data. How to classify these data quickly
and correctly is an important issue. Thus, the time series
classification (TSC) problem was arisen.

To solve the TSC problem, it is essential to define the
similarity between two given time series. The dynamic
time warping (DTW) [2] is one of the most common
ways to calculate the distance. The time complexity of
DTW is O(n2), where n is the longer length of the two
given series. Many researchers have proposed various
methods in order to reduce the execution time of DTW.

∗This research work was partially supported by the Ministry of
Science and Technology of Taiwan under contract MOST 108-2221-
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In general, they reduced the execution time of DTW by
shrinking the whole solution space, so the answer may
not be optimal. Execution time and approximate result
seem to be a trade-off in those methods.

To maintain the original (optimal) calculated dis-
tance, Chen et al. proposed the minimum first method
(MFM) [1] to speed up the distance calculation of two
time series with DTW by rearranging the calculation
order, instead of shrinking its solution space. In most
of experimental datasets, MFM takes less time than the
original DTW. But in few kinds of datasets, MFM needs
more time than the original DTW. In order to automat-
ically determine which datasets are suitable for MFM,
we shall find the proper indicators to do it in this paper.

Moreover, we apply MFM to other DTW related
methods, such as DTW with band constraints [3, 4] and
AWarp: warping distance for sparse time series [5]. The
calculated answer is the same as the original method,
while the execution time may be reduced.

The rest of this paper is organized as follows. In Sec-
tion 2, we show the solution spaces of DTW related
methods, and Chen’s MFM. We discuss how we find our
indicators for determining MFM suitability in Section 3.
In Section 4, suitability prediction accuracies and time
efficiencies of our experiments are presented. Finally,
we give our conclusions and future works in Section 5.

2. PRELIMINARIES

2.1 Solution Spaces of Some Known DTW Methods

It is clear to see from (1) that the solution space size of
the original dynamic time warping (DTW) distance [2]
is O(mn), where m, n are the lengths of the two given
time series respectively.

D(i, j) =



0 if i = 0
and j = 0,

∞ if i = 0
and j ̸= 0,

∞ if i ̸= 0
and j = 0,

d(ai, bj) + min

{
D(i − 1, j)
D(i, j − 1)
D(i − 1, j − 1)

if 1 ≤ i ≤ m

and 1 ≤ j ≤ n.
(1)

In Fig. 1, we give an example to demonstrate the cal-
culation of DTW. Note that the solution space includes
the whole matrix in Fig. 1 and the yellow cells form
the warping path W , which is defined as W = {w1,
w2, · · · , wk, · · · , wK}, where max(m,n) ≤ K <
m+ n− 1.
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Figure 1: The calculation of DTW for two time series
A = {3, 1, 2, 5, 4, 1, 3} and B = {1, 3, 5, 4, 1, 2}. The
yellow cells form the warping path W .

Figure 2: (a) SCBand, where |i − j| < r = 5. (b)
ITABand, where slopes are -2 and − 1

2 .

In addition , there are two simple and well-known
methods for DTW with band constraints, including
Sakoe-Chiba band [4] and Itakura Parallelogram band
[3]. The examples of them are shown in Fig. 2. By
regulating parameters like the radius or slopes, Sakoe-
Chiba band or Itakura Parallelogram band may easily
control the size of solution space of the problem, which
are yellow cells in Fig. 2. It is worth mentioning that
the answer of the Sakoe-Chiba band or Itakura Paral-
lelogram band may not be optimal since some possible
solutions (white cells in Fig. 2) are omitted.

As for sparse time series (time series that contain
many zeros), instead of shrinking the solution space,
AWarp [5] combines those consecutive zeros to make
a more compact matrix to reach the goal of speeding up
calculations. If the original DTW method is applied, it
wastes too much time for calculating zeros. In Fig. 3(a),
DTW has to calculate 14×11 = 154 cells in the matrix,
while in Fig. 3(b), AWarp calculates only 8 × 5 = 40
cells. AWarp is quite efficient if the given time series is
sparse. Note that AWarp gives the optimal answer since
the solution space is not shrunk but combined.

2.2 The Minimum First Method for Dynamic Time
Warping

The minimum first method (MFM) [1] combines the
concepts of DTW with dynamic windows and the min-
imum first search. When calculating the DTW matrix,
MFM always expands the cell with the minimum dis-
tance first scheme by using the priority queue data struc-
ture.

Figure 3: (a) An example for DTW on sparse time se-
ries. (b) An example of AWarp.

Figure 4: An example for DTW with MFM (DTW-
M), where A = {3, 1, 2, 5, 4, 1, 3} and B =
{1, 3, 5, 4, 1, 2}.

Fig. 4 shows an example of MFM for DTW (short-
ened as DTW-M). It stops when the optimal answer is
founded, so the calculation of the rest cells are omitted
since they cannot be better. The calculated answer is
the same as the answer returned by the original DTW
method in Fig. 1. Note that in the worst case, it is theo-
retically possible for MFM to expand the whole matrix
to get the optimal answer.

2.3 Experimental Datasets

Our experimental datasets for MFM suitability determi-
nation are obtained from the UCR time series classifica-
tion archive [6]. It was first released in 2002 and added
to 128 datasets in 2018. Totally 117 UCR datasets form
our experimental datasets by removing the 11 datasets
which have the missing values.

3. FINDING INDICATORS

To find indicators for MFM suitability determination,
we first apply MFM to our 117 experimental datasets
and compare the ratio of time with the original DTW
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Figure 5: The ratio of time for the 117 datasets with
DTW-θ and DTW-Mθ.

Figure 6: (a) Two time series of the dataset TwoLead-
ECG. (b) Two time series of the dataset ShapeletSim.

method with threshold. For ease of explanation, we
shorten the names of the original DTW method with
threshold as DTW-θ, and MFM for DTW with threshold
as DTW-Mθ.

Fig. 5 shows the time ratio for the 117 datasets in
UCR with DTW-θ and DTW-Mθ. Here, the ratios mean
DTW-θ
DTW and DTW-Mθ

DTW , respectively. We find that DTW-
Mθ takes more time than DTW-θ in 11 datasets. So, we
want to know the characteristics of these datasets.

3.1 Observations of Time Series

Fig. 6(a) shows two time series in TwoLeadECG, which
is suitable for DTW-Mθ. We could find that these time
series have the similar trends and variations, but fewer
wave oscillations. So, when DTW is performed, the
warping path is almost along the diagonal direction in
these datasets. Therefore, DTW-Mθ expands fewer cells
and quickly reaches the bottom-right cell to get the op-
timal answer (distance).

Fig. 6(b) shows two time series in ShapeletSim,
which is not suitable for DTW-Mθ. As one may see,
these time series have many wave oscillations, the ups
and downs are dramatic. They do not have the similar
trends and variations. Therefore, DTW-Mθ needs to ex-
pand more cells and takes much time to get the optimal
answer.

Based on the observation in Fig. 6, we try to calculate
the variation sequence of a time series. Next, we calcu-
late the standard deviation of the variation sequence for
each time series. The correlation coefficient of the stan-
dard deviation of the variations between time ratio with
DTW-Mθ is 0.25. Thus, it may be a good quantitative
indicator.

Also, we observe that the number of wave oscillations
has a great influence on DTW-Mθ. Thus, we calculate
the number of peaks plus the number of valleys in a time
series, defined as the number of oscillations. The corre-
lation coefficient of the number of oscillations between

Figure 7: The var_std (orange, left coordinate) and os-
cillation (purple, right coordinate).

Table 1: The shortened names of the methods.
Shortened name Meaning of the method

DTW-M MFM for DTW
DTW-θ DTW with threshold

DTW-Mθ MFM for DTW with threshold
SCBand Sakoe-Chiba band for DTW

SCBand-M Sakoe-Chiba band with MFM
for DTW

SCBand-θ Sakoe-Chiba band for DTW
with threshold

SCBand-Mθ
Sakoe-Chiba band with MFM
for DTW with threshold

ITABand Itakura Parallelogram band
for DTW

ITABand-M Itakura Parallelogram band
with MFM for DTW

ITABand-θ Itakura Parallelogram band
for DTW with threshold

ITABand-Mθ
Itakura Parallelogram band
with MFM for DTW with threshold

AWarp-M MFM for AWarp

time ratio with DTW-Mθ is 0.67. Thus, it may be a good
quantitative indicator, too.

3.2 Combined Indicators

We combine the two indicators mentioned above to-
gether and shows in Fig. 7. If we set manually var_std
> 0.45 and oscillation > 200, then 7 unsuitable datasets
could be found out. Thus, we know that the suitable ra-
tio of all experimental datasets should be 110/117 =
94.02%. In fact, there are 4 unsuitable datasets cannot
be found out by the above straightforward indicators. To
get more precise threshold values for our combined in-
dicators, we use the decision tree to train the combined
indicators. We shall present the experimental results in
Section 4.

MFM is simple and could be easily implemented with
DTW related methods. Thus, not only the original
DTW method but also other DTW related methods, we
apply MFM to those methods and calculate the MFM
suitable ratios with all 117 experimental datasets. In or-
der to make it easy for us to introduce the methods, we
list the shortened names of these methods in Table 1.

In Table 2, we list MFM suitability ratios for DTW
related methods with 117 experimental datasets. In the
worst case, 72% datasets are suitable for MFM-M. In
average, 92% datasets are suitable for MFM in the six
methods. Thus, MFM is an elegant and useful method
to speed up the DTW-related methods.
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Table 2: The correlation coefficients of Var_Std and Os-
cillation for the six methods, and the ratio of MFM suit-
ability.

Method
PPPPPPPPRatio

Name Var_Std Oscillation Ratio of
suitable datasets

DTW-M Time 0.15 0.81 84/117=72%Cell 0.14 0.32

DTW-Mθ
Time 0.25 0.67 106/117=91%Cell 0.15 0.32

SCBand-M Time 0.07 0.78 117/117=100%Cell 0.14 0.19

SCBand-Mθ
Time 0.19 0.47 117/117=100%Cell 0.15 0.16

ITABand-M Time 0.11 0.75 104/117=89%Cell 0.15 0.19

ITABand-Mθ
Time 0.19 0.50 116/117=99%Cell 0.15 0.19

Table 3: The suitability prediction accuracies of the self-
training and self-testing for all of the 117 UCR datasets.

````````````Hybrided by
Tree Depth 2 ∞

DTW, DTW-M 85.47% 100.00%
DTW-θ, DTW-Mθ 95.73% 100.00%

ITA, ITA-M 96.58% 100.00%
ITA-θ, ITA-Mθ 100.00% 100.00%

4. SUITABILITY PREDICTION ACCURACIES AND
TIME EFFICIENCIES WITH MFM

4.1 MFM Suitability Prediction Accuracies

Table 2 shows the ratios of suitable datasets for the
six methods. To increase the suitability prediction
accuracy, we use the decision tree to train the com-
bined indicator for DTW-M, DTW-Mθ, ITABand-M
and ITABand-Mθ. Note that for SCBand related meth-
ods, all datasets are suitable to apply MFM, so they are
not necessary to be trained.

In Section 3.2, we use 117 datasets to find the com-
bined indicator. The suitability prediction accuracy of
the straightforward method is 94.02%. The way of the
straightforward method can be viewed as a self-training
and self-testing method.

In order to get higher suitability prediction accura-
cies, we apply the decision tree to the training of the
indicators. First, we apply the self-training and self-
testing to all of the 117 UCR datasets, with tree depth 2
and with unlimited tree depth (depth = ∞). The suit-
ability prediction accuracies are shown in Table 3.

Next, we do the suitability prediction experiments
with half-training and half-testing for 100 times ran-
domly. In other words, the 117 UCR datasets are di-
vided randomly into two parts, one for training and the
other for testing. The depths of the decision tree are set
to 2 and ∞. Table 4 shows the average and standard
deviation of the suitability accuracy for 100 times. Ob-
viously, the decision tree training indeed helps us to de-
termine the suitability of DTW-M, as compared to Table
2.

In Tables 3 and 4, most of our suitability prediction
accuracies are higher than 80%, and we could take ad-
vantages of that to design quicker hybrid methods.

4.2 Time Efficiencies with MFM

After the suitability has been determined for a dataset,
we could use either the original method or MFM accord-
ingly to perform computation in the dataset. We call

Table 4: The average and standard deviation of the suit-
ability prediction accuracies for 100 times with half-
training and half-testing for all of the 117 UCR datasets.
````````````Hybrided by

Depth 2 ∞

Average Standard
Deviation Average Standard

Deviation
DTW, DTW-M 79.82% 4.89% 82.32% 5.41%

DTW-θ, DTW-Mθ 91.58% 3.45% 90.46% 3.35%
ITA, ITA-M 92.68% 3.07% 91.60% 2.73%

ITA-θ, ITA-Mθ 98.40% 0.75% 98.45% 0.79%

Table 5: The sum of time and average of time ratio for
the self-training and self-testing for all of the 117 UCR
datasets.
````````````Hybrided by

Depth 2 ∞
Sum of Average of Sum of Average of
Time Time Ratio Time Time Ratio

DTW 809876 1.00 809876 1.00
DTW, DTW-M 754542 0.72 752443 0.68

DTW-θ 412922 1.00 412922 1.00
DTW-θ, DTW-Mθ 324340 0.43 280398 0.41

ITA 600697 1.00 600697 1.00
ITA, ITA-M 554433 0.63 553958 0.62

ITA-θ 333832 1.00 333832 1.00
ITA-θ, ITA-Mθ 158839 0.38 158839 0.38

such a way as the hybrid method. In Table 5, the sum of
time means the total execution time of all datasets (some
are sampled). It is similar to the concept of weighted
amount, since some datasets need much execution time
and some other datasets need less time. The time ra-
tio for each dataset in the hybrided by DTW, DTW-
M means DTW-M or DTW

DTW , and the average of time ra-
tio is got by averaging the time ratios of the 117 UCR
datasets. This is similar to the concept of unweighted
amount, since each dataset has the same weight in aver-
aging the time ratios.

In Table 5, we could see that all of our hybrid meth-
ods need less time than the original methods. Compared
to Table 3, as one may see, if the suitability prediction
accuracy is higher, then the sum of time and average of
time ratio is lower. Thus, the self-training successfully
reduces the required time by determining whether the
dataset is suitable for MFM or not in advance.

We illustrate the sum of time and average of time
ratio (obtained from the average in 100 experiments
with half-training and half-testing) in Table 6. How-
ever, we could see the performances of time and time
ratio are very different. If the very large datasets, such
as Phoneme, PigAirwayPressure and Rock, are not de-
termined correctly in our hybrid method, the execution
time would be much more than the original method. In a
fair view of each dataset, the average time ratio (viewed
as an unweighted sum of time ratio) may be a good mea-
surement. In the table, we could see that the average
time ratio of the hybrid methods is better than the orig-
inal methods. Also, compared to Table 4, it is likely
that methods with higher suitability prediction accura-
cies save more time. Thus, the half-training successfully
reduces the time by determining whether the dataset is
suitable or not suitable for MFM in advance.

As for sparse time series, since there are only two
sparse time series datasets in Mueen’s Website [7], we
generate the testing datasets of sparse time series ran-
domly. They are represented in the run-length encoding
format. The encoding method represents the length of
consecutive zeros in the series as a negative number.

We show the experimental results of sparse datasets
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Table 6: The average sum of time and average of time
ratio for 100 times by half-training and half-testing with
the 117 UCR datasets.
````````````Hybrided by

Depth 2 ∞
Sum of Average of Sum of Average of
Time Time Ratio Time Time Ratio

DTW 365530 1.00 365530 1.00
DTW, DTW-M 811674 0.95 696122 0.96

DTW-θ 211553 1.00 211553 1.00
DTW-θ, DTW-Mθ 162103 0.51 168562 0.56

ITA 301137 1.00 301137 1.00
ITA, ITA-M 376475 0.66 370469 0.70

ITA-θ 177192 1.00 177192 1.00
ITA-θ, ITA-Mθ 82405 0.38 82405 0.38

Figure 8: The execution time for sparse datasets with
DTW, DTW-M, AWarp and AWarp-M.

for DTW, DTW-M, AWarp and AWarp-M in Fig. 8.
The execution time of DTW and DTW-M are inde-

pendent of the sparse ratio with a fixed sequence length
in Fig. 8. However, AWarp and AWarp-M deeply de-
pend on the sparse ratio. When the ratio of zeros in-
creases, the execution time is reduced.

5. CONCLUSION

In this paper, we present two indicators, including stan-
dard deviation of variations and wave oscillation. They

help us to determine if a dataset is MFM suitable or
not, with most of prediction accuracies higher than 80%.
Then, we design hybrid methods by taking advantages
of these indicators, and all of these methods save differ-
ent amount of time, from 4% to 62%, comparing to their
original methods.

It is a pity that presented indicators cannot determine
MFM suitability with 100% accuracy. It is a challenging
task for us to conquer and we shall try to apply MFM to
more DTW related methods in the future.

REFERENCES

[1] B.-X. Chen, K.-T. Tseng, and C.-B. Yang, “A minimum-first al-
gorithm for dynamic time warping on time series,” in Proceed-
ings of the 23rd International Computer Symposium , Yunlin, Tai-
wan, Dec. 2018. Also in New Trends in Computer Technologies
and Applications, Communications in Computer and Information
Science, vol. 1013, pp. 449–456, Singapore: Springer, 2018.

[2] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” Knowledge and Information Systems, vol. 7,
pp. 358–386, Mar. 2005.

[3] F. Itakura, “Minimum prediction residual principle applied to
speech recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 23, pp. 67–72, Feb. 1975.

[4] H. Sakoe and S. Chiba, “Dynamic programming algorithm op-
timization for spoken word recognition,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 26, pp. 43–49,
Feb. 1978.

[5] A. Mueen, N. Chavoshi, N. Abu-El-Rub, H. Hamooni, and
A. Minnich, “AWarp: Fast warping distance for sparse time se-
ries,” in Proceedings of the 16th International Conference on
Data Mining, (Barcelona, Spain), pp. 350–359, Dec. 2016.

[6] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu,
S. Gharghabi, C. A. Ratanamahatana, Y. Chen, B. Hu, N. Begum,
A. Bagnall, A. Mueen, and G. Batista, “The UCR time series
classification archive.” https://www.cs.ucr.edu/~eamonn/
time_series_data_2018/, 2018.

[7] A. Mueen, N. Chavoshi, N. Abu-El-Rub, H. Hamooni, and
A. Minnich, “AWarp: Fast warping distance for sparse time
series.” https://www.cs.unm.edu/~mueen/Projects/
AWarp/, 2016.

2019 全國計算機會議




