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Abstract

Given two sequences A and B of lengths m and
n, respectively, the consecutive suffix alignment
(CSA) problem is to compute the longest com-
mon subsequence (LCS) between A and each suf-
fix of B. A two-dimensional S-table is constructed
for solving the CSA problem. The linear-space S-
table consists of the first row of the S-table and the
changes between every two consecutive rows. Sup-
pose that A = A(1)A(2) (concatenation of two sub-
strings), and we are given the S-table of A(2) and
B, and the alignment result of A(1) and B. The
concatenated LCS (CoLCS) problem is to find the
alignment result of A and B. By using the linear-
space S-table, instead of the 2-D S-table, we first
propose an O(n log n)-time algorithm to solve the
CoLCS problem. Then, we propose a more effi-
cient algorithm for the CoLCS problem, in O(n)
time, with the technique of set find and union.

1 Introduction

The longest common subsequence (LCS) prob-
lem [2, 6, 8, 10, 12, 13, 15, 20, 22, 30] is a
fundamental method for estimating the similar-
ity between sequences. The LCS problem has
been extensively studied for several decades since
1970. The LCS problem can be solved in O(mn)
time [13] by the dynamic programming approach,
where m and n denote the lengths of the two input
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sequences, respectively. Lots of variant LCS prob-
lems were proposed, such as the merged longest
common subsequence problem [14, 23, 29], which
considers the LCS with the merged sequence, and
the constrained LCS [4, 5, 9, 24, 27, 28], which
computes the LCS with the constrained sequence.

The consecutive suffix alignment (CSA) prob-
lem is one of the variant LCS problems. Given
two sequences A and B, the CSA problem is to
compute the LCS between A and each suffix of B
[16], where a suffix of a string means a substring
starting at a certain position and ending at the last
position. The S-table can be used to solve the CSA
problem. The CSA problem can be used in var-
ious applications, such as the common substring
alignment problem [18, 19], cyclic string compar-
ison between two strings or between A and each
suffix of B [17, 21, 25]. In 2003, Landau et al. [18]
proposed a linear time algorithm with the given
S-table to solve the common substring alignment
problem.

In 2004, Landau et al. [16] proposed two al-
gorithms to solve the CSA problem. One solves
the problem in O(nl) time and space with con-
stant alphabets, and the other solves the problem
in O(nl+n| log Σ|) time and O(n) space, where |Σ|,
l denote the alphabet size and the length of LCS,
respectively. In 2005, Alves et al. [3] proposed an-
other algorithm with O(mn) time and O(n) space
for the CSA problem. In addition, Alves et al.
[3] proposed the linear-space S-table, which con-
sists of the first row of the S-table and the changes
between every two consecutive rows.

Let A = A(1)A(2) (concatenation of two sub-
strings). And we already have the S-table of A(2)

and B, and the alignment result of A(1) and B.
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The concatenated LCS (CoLCS) problem is de-
fined to calculate the alignment result of A and
B. In this paper, we proposes two algorithms in
O(n log n) and O(n) time for solving the CoLCS
problem with the linear-space S-table, instead of
the 2-D S-table.

The organization of this paper is given as fol-
lows. Section 2 introduces the preliminary knowl-
edge of the LCS and CSA problems, and the S-
table. Next, our algorithms for the CoLCS prob-
lem are proposed in Section 3. Finally, the con-
clusions are given in Section 4.

2 Preliminaries

A sequence of characters is denoted as an
upper-case letter, such as A or B. Taking sequence
A as an example, the notations used in this paper
are listed below.

• A = a1a2 · · · am.

• |A|: the length of sequence A.

• ai: the ith character or element of A.

• i..j: an index range from position i to j.

• Ai..j : the substring of A from index i to j.
Note that Ai..j = ∅ if i > j.

A subsequence of A is obtained by deleting an
arbitrary number of characters (not necessarily
consecutive) in A. For example, A = tctgatggt,
the subsequences of A may be tctgatggt, catt,
ctga, tatgt, a, and so on. The longest common
subsequence problem is defined as follows.

Definition 1. (LCS) Given two sequences A and
B with lengths m and n, respectively, the longest
common subsequence (LCS ) problem is to find the
common subsequence between A and B with the
maximal length.

For example, suppose A = cggattctgt and
B = tctgatggt. The LCS of A and B, denoted
as LCS(A,B), is cgatgt with length 6. The LCS
problem can be solved by the grid directed acyclic
graph (GDAG) [19] as shown in Figure 1.

Definition 2. (PG(i, j)) For 0 ≤ i ≤ m and 0 ≤
j ≤ n, PG(i, j) is the value of the highest weight
path from G(0, 0) to G(i, j).

With the GDAG, the length of LCS is equal
to PG(m,n). The LCS problem can be solved

Figure 1: The grid directed acyclic graph
(GDAG) for solving the LCS problem with A =
cggattctgt and B = tctgatggt. Here, the
path formed with thick lines is the LCS solution
(cgatgt). Note that diagonal edges with weight 0
are not shown.

through the dynamic programming (DP) approach
in O(mn) time by Equation 1 [30].
PG(i, j) =

max


0 if i = 0 or j = 0,

PG(i− 1, j − 1) + 1 if ai = bj ,

max

{
PG(i− 1, j)
PG(i, j − 1)

if ai ̸= bj .

(1)

2.1 The Consecutive Suffix Alignment
Problem and the S-table

Definition 3. (consecutive suffix alignment)
Given two sequences A and B, the consecutive
suffix alignment (CSA) problem is to compute the
alignment of A and each suffix of B.

With the above DP approach for the LCS prob-
lem, |LCS(A,B1..j)| can be computed in O(mn)
time for all 1 ≤ j ≤ n. The näıve method for
the CSA problem with the DP approach requires
O(mn2) time by computing each |LCS(A,Bi..j)|,
for 0 ≤ i ≤ j ≤ n. However, it is inefficient. In
the GDAG, the CSA problem can be transformed
to finding the maximal weight path from G(0, i)
to G(m, j) for 0 ≤ i ≤ j ≤ n.

Definition 4. (CG(i, j)) For 0 ≤ i ≤ j ≤ n,
CG(i, j) is the maximal weight of all the paths from
G(0, i) to G(m, j).
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Table 1: The matrix CG with A = ttct and B =
tctgatggt.

i
j

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 3 3 3 3 3 3
1 0 0 1 2 2 2 2 2 2 3
2 0 0 0 1 1 1 2 2 2 3
3 0 0 0 0 0 0 1 1 1 2
4 0 0 0 0 0 0 1 1 1 2
5 0 0 0 0 0 0 1 1 1 2
6 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0

Table 2: The S-table S of A = ttct and B =
tctgatggt, where the starting index means of the
position of B, and the column of D means that
the number is the first occurrence in the row.

Length
0 1 2 3 D

Starting
index

0 0 1 2 3
1 1 2 3 9 9
2 2 3 6 9 6
3 3 6 9 ∞ ∞
4 4 6 9 ∞ 4
5 5 6 9 ∞ 5
6 6 9 ∞ ∞ ∞
7 7 9 ∞ ∞ 7
8 8 9 ∞ ∞ 8
9 9 ∞ ∞ ∞ ∞

With Definition 4, it is clear that CG(i, j) =
|LCS(A,Bi+1..j)|. Table 1 shows an example of
CG with A = ttct and B = tctgatggt.

Some properties in CG are listed as follows.

• For each row in CG, the value starts from 0.

• For each row in CG, the values from left to
right are nondecreasing.

• For each row in CG, the difference between
two consecutive values is either 0 or 1.

With the above properties, CG can be repre-
sented by Table 2, denoted as S.

Definition 5. [3] (S-table) For 0 ≤ i ≤ n, Si,0 =
i. For 0 ≤ i ≤ n and 0 < j ≤ L, where L is the
maximal value in CG, Si,j is the minimum of k
for CG(i, k) = j. If no such k exists, Si,j = ∞.

The first element in Si,∗ (row i of S) is Si,0 =
i, and each remaining element in Si,∗ records the
index of the column which is the leftmost of each

number appears in row i of CG. For example, in
row 3 of CG, the leftmost 1 appears at the column
6, so S3,1 = 6. Alves et al. proposed and proved
the following property of S-table [3].

Theorem 1. [3] For 0 ≤ i < n in S,

1. Exactly one element of Si,∗ does not appear
in Si+1,∗, which is Si,0 = i.

2. At most one element with a finite value in
Si+1,∗ does not appear in Si,∗.

Definition 6. [3] (D) For 0 < i ≤ n, di records
the element which appears in Si,∗ but not in Si−1,∗.
If there is no such new element, we set di = ∞.

An example of D is shown in the rightmost col-
umn of Table 2. The S-table can be constructed
from g the S0,∗ and D. Therefore, the solution
of the CSA problem can be represented with the
S-table, or S0,∗ and D [3]. In the following, the
linear-space S-table means the first row of the S-
table (S0,∗) and D.

2.2 Solving the Concatenated LCS
Problem with the S-table

In this subsection, we use an example to explain
how to solve the LCS problem with multiple com-
mon substrings by the S-table [18, 19]. Suppose
we are given two strings A = cggattctgt and
B = tctgatggt, where A is formed by concate-
nating three substrings A(1) = cgga, A(2) = ttct

and A(3) = gt. In other situations, A(r) may re-
peat several times, but not consecutively, to form
a longer sequence A. Note the S-table of A(2) and
B has been already established in Table 2. Figure
2 shows the GDAG of A and B, which is com-
posed of three subgraphs, corresponding to A(1),
A(2) and A(3), respectively. The alignment result
of the first subgraph can be viewed as the input of
the second subgraph, and the alignment result of
the second subgraph can be viewed as the input
of the third subgraph.

Let G(r) denote subgraph r, whose input and
output are denoted as I(r) and O(r), respectively.
In addition, let S(r) denote the S-table of A(r) and
B. The goal is to get the output O(r) with the
input I(r) and S-table S(r). The following DP for-
mula can be easily obtained [18, 19].

O
(r)
j = max{I(r)i +CG(r)(i, j)}, for 0 ≤ i ≤ j. (2)

For example, O
(2)
3 = 3 = max{0 + 3, 0 + 2, 1 +

1, 1 + 0}. The value of O
(2)
3 comes from the input
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Figure 2: The GDAG composed of three sub-
graphs with A(1) = cgga, A(2) = ttct, A(3) = gt

and B = tctgatggt.

I(2) and G(2). The case from I
(2)
3 can be ignored

since I
(2)
2 = I

(2)
3 = 1 and CG(2)(2, 3) ≥ CG(2)(3, 3).

Similarly, I
(2)
1 can be ignored since I

(2)
0 = I

(2)
1 = 0.

As another example, O
(2)
6 = 4 = max{0 + 3, 0 +

2, 1 + 2, 1 + 1, 2 + 1, 3 + 1, 3 + 0}. Thus, only the
leftmost position of I(r) with value k is needed to
compute O(r). Let PIk denote the smallest index
in I(r) with value k, and POi denote the smallest
index in O(r) with value i. In this example, PI =
⟨0, 2, 4, 5⟩ and PO = ⟨0, 1, 2, 3, 6, 9⟩. Now, O(r)

can be represented as PO in Equation 3 [18].

POi = min{j|k + CG(r)(PIk, j) = i,

0 ≤ k ≤ i and 0 ≤ j ≤ n.}
(3)

With the S-table S(r), Equation 3 can be trans-
formed into Equation 4.

POi = min
0≤k≤i

{S(r)
PIk,i−k}, if S

(r)
PIk,i−k exists. (4)

For example, the smallest column index of
value 4 in O(2), denoted by PO4, is obtained by

min{S(2)
PI0,4

, S
(2)
PI1,3

, S
(2)
PI2,2

, S
(2)
PI3,1

, S
(2)
PI4,0

}
= min{S(2)

0,4 , S
(2)
2,3 , S

(2)
4,2 , S

(2)
5,1 , S

(2)
∞,0} =

min{−, 9, 9, 6,−} = 6. It means that
|LCS(A(1), B1..2)| + |LCS(A(2), B3..9)| = 1 + 3
= 4, |LCS(A(1), B1..4)| + |LCS(A(2), B5..9)|
= 2 + 2 = 4, and |LCS(A(1), B1..5)| +
|LCS(A(2), B6..6)| = 3 + 1 = 4. And 6 is
the leftmost index of B to get LCS length 4.

Definition 7. (M) Mk,i = SPIk,i−k, for 0 ≤ k ≤
|PI|−1 and k ≤ i ≤ k+L if such SPIk,i−k exists.

With the definition of matrix M , POi =
min0≤k≤|PI|−1{Mk,i}, for 0 ≤ i ≤ L. The ma-
trix M is shown in Table 3. The computation of
PO is equivalent to finding the minimum of each
column in M .

Table 3: The matrix M , where the row index
means that of M , and each number in the bot-
tom row is the column minimum.

Length
M 0 1 2 3 4 5

Row index

0 0 1 2 3
1 2 3 6 9
2 4 6 9
3 5 6 9

Minimum 0 1 2 3 6 9

To find the column minimum, the brute-force
method needs O(nl) time to examine all the num-
bers, where l denotes the length of LCS(A(r−1) +
A(r), B). Note that the symbol + means the con-
catenation strings A(r−1) and A(r). The matrix
M has been proved to be a totally monotone ma-
trix [18]. Therefore, a recursive algorithm, named
SMAWK and proposed by Aggarwal et al. [1], can
find the column minimum of a totally monotone
matrix in O(l) time. With the S-table S(r) and the
input I(r), the alignment of G(r) can be computed
in O(l) time, instead of the original DP approach
in O(mn) time.

In summary, given two substrings A(1) and A(2)

and one string B with the S-table S(2) of A(2) and
B, the concatenated LCS (CoLCS) problem is to
find the LCS length of A(1) + A(2) and B. It can
be solved in O(l) time [18].

3 Our Algorithms for the Concate-
nated LCS Problem

In this section, we propose two new algorithms
for solving the CoLCS problem in O(n log n) and
O(n) time with the linear-space S-table: S0,∗ and
D, instead of using the whole S-table.

3.1 The Alignment with the Linear-
Space S-table

For easy explanation, we denote the infinity
symbol ∞ mentioned in S-table and D as ∞1, ∞2,
· · · , and so on. Therefore, Table 2 is modified and
shown in Table 4.

第三十五屆組合數學與計算理論研討會

25



Table 4: The modified S-table and D with A =
ttct and B = tctgatggt, where the starting in-
dex means of the position of B, and the value in
column D means that the number is the first oc-
currence in the row.

Length
S-table 0 1 2 3 D

Starting
index

0 0 1 2 3
1 1 2 3 9 9
2 2 3 6 9 6
3 3 6 9 ∞1 ∞1

4 4 6 9 ∞1 4
5 5 6 9 ∞1 5
6 6 9 ∞1 ∞2 ∞2

7 7 9 ∞1 ∞2 7
8 8 9 ∞1 ∞2 8
9 9 ∞1 ∞2 ∞3 ∞3

The modified computation matrix M is shown
in Table 5(a). Clearly, the same result is obtained
if only the finite values are considered when the
column minimums in M are computed. The finite
values are considered as the output. The minimum
of column 6 is ∞1, so we can ignore it. The output
of Table 5(a) is identical to Table 3.

Property 1. Once a number k appears in Si,∗, k
must appear in Sj,∗ for i ≤ j ≤ k.

Definition 8. Let Ck,j denote the minimum of
M0..k,j, for 0 ≤ k ≤ |PI| − 1 and 0 ≤ j ≤ k + L.
And, let hk denote the maximum of Mk,∗ \Ck−1,∗
(Mk,∗ with excluding Ck−1,∗), where the symbol \
denotes the set difference operation.

For example, the matrix C is shown in Ta-
ble 5(b). And, h1 = 9, h2 = ∞1 and h3 = 6.
With the above definition, the alignment result
PO = C|PI|−1,∗ = C3,∗ = ⟨0, 1, 2, 3, 6, 9,∞1⟩. We
present a property of two consecutive Ck−1,∗ and
Ck,∗ as follows.

Theorem 2. Ck−1,∗ ∪ {hk} = Ck,∗, for 1 ≤ k ≤
|PI| − 1.

Proof. Let j be the smallest index for Ck−1,j >
Mk,j . We can divide Ck,∗ into two parts by index
j as follows.

1. 0 ≤ i < j. In this case, Ck−1,i ≤ Mk,i. Thus,
Ck,i = min{Ck−1,i,Mk,i} = Ck−1,i.

2. j ≤ i ≤ k + L. Because Ck−1,j > Mk,j ,
we have Ck,j = min{Ck−1,j ,Mk,j} = Mk,j .
The value of Ck−1,i comes from one number
in rows PI0, P I1, · · · , P Ik−1 of S. Because

Table 5: The modified matrix M and C, where
PI = ⟨0, 2, 4, 5⟩. (a) The matrix M , where each
number in the bottom is the column minimum.
(b) The matrix C.

(a)

Length
M 0 1 2 3 4 5 6

Row index

0 0 1 2 3
1 2 3 6 9
2 4 6 9 ∞1

3 5 6 9 ∞1

Minimum 0 1 2 3 6 9 ∞1

(b)

Length
C 0 1 2 3 4 5 6

Row index

0 0 1 2 3
1 0 1 2 3 9
2 0 1 2 3 9 ∞1

3 0 1 2 3 6 9 ∞1

Ck−1,i ≥ PIk, with Property 1, Ck−1,i ap-
pears in Mk,∗ after Mk,j for all i. Therefore,
Ck,i+1 = Ck−1,i.

Thus, Ck−1,∗∪{hk} = Ck,∗, where hk = Mk,j .

For example in Table 5, C1,∗ = {0, 1, 2, 3, 9}
= {0, 1, 2, 3}∪{9} = C0,∗∪{9}, where C0,∗ = S0,∗.
C2,∗ = {0, 1, 2, 3, 9}∪{∞1} and C3,∗ = C2,∗∪{6},
where 6 is the maximum of M3,∗ \ C2,∗.

With the above properties and PO = C|PI|−1,∗,
we can compute PO from C0,∗ sequentially where
C0,∗ = S0,∗. The alignment result PO consists
of S0,∗ and hk for 1 ≤ k ≤ |PI| − 1. Since S0,∗
has already been given, we focus on finding hk.
We first propose an O(n log n)-time algorithm, and
then a linear time algorithm.

3.2 An O(n log n)-time Algorithm

We first find the value of hk in a sequential
method with k = 1 to |PI| − 1 sequentially.

Lemma 1. Si,∗ consists of the L largest
numbers in S0,∗ ∪ D1..i, where Di..j denotes
{di, di+1, · · · , dj}.

Proof. Each element in Si,∗ is greater than or
equal to i. With Theorem 1, the smallest num-
ber of Si−1,∗ does not appear in Si,∗. Then, with
|Si,∗| = L, the elements of Si,∗ are the L largest
numbers in S0,∗ ∪D1..i.

For example in Table 4, S2,∗ consists of the four
largest numbers in {0, 1, 2, 3} ∪ {9, 6}.
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Theorem 3. hk = max(D1..PIk \ H1..k−1), for
1 ≤ k ≤ |PI| − 1.

Proof. By Definition 7, Mk,i = SPIk,i−k. With ig-
noring the detailed column index and applying the
set concept, we have Mk,∗ = SPIk,∗. By Definition
8 and Lemma 1, hk is the maximum of (S0,∗ ∪
D1..PIk) \ Ck−1,∗. Since C0,∗ = S0,∗ ⊆ Ck−1,∗, we
have that hk is the maximum of D1..PIk \ Ck−1,∗.
By Theorem 2, Ck−1,∗ ∪{hk} = Ck,∗, so Ck−1,∗ =
C0,∗ ∪ {h1} ∪ {h2} ∪ · · · ∪ {hk−1}. We get

hk = max(D1..PIk \ {h1, h2, · · · , hk−1})
= max(D1..PIk \H1..k−1).

(5)

By Theorem 3, we can use a sequential method
to find hk by querying the range maximum of D,
and remove hk from D after finding. Take Tables
4 and 5 as an example, where PI = ⟨0, 2, 4, 5⟩
and M0,∗ = ⟨0, 1, 2, 3⟩. The sequential process is
described as follows.

(1) PI1 = 2, so we find h1 in max(D1..2) = 9,
and remove 9.

(2) PI2 = 4 and max(D1..4) = ∞1, so h2 = ∞1

and we remove ∞1.
(3) PI3 = 5 and max(D1..5) = 6, so h3 = 6.

Therefore, PO = C3,∗ = ⟨0, 1, 2, 3, 6, 9,∞1⟩.
The range maximum query and single point

update (removal) of D with the segment tree
structure requires O(log n) time for each opera-
tion [7] . Thus, the problem for finding the LCS
of A(r−1) + A(r) and B needs O(|PI| log n) =

O(n log n) time, when PI, S
(r)
0,∗ (row 0 of S-table

of A(r) and B) and D(r) are given. The algorithm
is presented in Algorithm 1.

Algorithm 1 An O(n log n)-time algorithm

Input: PI, S0,∗ and D
Output: PO
1: PO = S0,∗ // insert each of S0,∗ into PO
2: for k = 1 to |PI| − 1 do
3: i = max(D1..PIk) // i is the index of the

range maximum
4: insert di into PO // hk = di
5: di = −∞ // remove di from D

6: return PO

3.3 An O(n)-time Algorithm

In Section 3.2, we compute hk with the range
maximum of D1..PIk , for 1 ≤ k ≤ |PI| − 1, and

remove hk after finding. Now we focus on whether
the number di will become the value of one hk or
not.

Definition 9. nextPI(di) is the smallest PIk
such that i ≤ PIk.

The nextPI of Table 4 is shown in Ta-
ble 6, where PI = ⟨0, 2, 4, 5⟩. For example,
nextPI(d1) = nextPI(9) = 2 means that the
smallest PIk satisfying 1 ≤ PIk is 2.

Table 6: An example of nextPI. If nextPI(di)
does not exist, we keep it empty. PI = ⟨0, 2, 4, 5⟩
is underlined in column i.

i di nextPI(di)
1 9 2
2 6 2
3 ∞1 4
4 4 4
5 5 5
6 ∞2

7 7
8 8
9 ∞3

With the preprocessing of nextPI, we explain
how to compute hk for 1 ≤ k ≤ |PI| − 1. We
check the numbers in D = {d1, d2, · · · , dn} with
the decreasing order of the di value. If nextPI(di)
is empty, we ignore it. The computation process
is demonstrated as follows.

(1) nextPI(∞3) and nextPI(∞2) are empty,
so we ignore them.

(2) nextPI(∞1) = 4 = PI2. ∞1 appears in the
S-table after row PI1 = 2. So ∞1 should be the
new member from C1,∗ to C2,∗. In other words,
h2 = max(D1..PI2) = max(D1..4) = ∞1, because
we check the numbers of D in decreasing order.

(3) nextPI(9) = 2 = PI1. So h1 = 9.
(4) nextPI(8) and nextPI(7) are empty, so we

ignore them.
(5) nextPI(6) = 2. We find PI1 = 2, and h1

has been already determined, so we check next of
PI1. Again, we find PI2 = 4, and h2 has been
already determined, so we check PI3. Thus, we
have h3 = 6.

(6) We finally get h1 = 9, h2 = ∞1 and h3 = 6,
and PO = S0,∗ ∪H1..3 = ⟨0, 1, 2, 3, 6, 9,∞1⟩.

Since we check the numbers in D from the
largest to the smallest, by Theorem 2, the above
process can correctly find which hk should be of
the value di.

When we examine di, we use the union-find
data structure [11, 26] to check whether PIk and
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hk have been determined or not. If PIk and hk

have been determined, we have to try the next,
PIk+1 and hk+1. The operations in the union-find
data structure are listed as follows.

• make(x,C): Create a new set named C con-
taining exactly x.

• find(x): Find the name of the set containing
x.

• union(x, y, C): Unite the set containing x and
the set containing y into a new set named C.

In the union-find data structure, each number
in PI except PI0 is initially in a unique set, im-
plemented by make(PIk, k) for 1 ≤ k ≤ |PI| − 1.
We also use make(∞, |PI|) to set the boundary.
Our algorithm for finding PO is presented in Al-
gorithm 2, where D is sorted in decreasing order.

Algorithm 2 An O(n)-time algorithm

Input: PI, S0,∗, D and nextPI, where D is
sorted in decreasing

Output: PO
1: PO = S0,∗ // insert each of S0,∗ into PO
2: for k = 1 to |PI| − 1 do
3: make(PIk, k)

4: make(∞, |PI|) // set the boundary
5: for di ∈ D from the largest to the smallest

number do // decreasing order, achieved by
bucket sort

6: if nextPI(di) exists and
find(nextPI(di)) ̸= |PI| then

7: set k = find(nextPI(di))
8: insert di into PO // hk = di
9: union(PIk, P Ik+1, find(PIk+1))

10: return PO

Figure 3 shows an example of the union-find
process, with Table 4 and PI = ⟨0, 2, 4, 5⟩. In this
case, |PI| = 4 is the boundary number. We start
from checking the largest number in D, which is
∞3. The detailed steps are shown as follows.

1. nextPI(∞3) and nextPI(∞2) are empty, so
skip them.

2. nextPI(∞1) = PI2 = 4, and k =
find(4) = 2 ̸= |PI| = 4, so we have
h2 = ∞1 and union(PI2, P I3, find(PI3))
= union(PI2, P I3, 3). In this situation, h2

with PI2 has been determined. If h2 is de-
sired to be set next time, union(PI2, P I3, 3)
guarantees to set h3 with PI3, instead of h2.

Figure 3: An example of the union-find process.
Each thin circle is an element, and each bold circle
is a set. The number beside each set is the name
of the set.

In other words, when either h2 or h3 may be
set next time, we always set h3.

3. nextPI(9) = PI1 = 2, and k =
find(2) = 1 ̸= |PI| = 4, so we have
h1 = 9 and union(PI1, P I2, find(PI2)) =
union(PI1, P I2, 3). After union(PI1, P I2, 3)
is performed, if one of h1, h2 and h3 is desired
to be set next time, we always set h3.

4. nextPI(8) and nextPI(7) are empty, so skip
them.

5. nextPI(6) = 4 and k = find(4) = 3 ̸=
|PI| = 4. So h3 = 6, and union(PI3,
P I4, find(PI4)) = union(PI3, P I4, 4).

6. The algorithm finishes after H1..3 are found.
If we check the next number di = 5,
nextPI(5) = PI3 = 5, and find(5) = |PI| =
4. di = 5 cannot be the value of any hk.

Finally, the output is ⟨0, 1, 2, 3, 6, 9,∞1⟩, where
the elements ⟨0, 1, 2, 3⟩ come from S0,∗.

For the general union-find problem, the time re-
quired for each operation of union or find is O(β),
where the lower bound of β was proved to be func-
tional inverse of Ackermann’s function [26]. The
union-find structure we use is a single path tree,
and we only unite two consecutive sets. With the
definition of static tree set union, the time com-
plexity of each operation is reduced to O(1) [11].
Our algorithm needs O(n) operations of find and
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union, so the time complexity is O(n). The align-
ment result can be computed in linear time, when
the linear-space S-table is given. In addition to
get PO with increasing order, we can collect the
elements hk, and apply the bucket sort on these
elements with an array of size n. It needs O(n)
time. In summary, the concatenated LCS prob-
lem with the linear-space S-table can be solved in
linear time.

4 Conclusion

In the previous studies of the S-table, the whole
S-table of quadratic space is needed for further
applications. Due to the growth of data size,
to reduce the required space is an important is-
sue. This paper considers the linear-space S-table,
which consists of the first row of the S-table and
the changes between every two consecutive rows.
New algorithms are proposed to solve the concate-
nated LCS problem in O(n log n) and O(n) time
with given the linear-space S-table, instead of the
whole S-table reconstruction.
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