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Abstract

Given a protein sequence and the Cα coor-
dinates on its backbone, the all-atom protein
backbone reconstruction problem (PBRP) is to
reconstruct the backbone by its 3D coordinates of
N, C and O atoms. In the past few decades, many
methods have been proposed for solving PBRP.
Related research reveals that if proper prediction
tools are selected to build the 3D coordinates of
the desired atoms, the RMSD may be improved.
In this paper, we propose a method for solving
PBRP, performing tool preference classification
on each atom of the residue, where the classi-
fication model is generated by support vector
machine (SVM). We rebuild the backbone by
combining the prediction results of all atoms in all
residues. The data sets used in our experiments
are CASP7, CASP8, and CASP9, which contain
65, 52, and 63 proteins, respectively. These
data sets contain nonstandard amino acids along
with standard ones. The RMSDs we achieve are
0.3496 in CASP7, 0.3084 in CASP8, and 0.3286
in CASP9.
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1 Introduction

For a given protein sequence and its α-carbon
coordinates, the all-atom protein backbone recon-
struction problem (PBRP) is that of reconstruct-
ing the 3D coordinates of major atoms (N, C, and
O) on the backbone. Several methods were pro-
posed for solving PBRP, such as SABBAC [17],
Wang’s method [22], Chang’s method [3], BBQ
(backbone building from quadrilaterals) [12] and
Chen’s method [5].

SABBAC is a famous online service for rebuild-
ing the protein backbone from α-carbon trace. It
selects assembly of fragments by encoding the pro-
tein trace with the structural alphabets derived
by a hidden Markov model. Wang et al. [22]
proposed an effective method based on homology
modeling method to rebuild the full atom protein
backbone with known α-carbon coordinates. Ac-
cording to the literature, the method is faster than
SABBAC. Based on Wang’s method, Chang et al.
[3] modified the energy function and adopted a
two-phase refinement method to refine the posi-
tions of O atoms. The method not only achieves
higher accuracy than Wang’s method, but is also
faster than SABBAC. BBQ is another algorithm
for PBRP, which is also prominent in efficiency
and accuracy. This method manages to derive
a custom database of quadrilaterals by extract-
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ing quadrilaterals from PDB files and comput-
ing average positions of atoms C, N and O. Since
each of the above methods has its individual merit
and weakness, Chen et al. [5] thus applied the
tool preference classification strategy to determine
which tool is the more suitable one for predicting
each atom in the protein. In this paper, we em-
ploy Chen’s method as an initial stage for predic-
tion. We apply the prediction tool, either BBQ
or Chang’s method, for predicting atoms in each
residue in order to achieve higher accuracy.

The rest of this paper is organized as follows.
In Section 2, we will describe some previous works.
In Section 3, we propose our method for protein
backbone reconstruction. In Section 4, we show
the experimental results of our method. The con-
clusion of this paper is given in Section 5.

2 Previous Work

Over the past few years, several studies have
been published for solving the PBRP, includ-
ing SABBAC [17], Wang’s method [22], Chang’s
method [3], BBQ [12], and Chen’s method [5]. In
the following, we briefly describe these methods.

2.1 SABBAC

SABBAC [17] is an on-line service committed
to protein backbone reconstruction from α-carbon
trace. First, it encodes the α-carbon trace in the
hidden Markov model for generating the collection
of fragments. 155 fragments are used to describe
the 27 letters of the alphabet; each fragment is
assigned one letter to describe its conformation.
SABBAC follows the procedure of Milik et al. [18]
to calculate the coordinates from three consecu-
tive α-carbons. Then it uses a greedy method to
search for the optimal combination of fragments.
To guide the search, they use the scoring function
of the OPEP force field [21]. The execution time
of SABBAC is known to range from a few sec-
onds to tens of minutes according to the length of
the protein sequence. SABBAC can be accessed
at the website http://bioserv.rpbs.jussieu.fr/cgi-
bin/SABBAC.

2.2 Wang’s Method

Wang et al. [22] proposed a method to solve the
PBRP based on homology modeling. First, they
extract all consecutive four-residue fragments from

all proteins in PDB. Suppose the length of protein
is L, they obtain L− 3 fragments. The fragments
can be classified into 8000 residue groups by iden-
tifying each fragment with its second, third and
fourth residues. The fragments with similar struc-
tures are clustered into the same residue group,
and one typical fragment is chosen to be the rep-
resentative in each cluster. These fragments form
the fragment library. Then, for each target frag-
ment, Wang et al. find its most similar typical
fragment in the residue group with DRMSD as
the measurement. They rotate the typical frag-
ment to superimpose the target fragment, and cal-
culate their coordinates at the center residue of the
target fragment until all target fragments’ coordi-
nates are found. The achieved accuracy is compa-
rable to most previous works.

2.3 Chang’s Method

Chang et al. [3] found that the result of Wang
et al. [22] can be improved by refining the 3D
coordinates of O atoms. They computed the ini-
tial coordinates of N, C and O atoms by Wang’s
method, then tried to refine the O atoms based
on the energy function modified from the AM-
BER force field [6]. They found that the aver-
age energy of a real protein backbone structure
is smaller than that of the predicted one. They
defined coarse moving scope as the boundary of
the cube centered at the initial O position, and
defined resolution as the number of grid points
on each side of the cube. Each grid point repre-
sents one candidate position of the predicted O
atom. The entire procedure is divided into two
phases, thus it is named the two-phase refinement
method. In the first phase, they selected several
candidate positions, each of which serves as the
center of one fine cube bounded by the fine moving
scope. Then in the second phase, they examined
all possible positions in order to find the structure
with minimal energy in each fine cube. For each
candidate position, a scoring function which only
considers O atoms as the bonded potential energy
is calculated. The lower the score is, the better
the position is. They compared their experimen-
tal results with MaxSprout [13], Adcock’s method
[1], SABBAC [17], and Wang’s method [22]. More
than half of their results are better than those in
the previous works. In addition, the execution ef-
ficiency is better than SABBAC.
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2.4 BBQ

The BBQ (backbone building from quadrilater-
als) method [12] is an algorithm for PBRP which
comprises high computational efficiency and accu-
racy. First, it defines two coordinate systems, R-
coordinate and L-coordinate. R-coordinate is used
to define the protein fragment of four amino acids,
and L-coordinate is used to define a local Carte-
sian coordinate system with the given Cα as the
center. In this method, a consecutive fragment of
four α-carbons is defined as a quadrilateral. BBQ
keeps the quadrilaterals with R-factor below 50,
and then it calculates the local coordinates that
form the central peptide plate between the second
and third Cα atoms. BBQ also discretizes the con-
tinuous space described by R-coordinates. In the
three dimensional look-up table, it holds 22,680
different quadrilaterals. BBQ computes average
positions for the N, C, and O atoms for each state.
In some rare cases, it cannot find a specific com-
bination of R-coordinates from the training set;
BBQ will inspect the neighborhood of a given ele-
ment of the grid, and obtain proper coordinates of
N, C and O atoms from the look-up table. Gront
et al. [12] compared their results with another
four PBRP tools and showed that among these
five tools, BBQ is the most accurate. Although
other existing algorithms are relatively fast, they
are significantly less accurate than BBQ.

2.5 Chen’s Method

Chen et al. [5] proposed a method that uti-
lizes a tool preference classification to determine
which prediction tool is more suitable for predict-
ing the coordinates of N, C and O atoms in ev-
ery protein. The method first splits the atoms
of the target protein into three parts: N, C and
O atoms. In each part, the method chooses the
most appropriate tool to be used, which is ei-
ther BBQ [12] or Chang’s method [3]. Chen’s
method adopts nine features, including hydropho-
bicity, van der Waals volume, polarity, polariz-
ability, size, charge, molecular weight, isoelectric
point, and accessible surface area. Each of these
nine features can be further divided into three
groups. For example, the size feature can be di-
vided into tiny, small and normal, and the charge
can be divided into positive, neutral and negative
type. In addition, Chen et al. consider three de-
scriptors which are composition, transition, and
distribution proposed by Dubchak et al. [7], and

they combine these descriptors with the above fea-
tures. In order to obtain better feature combi-
nations, they divide each feature vector into two
parts, the former one with 6 elements and the lat-
ter one with 15 elements. They reorganize these
feature sets by crossover and extension operations.
Finally, the results of SVM are used to determine
the suitable tool for predicting the coordinates of
a specific atom, and the coordinates of all atoms
are combined to form the backbone.

3 Our Prediction Method

In the method of Chen et al. [5], Chang’s
method and BBQ are selected as the preference
prediction tools. They compared the predic-
tion performance of SABBAC, PULCHRA [20],
Chang’s method, and BBQ with the experiments
on CASP7, CASP8 and CASP9 [19]. They found
that Chang’s method and BBQ are two most com-
petent algorithms in terms of RMSDs. In order to
improve the accuracy of protein structure predic-
tion, in this paper we attempt to perform prefer-
ence prediction on a residue-by-residue manner.

3.1 A New Method for Preference
Tool Selection

Because Chen’s method works only for stan-
dard amino acids, we transform nonstandard
amino acids to standard ones according to the
residue substitution table derived from Ligand
Expo [10]. Our method for preference tool selec-
tion is described as follows:

Input: A protein sequence with its Cα coordi-
nates.

Output: The complete protein backbone, includ-
ing the coordinates of N, C, and O atoms of
all residues.

Preprocess: For a protein containing nonstan-
dard amino acids, transform each nonstan-
dard amino acid into standard one according
to the residue substitution table. Then, gen-
erate the FASTA file of the protein sequence,
and obtain the PSSM file by invoking PSI-
BLAST. Finally, perform the process of fea-
ture extraction (see Section 3.2).

Step 1: Divide the input protein chain into
smaller groups in terms of the user-specified
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atom parameter and amino acid type param-
eter. For example, if the specified atom pa-
rameter contains three elements (N, C, O),
and the amino acid type parameter contains
twenty standard amino acids, then each pro-
tein will be divided into sixty groups.

Step 2: For each atom in the protein, use SVM
with the specified feature parameter to select
the preferred prediction tool.

Step 3: Use the selected prediction tool to pre-
dict the 3D coordinate of each atom on the
backbone.

Step 4: Combine prediction results of all atoms
and output the 3D coordinates of the back-
bone of the target protein.

The PSSM file is obtained by invoking PSI-
BLAST with a FASTA format file as the input.
In addition, instead of performing tool selection in
a protein-wise manner, our tool selection is based
on each residue. The flow chart of our method
is shown in Figure 1. The input is a protein se-
quence, along with the atom parameter p1 ∈{N,
C, O}, the amino acid type parameter p2 ∈{A, C,
D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y}, and the feature parameter p3 ∈ {F1, F2,
F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13},
where Fi is defined in Table 1 (See Section 3.2).
For example, (p1, p2, p3) = (C, R, F5) means that
for atom C in amino acid R, we select the pre-
diction tool by SVM with the hydrophobic values
around the residue as features.

3.2 Feature Extraction

In order to obtain accurate result from the SVM
model, effective features are required for training
the classifier. In the following, we describe our ap-
proach for feature extraction. Let L be the length
of protein, fσ be the number of occurrences of
amino acid σ in the protein, ami(j) be the type
of amino acid at position j, and PSSMk,j be the
submatrix of size (2k + 1)× 20 in the PSSM ma-
trix, where the residue at position j is considered
as the center.

Our feature sets include thirteen feature sub-
sets, and each of them is computed with respect
to one residue.

1. The frequency index j

fσ
.

2. The normalized position j
L
.

A protein 
sequence with its 
C� coordinates

Split into residues

Choose the tool 
by SVM

Obtain 3D 
coordinates of 
the protein

BBQ Chang

Predict all atoms of 
each residue

Combine results of all 
residues

Feature extraction

Figure 1: The flow chart of our method.

3. The central index j
fami(j)

. This feature is an

alternative to the frequency index.

4. PSSM for the central residue: PSSMk,j with
k=12.

5. Hydrophobicity [16] of the residue.

6. Normalized van der waals volume [9] of the
residue.

7. Polarity [11] of the residue.

8. Polarizability [4] of the residue.

9. Size [2] of the residue.

10. Charge [15] around the residue.

11. Molecular weight [8] of the residue.

12. Isoelectric point [23] of the residue.

13. Accessible surface area [14] of the residue.

For feature subsets F5 to F13, the half window
size k is also set to 12. Table 1 shows the names
and sizes of all feature subsets.
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Table 1: The names and sizes of the feature sub-
sets.

Feature Description Size
F1 Frequency index 20
F2 Normalized position 1
F3 Central index 1
F4 PSSM 500
F5 Hydrophobic 25
F6 Normalized van der waals volume 25
F7 Polarity 25
F8 Polarizability 25
F9 Size 25
F10 Charge 25
F11 Molecular weight 25
F12 Isoelectric point 25
F13 Accessible surface area 25

4 Experimental Results

In this section, we will show our experimen-
tal results, and explain the procedure of our ex-
periments in detail. The data sets of protein se-
quences we use are acquired from CASP7, CASP8
and CASP9. We adopt 65 proteins in CASP7, 52
proteins in CASP8, and 63 proteins in CASP9,
where only chain A information is used. We per-
form nine experiments, including three self-tests
and six independent tests. That is, we use CASPi
as the training data sets and CASPj as the testing
data sets, where i, j ∈ {7, 8, 9}.

Table 2 shows the average RMSDs of our
method and other methods. We list five differ-
ent feature combinations in Table 2, including
S1 = {F1, F2, F4, F5}, S2 = {F1, F2, F5},
S3 = {F1}, S4 = {F5}, and S5 = {F2, F3, F4,
F5, F6, F7, F8, F9, F10, F11, F12, F13}. The term
“PAAR” (perfect for all atoms per residue) and
“PIAR” (perfect for individual atoms per residue)
in the table mean the proper tool is selected every
time for predicting all atoms in each residue and
individual atoms of each residue, respectively. In
other words, “PAAR” and “PIAR” are the lower
bounds of RMSDs achievable by tool preference
classification. In Table 2, the lowest achieved
RMSD is marked by an underline.

Cases I, V and IX are self-tests. In the self-
test experiments, the proteins in the training set
are fully identical to those in the testing set. The
goal of these experiments is to determine whether
the model we generate from the training set is ap-
propriate or not. Cases II, III, IV, VI, VII and
VIII are independent tests. In the independent

test, proteins in the testing set do not appear in
the training set. Both self and independent ex-
periments help us identify whether the model is
appropriate or not. In our experiment, we test
different feature sets, and we find that some fea-
ture sets can achieve lower RMSDs than that of
the method proposed by Chen et al.

For each atom, we calculate its RMSDs, and as-
sign it a class label corresponding to the preferred
software. The labels we use are Chang and BBQ.
Table 3 shows the accuracies of our nine experi-
ments on preference classification. The accuracy
is calculated by the following equation:

Q =
P

N
=

TP + TN

TP + TN + FP + FN
. (1)

In Equation 1, P denotes the total number of
correct predictions, and N denotes the number of
total predictions. TP , TN , FP , and FN rep-
resent the numbers of true positive, true nega-
tive, false positive, and false negative, respectively.
Based on the above definition, the accuracy for se-
lecting appropriate prediction tool is

QR =
PR

NR

, (2)

where PR represents the number of residues
with correctly predicted preference in the testing
set, and NR means the total number of residues
in the testing set. In Table 4, we show the de-
tailed RMSDs of Chang, BBQ, and our method
for CASP9. The detailed RMSDs for CASP7 and
CASP8 are omitted for conciseness.

We find that if we can always select the correct
tool to do the prediction for each individual atom,
the average RMSDs would be 0.2485, 0.3078, and
0.2651 for CASP7, CASP8, and CASP9, respec-
tively, which are the lower bounds of the RMSDs
in our experiments. The best average RMSDs
we achieve are 0.3496, 0.3084 and 0.3286 for self-
test in our method. The difference of RMSDs be-
tween PIAR and our method shows that there are
still rooms to improve our method. In these nine
experiments, we have results better than Chen’s
method in Cases I, III, IV, V, VII, and IX. How-
ever, in Cases II, VI, and VIII, Chen’s method
yields better results. In summary, our method is
better than Chen’s for six out of nine experiments,
which include three self tests and three indepen-
dent tests. This implies that our method is at least
as good as Chen’s.
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Table 2: The RMSDs of nine experiments with various methods.

Case Train Test Chang BBQ Chen S1 S2 S3 S4 S5 PAAR PIAR

I CASP7 CASP7
0.4108 0.3624

0.3505 0.3553 0.3496 0.3580 0.3590 0.3499
0.2625 0.2485II CASP8 CASP7 0.3589 0.3632 0.3646 0.3593 0.3611 0.3605

III CASP9 CASP7 0.3609 0.3617 0.3642 0.3621 0.3646 0.3586

IV CASP7 CASP8
0.4888 0.4584

0.4558 0.4413 0.4422 0.4557 0.4432 0.4599
0.3227 0.3078V CASP8 CASP8 0.4106 0.3084 0.4047 0.4474 0.4267 0.4185

VI CASP9 CASP8 0.4187 0.4607 0.4542 0.4365 0.4394 0.4515

VII CASP7 CASP9
0.4406 0.4280

0.4127 0.4000 0.4082 0.4139 0.4091 0.4172
0.2794 0.2651VIII CASP8 CASP9 0.3757 0.4246 0.4156 0.4083 0.4044 0.4248

IX CASP9 CASP9 0.3693 0.3960 0.3993 0.3811 0.3286 0.4322

Table 3: The accuracies of the preference classifi-
cations in our nine experiments.

Case Training Set Testing Set Accuracy

I CASP7 CASP7 61.05%
II CASP8 CASP7 58.03%
III CASP9 CASP7 57.94%

IV CASP7 CASP8 58.27%
V CASP8 CASP8 99.94%
VI CASP9 CASP8 58.04%
VII CASP7 CASP9 57.61%
VIII CASP8 CASP9 57.22%
IX CASP9 CASP9 81.60%

5 Conclusion

In this paper, we propose a method for pro-
tein backbone reconstruction, which performs tool
preference classification on each residue in the
target protein. The prediction tools we use are
Chang’s method and BBQ.We split the protein se-
quence into residues, and select the tool by means
of SVM with various feature combinations. The
backbone can be reconstructed by combining the
prediction results from all residues. The achieved
RMSDs for our method, Chen’s method, and BBQ
are 0.3496, 0.3505, and 0.3624 in CASP7, re-
spectively. For CASP 8, the RMSDs for these
three methods are 0.3084, 0.4106 and 0.4584. The
RMSDs in CASP9 are 0.3286, 0.3693 and 0.4280.
In nine experiments, we achieve better RMSDs in
six cases, while the other three cases are worse
than Chen’s results.

Our future work will focus on how to improve
the prediction accuracy. This can be achieved by
several possible ways. First, we can try to de-
vise other features which may facilitate the SVM
classification. We observe that if we can improve
the accuracy for predicting O atom, the RMSD
can be reduced significantly. Next, instead of uti-
lizing SVM to obtain discrete outputs, we may
adopt SVR (support vector regression), which can
export continuous outputs to predict the coordi-

nates of N, C and O atoms directly. Finally, we
may incorporate some other backbone prediction
tools with RMSD lower than Chang’s method and
BBQ.
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Table 4: The RMSDs of Chang’s method, BBQ, and our method in CASP9.

CASP9 ID PDB ID Chang BBQ Case I, S1 Case II, S4 Case III, S4 PAAR PIAR

T0572 2KXY 0.4003 0.4719 0.4724 0.4734 0.3058 0.3064 0.2906
T0557 2KYY 0.5606 0.5002 0.4876 0.4943 0.3602 0.3522 0.3413
T0549 2KZV 0.4945 0.4991 0.4988 0.4993 0.3806 0.3523 0.3430
T0559 2L01 0.4128 0.3514 0.3450 0.3437 0.3181 0.3208 0.3135
T0560 2L02 0.5468 0.3823 0.3816 0.3859 0.3662 0.3486 0.3381
T0555 2L06 0.5165 0.3750 0.3623 0.3788 0.2946 0.2851 0.2717
T0538 2L09 0.4293 0.3309 0.3252 0.3245 0.2989 0.3093 0.2980
T0539 2L0B 0.5520 0.3846 0.3899 0.3808 0.2922 0.2987 0.2822
T0540 2L0D 0.5496 0.3953 0.3982 0.3959 0.3068 0.3194 0.2943
T0552 2L3B 0.4772 0.4214 0.4200 0.4225 0.3392 0.3035 0.2992
T0545 2L3F 0.4711 0.4051 0.4042 0.4029 0.2916 0.2516 0.2470
T0546 2L5Q 0.6070 0.4991 0.4996 0.5016 0.4063 0.3974 0.3901
T0577 2L7Q 0.6411 0.4278 0.4413 0.4288 0.3807 0.3716 0.3619
T0554 2L8V 0.5709 0.4604 0.4539 0.4620 0.3752 0.3723 0.3611
T0636 2X3O 0.4168 0.4468 0.4554 0.4517 0.3375 0.3359 0.3200
T0535 3MPX 0.4530 0.6218 0.6193 0.5001 0.3973 0.3324 0.3088
T0525 3MQZ 0.4045 0.3013 0.3055 0.3058 0.2271 0.2276 0.2201
T0527 3MR0 0.4358 0.5222 0.5310 0.5326 0.3317 0.3302 0.3155
T0521 3MSE 0.5005 0.6477 0.3671 0.6383 0.3493 0.3062 0.2975
T0532 3MWB 0.3828 0.3373 0.3468 0.3391 0.2596 0.2397 0.2362
T0524 3MWX 0.4703 0.3407 0.3500 0.3457 0.2511 0.2386 0.2339
T0533 3MX3 0.4101 0.3319 0.3240 0.3173 0.2427 0.2350 0.2285
T0536 3MXQ 0.4589 0.6396 0.6338 0.6310 0.2541 0.2458 0.2365
T0542 3N05 0.4244 0.4922 0.3841 0.4938 0.4127 0.2744 0.2694
T0528 3N0X 0.3851 0.2648 0.2745 0.2645 0.1968 0.1893 0.1831
T0635 3N1U 0.4224 0.3070 0.3121 0.3098 0.2421 0.2520 0.2245
T0587 3N2W 0.4144 0.7503 0.7498 0.7500 0.7118 0.2498 0.2379
T0634 3N53 0.5089 0.7011 0.6165 0.7009 0.4950 0.3807 0.3608
T0567 3N70 0.4112 0.4118 0.4129 0.4130 0.2776 0.2816 0.2668
T0585 3NE8 0.4048 0.6775 0.3381 0.6787 0.6398 0.2426 0.2263
T0589 3NET 0.4783 0.5258 0.4188 0.3856 0.4654 0.3296 0.3111
T0593 3NGW 0.3792 0.3162 0.2666 0.2715 0.1978 0.2267 0.1923
T0597 3NIE 0.4599 0.8070 0.4096 0.4134 0.7797 0.2989 0.2875
T0600 3NJA 0.4105 0.3644 0.3645 0.3649 0.2362 0.2359 0.2141
T0603 3NKD 0.4241 0.4282 0.3096 0.3092 0.2774 0.2774 0.2532
T0623 3NKH 0.4067 0.3584 0.3150 0.3137 0.2337 0.2541 0.2090
T0518 3NMB 0.4139 0.3847 0.3797 0.3799 0.2702 0.2652 0.2491
T0548 3NNQ 0.3403 0.3035 0.3351 0.3347 0.2147 0.2367 0.2060
T0611 3NNR 0.4323 0.4160 0.2593 0.4089 0.3882 0.2836 0.2113
T0570 3NO3 0.3889 0.3388 0.4062 0.4077 0.3298 0.2400 0.3224
T0516 3NO6 0.3250 0.2311 0.2398 0.2343 0.1942 0.2019 0.1819
T0565 3NPF 0.4131 0.3415 0.3431 0.3414 0.2667 0.2694 0.2558
T0530 3NPP 0.4312 0.4078 0.4090 0.4092 0.3275 0.3316 0.3075
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T0613 3OBI 0.3348 0.3320 0.3362 0.3358 0.2043 0.1970 0.1865
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