Hirschberg proposed one quadratic space and two linear space algorithms for the longest common subsequence(LCS) of two strings. This algorithm(Algorithm A) is a dynamic programing approch, and solves LCS problem in O(mn) time and in O(mn) space.
int Hirschberg_AlgA(char *stringA, char *stringB, int m, int n) { int i, j, **matrix, lcs = 0; matrix = (int**)calloc(m + 1, sizeof(int*)); for (i = 0; i < m + 1; i++){ matrix[i] = (int*)calloc(n + 1, sizeof(int)); } /*----------find LCS---------*/ for (i = 1; i <= m; i++){ for (j = 1; j <= n; j++){ if (stringA[i] == stringB[j]){ matrix[i][j] = matrix[i - 1][j - 1] + 1; } else{ if (matrix[i][j - 1] > matrix[i - 1][j]) matrix[i][j] = matrix[i][j - 1]; else matrix[i][j] = matrix[i - 1][j]; } } } lcs=matrix[m][n]; for (i = 0; i < m + 2; i++){ free(matrix[i]); } free(matrix); return lcs; }